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Abstract In this paper, a mission incorporating low-thrust
propulsion and invariant manifolds to capture near-Earth ob-
jects (NEOs) is investigated. The initial condition has the
spacecraft rendezvousing with the NEO. The mission termi-
nates once it is inserted into a libration point orbit (LPO).
The spacecraft takes advantage of stable invariant manifolds
for low-energy ballistic capture. Low-thrust propulsion is
employed to retrieve the joint spacecraft–asteroid system.
Global optimization methods are proposed for the prelimi-
nary design. Local direct and indirect methods are applied
to optimize the two-impulse transfers. Indirect methods are
implemented to optimize the low-thrust trajectory and esti-
mate the largest retrievable mass. To overcome the difficulty
that arises from bang-bang control, a homotopic approach
is applied to find an approximate solution. By detecting the
switching moments of the bang-bang control the efficiency
and accuracy of numerical integration are guaranteed. By
using the homotopic approach as the initial guess the shoot-
ing function is easy to solve. The relationship between the
maximum thrust and the retrieval mass is investigated. We
find that both numerically and theoretically a larger thrust is
preferred.

Keywords Capture of NEOs · Invariant manifolds ·
Low-thrust, indirect methods · Homotopic approach

B F. Jiang
jiangfh@tsinghua.edu.cn

G. Tang
paperstiger@gmail.com

1 School of Aerospace Engineering, Tsinghua University, Beijing,
China

1 Introduction

Small celestial bodies in the solar system, such as near-Earth
asteroids, have gained the attention of several space orga-
nizations, such as NASA, ESA, and JAXA. Among all the
small bodies, NEOs are the most interesting ones not only
in regard to understanding the science of the formation of
the solar system but also for the possible exploration of their
resources (Sánchez and McInnes 2013).

They are the closest potential threats for Earth impact
and the easiest ones to reach from Earth and to capture to
the Earth. To classify NEOs by their potential to be grav-
itationally captured, Yárnoz et al. (2013) proposed a new
criterion by which a subset of NEOs is classified into eas-
ily retrievable objects (EROs). The cost of a two-impulse
transfer to gravitationally capture them is under 500 m/s.
Once captured, their destinations are the LPOs around the
collinear libration points L1 and L2 in the Sun–Earth circu-
lar restricted three-body problem (CRTBP). In Yárnoz et al.
(2013), 12 EROs are found, of which nine can be placed in
the region near L2, and three in the region near L1. As more
small NEOs are to be discovered, it is likely that more EROs
will be found in the future.

LPOs and their associated invariant manifolds have
gained a lot of interest in recent decades (Gómez et al. 2002;
Xu et al. 2012; Xu and Xu 2009). Periodic orbits that show
unstable behavior may provide chances for low-energy bal-
listic transfers (Martin and Jeffrey 2004; Gong et al. 2007).
These orbits also represent a class of target orbits for the
captured asteroids (Mingotti et al. 2014a). Generally speak-
ing, to reach a target orbit at a low cost, the spacecraft is
first guided to the stable invariant manifolds associated with
the desired LPO. Once on the stable invariant manifold, the
trajectory is purely ballistic. Use of invariant manifolds to
find low-energy transfers has been thoroughly investigated.
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A successful example is the rescue of the Japanese space-
craft Hiten (Belbruno and Miller 1993). Koon et al. (2001)
studied ballistic capture mechanics and the combination of
the Sun–Earth and Earth–Moon CRTBPs to redesign low-
energy transfers from the Earth to the Moon.

There is abundant literature on low-thrust trajectory de-
sign that uses n-body complex dynamic models. Anderson
and Lo (2009) took advantage of invariant manifolds to pro-
vide initial guesses for low-thrust trajectories. Interplanetary
transfers (Mingotti and Gurfil 2010; Dellnitz et al. 2006) and
transfers to LPOs (Mingotti et al. 2007; Ozimek and How-
ell 2010; Senent et al. 2005) that take advantage of invariant
manifolds and low-thrust propulsion have also been inves-
tigated. Zhang et al. (2015) optimized low-thrust trajecto-
ries from a geostationary transfer orbit to an LPO near L1

in the Earth–Moon CRTBP. Many researchers have shown
that it is possible to capture asteroids into the near-Earth re-
gion (Mingotti et al. 2014a,b; Brophy and Muirhead 2013).
NASA has also proposed a near-Earth asteroid retrieval mis-
sion (ARM) to capture a noncooperative asteroid in deep
space, which requires the development of advanced power
and propulsion technology to transport the asteroid back
to the Earth–Moon system (Brophy and Muirhead 2013).
In this case, the final orbit is a stable orbit around the
Moon. Mingotti et al. (2014a) employed invariant manifolds
for low-energy capture and estimated the largest retrievable
mass. Mingotti et al. (2014b) proposed the idea of coupling
together the Sun–Earth and the Earth–Moon CRTBP models
following the “patched restricted three-body problems ap-
proximation” to capture asteroids into the Earth–Moon dis-
tant periodic orbits.

Low-thrust propulsion such as electric propulsion is es-
pecially suited for deep-space missions, which usually take
a long time. The high specific impulse of low-thrust propul-
sion helps decrease fuel consumption and thus increase the
payload of the spacecraft. Because of the low thrust, the
thruster works for a long time to change the velocity of the
spacecraft. Because of the long burning time of the engine,
optimization of a low-thrust trajectory is difficult. Pontrya-
gin’s minimum principle indicates that bang-bang control is
a necessity for fuel-optimal low-thrust trajectories, which
require the thrust to be either null or full. The discontinu-
ity of the thrust at isolated moments contributes to the diffi-
culty in optimizing low-thrust trajectories. The methods for
optimizing low-thrust trajectories are typically categorized
into two groups, direct and indirect methods. Direct methods
convert the optimal control problem into a nonlinear pro-
gramming problem through parameterization. The conver-
gence domain of a direct method is usually larger than that
of an indirect method, but direct methods are often less effi-
cient. The results from direct methods are usually less opti-
mal because of parameterization. Indirect methods are based

on optimal control theory, and the calculus of variation con-
verts an optimal control problem into a two-point bound-
ary value problem (TPBVP), which is solved through shoot-
ing methods. The shooting function is sensitive to the ini-
tial guess of the costate variables, which induces a very nar-
row convergence domain. There are two problems with the
convergence of indirect methods: (1) the bang-bang control
structure and (2) the unknown bounds of the initial costate
variables. Bertrand and Epenoy (2002) proposed a smooth-
ing technique to convert bang-bang controls into continuous
controls. The less sensitive shooting function enlarges the
convergence domain. Jiang et al. (2012) proposed a method
to normalize the initial costate variables so that they are
bounded. As a result, they can be initialized on the surface
of a high-dimension ball. Thus, indirect methods show ad-
vantages both in efficiency and accuracy. Another advantage
is that the solution is not prescribed but rather found a pos-
teriori. As a result, there is no need to assign the number of
thrusting and coasting segments, and no loss of optimality
arises.

In this paper, some techniques are presented to further
improve the methods proposed by Jiang et al. (2012), in
which the switching detection is rather complex, and a fixed
step integrator is chosen that might be less efficient. The
perturbation to the performance index is given by a loga-
rithmic function to avoid detecting of switching. As a result,
a Runge–Kutta method with adaptive step sizes is used to
increase the efficiency of the numerical integration. A more
accurate method to detect the switching moments of the
thrust is proposed and embedded in the adaptive step inte-
grator. With accurate switching moments, the accuracy of
the numerical integration is guaranteed, which benefits the
convergence of the shooting method. The analytical Jaco-
bian matrix is introduced to guarantee the convergence in
some cases.

The Sun–Earth CRTBP is studied, and the incorporation
of invariant manifolds and low-thrust propulsion is investi-
gated to estimate the largest retrievable mass to a desired
LPO. In Sect. 2, a brief introduction to the concepts of
CRTBP is given. In Sect. 3, a basic simplification to the pre-
liminary design is proposed and particle swarm optimization
(PSO) (Kennedy 2010) is selected as the global optimiza-
tion method. In Sect. 4, both low-energy impulsive and low-
thrust transfers are investigated, and both direct and indirect
methods are applied to optimize the trajectories. Numerical
examples and discussions are given in Sect. 5, and the con-
clusion is given in Sect. 6.

2 Circular restricted three-body problem

The motion of a spacecraft P3 of mass m3 is governed by
the gravity of the two primaries P1 and P2 of masses m1
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Fig. 1 IRF and BRF

and m2, respectively, which are assumed to move in circu-
lar orbits about their common center of mass. Because the
eccentricity of the Earth’s orbit is small, this model is a rea-
sonable approximation to reality. The equations of motion
are given in the nondimensional form

ẍ − 2ẏ = ∂Ω

∂x
, ÿ + 2ẋ = ∂Ω

∂y
, z̈ = ∂Ω

∂z
, (1)

where Ω represents the potential energy of P3 in the follow-
ing form:

Ω(x,y, z,μ) = 1

2

(
x2 + y2) + 1 − μ

r1
+ μ

r2
, (2)

where μ = m2/(m1 + m2) is the mass parameter for the
CRTBP. Equation (1) is written in the barycentric rotating
frame (BRF) with nondimensional units: the angular veloc-
ity of P1 and P2 and the distance between them and the sum
of their mass are all set to unity. Thus, P1 with scaled mass
1 − μ is located at (−μ,0), and P2 with scaled mass μ is
located at (1 − μ,0). The distance between P3 and P1 is r1,
and the distance between P3 and P2 is r2. This model is
shown in Fig. 1, where xOy is the inertial reference frame
(IRF), and XOY is the BRF.

2.1 Libration point orbits

There are five equilibrium points in CRTBP; three are classi-
fied as collinear libration points (L1, L2, L3) and located on
the x-axis of BRF. The points L1 and L2 are of greater in-
terest in mission designs because they are in the near-Earth
region. There are periodic and quasi-periodic orbits near the
equilibrium points. LPOs are of great interest because they
can be the final target orbits for retrievable asteroids. Mean-
while, they can also serve as transfer stations to transfer
the retrieved asteroids to other periodic orbits in the Earth–
Moon CRTBP at low cost.

In this work, the southern and northern halo orbits, which
are symmetric about the xz-plane, are selected as the target

orbits. After calculating an initial guess through analytic ap-
proximation (Richardson 1980a) with positive initial ampli-
tude and generating a halo orbit by the differential correction
method Richardson (1980b), the northern family of the halo
orbits is generated by numerical continuation.

2.2 Structure of invariant manifold

Invariant manifolds associated with LPOs often provide free
transport channels. The inherent dynamics makes it possi-
ble to design low-cost transfers by taking advantage of sta-
ble and unstable invariant manifolds. They are generated by
global extension methods (Ozimek and Howell 2010). For a
point xq belonging to an LPO, the monodromy matrix Mm

is evaluated by integrating the variational equations of the
dynamic equations. Denote by v

q
s and v

q
u the stable and un-

stable normalized eigenvectors of Mm, respectively. The ini-
tial states of stable and unstable invariant manifolds can be
generated by adding a small perturbation ε, which is often
chosen to be 10−6 (in normalized units) along the direction
of v

q
s and v

q
u, respectively (Koon et al. 2000). This is

{
x

q
s = xq ± εv

q
s ,

x
q
u = xq ± εv

q
u.

(3)

The symbol ± shows that two branches for each manifold
exist. By numerically integrating backward in time starting
at x

q
s , the stable invariant manifold is generated. By numer-

ically propagating forward with the initial conditions x
q
u an

unstable invariant manifold is generated.

3 Preliminary design

The initial condition for this mission is that the spacecraft
has already rendezvoused with the asteroid to be retrieved.
The asteroid is captured back to a selected halo orbit near
L1 or L2. As found by Yárnoz et al. (2013), it is usually
easier to capture asteroids whose semimajor axes are less
than 1 AU into regions near L1. It costs less to capture those
with larger semimajor axes into regions near L2. Before
the spacecraft starts to retrieve the asteroid, the distance be-
tween the target asteroid and the Earth is assumed to be large
enough so that the motion of the asteroid follows a two-body
dynamic model. Keplerian elements of all the asteroids are
obtained through the JPL Small-Body Database Browser.1

When the capture begins, the joint spacecraft–asteroid sys-
tem moves in the Sun–Earth CRTBP model, and it relies on
either low-thrust propulsion or impulsive burns when it is
retrieved to the desired LPO. The joint system is first guided
onto the stable invariant manifold and then ballistically cap-
tured into the desired LPO.

1http://ssd.jpl.nasa.gov/sbdb.cgi.

http://ssd.jpl.nasa.gov/sbdb.cgi


10 Page 4 of 14 G. Tang, F. Jiang

This problem is investigated to estimate the largest mass
that can be captured to the desired LPO with technologies
that are currently available or will be in the near future. The
main difficulty arises from the size of the thrust for low-
thrust propulsion. If the thrust is too low, then the time to
get enough velocity increment is too long because of the
large mass of the joint spacecraft–asteroid system. In this
paper, both low-energy two-impulse and low-energy low-
thrust captures are investigated.

3.1 Mission design

For the preliminary design, the model is simplified for effi-
ciency. Instead of low-thrust transfers, a two-impulse trans-
fer is considered to get a quick overview of the problem and
determine some parameters for the mission. The design is
similar to the one proposed by Yárnoz et al. (2013), and the
mission is divided into two segments:

1. Employ two impulsive burns to retrieve the asteroid into
one of the stable invariant manifolds associated with the
target orbit; and

2. Coast along the stable invariant manifold for ballistic
capture.

Segment 2 uses the Sun–Earth CRTBP model. However,
segment 1 falls within the two-body model because it is as-
sumed that the joint spacecraft–asteroid system moves far
away from the Earth in this segment. The Lambert solver
is used to estimate the transfer costs because of its effi-
ciency.

3.2 Performance index estimate

To insert the joint system into the desired LPO is so small
a maneuver that it is neglected in the preliminary design.
Denote by v the sum of the magnitudes of the two im-
pulses in segment 1, by m0 the initial mass of the space-
craft, of which md is the dry mass, by M the sample mass,
by Isp the specific impulse of the selected propulsion, and
by g0 the gravitational acceleration at sea level. If all the
fuel is exhausted to retrieve as much mass as possible, it
yields

(m0 + M) exp

(
− v

Ispg0

)
= M + md. (4)

The largest sample mass is

M =
exp(− v

Ispg0
) − md

m0

1 − exp(− v
Ispg0

)
m0. (5)

It is convenient to define the parameter k by

k = M

m0
=

exp(− v
Ispg0

) − rd

1 − exp(− v
Ispg0

)
(6)

Fig. 2 Relation between v, Isp, and k for rd = 0.25

with rd = md/m0 as the dry mass ratio for the space-
craft.

For this mission, v is of the order of 100 m/s. Take, for
example, rd = 0.25; then the relation between v, Isp, and k

is shown in Fig. 2. A spacecraft with low-thrust propulsion
can retrieve much more mass because of its higher specific
impulse and should be given priority over others for asteroid
retrieval.

3.3 Global search with PSO

The parameters to be optimized include the following:

• Az: the amplitude to generate the halo orbit
• τ : the point in the target orbit where the insertion takes

place
• tm: the coasting time on the stable invariant manifold
• t1: the starting moment of segment 1
• t2: the terminating moment of segment 1

The first three parameters determine the structure of the
stable invariant manifold, and the last two determine the
moments of impulsive burns. The PSO is an evolutionary
search algorithm that simulates the collective behavior of
bird flocks to solve complex nonlinear optimization prob-
lems. This algorithm has no requirement of any gradient in-
formation about the performance index and uses only some
basic mathematical operators so that it is conceptually sim-
ple. It has been widely used to design optimal space mis-
sions (Guo et al. 2011; Zhu et al. 2009; Pontani and Conway
2010; Pontani et al. 2012).

Given a tentative value of the parameters to be optimized,
the halo orbit is generated first with the given amplitude Az.
The state xq when the insertion takes place is derived by in-
tegrating Eq. (1) from 0 to τ . By integrating the variational
equations over the whole period, the monodromy matrix is
obtained, and thus v

q
s is calculated. A perturbation along v

q
s

with magnitude of 1 × 10−6 (in normalized units) is added
to xq , and the terminating state x

q
s is obtained by integrating
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Eq. (1) from 0 to −tm. With the given starting and terminat-
ing moments of segment 1, the position and velocity when
the retrieval begins can be derived from the ephemeris of the
target asteroid. Meanwhile, the position and velocity of the
joint system at the moment when it is inserted into the stable
invariant manifold can be obtained by transforming x

q
s from

the BRF to the IRF. The Lambert solver is used to estimate
the magnitudes of the two impulses, and their sum is the
performance index to be minimized. The performance index
must be calculated many times to find the optimal solution.
Since Az and τ are searched by PSO, numerical integration
is necessary to calculate x

q
s , which is time-consuming. The

large amount of computing effort is one disadvantage of al-
most every evolutionary algorithm.

4 Low-energy transfer

PSO is a robust method to optimize all design parameters of
the mission. Its results serve as initial guesses when the Sun-
Earth CRTBP is considered. First a low-energy impulsive
transfer is designed first, and then a low-energy low-thrust
transfer is optimized.

4.1 Low-energy impulsive transfer

To fix the violations of the constraints and decrease the cost
of the two-impulse transfer, both direct and indirect meth-
ods are proposed. Only two-impulse transfers are considered
here. The first impulse retrieves the asteroid, and the second
one inserts the joint system into one of the stable invariant
manifolds associated with the target orbit.

4.1.1 Local direct optimization

Direct optimization methods, usually gradient-based, are
fast if good initial guesses are provided. The combination
of PSO and local optimization methods provides a greater
chance of finding the global optimal solution. The equations
of motion are built from the Sun-Earth CRTBP to better ap-
proximate the real model.

All the parameters to be optimized by PSO are included
in the local direct optimization, and the two impulses, de-
noted as �v1 and �v2, respectively, are also optimized.
The retrieval begins at the moment when the first impulse
is imposed. After numerically integrating Eq. (1) from t1
to t2, the states of the spacecraft, denoted as xs , are ob-
tained. The second impulse is imposed to change the ve-
locity of the joint system. The state of the stable invariant
manifold, x

q
s , when the insertion takes place is obtained us-

ing the direct optimization methods. After imposing the con-
straint

x
q
s = xs (7)

to ensure the continuity of the trajectory, the sum of the
magnitudes of the two impulses is minimized, that is

J = �v1 + �v2 (8)

This is a nonlinear programming problem with the solu-
tion provided by the state-of-the-art software SNOPT (Gill
et al. 2002) which applies a sequential quadratic program-
ming method. Some derivatives are analytically obtained to
improve the efficiency, whereas others have to be provided
by a finite difference approximation. They are listed as fol-
lows:

• J index with respect to �v1 and �v2

• Equation (7) with respect to tm, t1, t2, �v1, and �v2

More precisely, the derivative of x
q
s with respect to tm and

the derivatives of xs with respect to t2 and �v2 are obtained
directly. However, to obtain the derivatives of xs with re-
spect to t1 and �v1, the state transition matrix of the coast-
ing stage from t1 to t2 has to be derived by integrating the
variational equation of (1). The details will be given in a
later section.

4.1.2 Local indirect optimization

Indirect methods derived using the calculus of variation con-
vert the problem into a multi-point boundary value problem
(MPBVP). Indirect methods are less robust, and the initial
costate variables are difficult to guess. However, the con-
vergence is faster when the initial costate variables do suc-
cessfully converge. Indirect methods are used to optimize
the two-impulse transfer trajectory. It is worthwhile to point
out that when the two-impulse transfer is used, the MPBVP
degenerates into a TPBVP.

The parameters to be optimized include the following

• �v1: the first impulse imposed to retrieve the asteroid
• t1: the moment when the first impulse is imposed
• �v2: the second impulse imposed to insert the joint sys-

tem into the stable invariant manifold
• t2: the moment when the second impulse is imposed
• tm: the period the spacecraft coasts along the stable in-

variant manifold

The parameters Az and τ are difficult to optimize because
the analytical derivatives of x

q
s with respect to them are hard

to derive. Instead, they are chosen to be equal to the values
obtained by direct methods.

The performance index to be minimized is

ϕ = ∥∥v
(
t+1

) − va

∥∥ + ∥∥v
(
t−2

) − vm

∥∥, (9)

where va is the velocity of the asteroid at t1, vm is the ve-
locity of the stable invariant manifold’s state at t2, and t−1
and t+2 represent the moments just before and after the two
impulses are imposed, respectively.
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Optimal control theory is applied to determine the pa-
rameters that minimize ϕ. By introducing costate variables
λ = (λr ;λv), known as Lagrange multipliers, the Hamilto-
nian is built as

H = λT
r ṙ + λT

v v̇, (10)

where ṙ = v and v̇ is determined by Eq. (1). The Euler–
Lagrange equations are given as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ̇r = −( ∂H
∂r )T = −λT

v
∂
∂r ( ∂Ω

∂r )T,

λ̇v = −( ∂H
∂v )T = −λr +

⎡

⎣
0 2 0

−2 0 0
0 0 0

⎤

⎦λv.
(11)

The general expressions of the boundary conditions for
optimality are as follows (Bryson and Ho 1975):

−λ−
j + ∂ϕ

∂x−
j

+ χT

[
∂ψ

∂x−
j

]
= 0, (12)

λ+
j + ∂ϕ

∂x+
j

+ χT

[
∂ψ

∂x+
j

]
= 0, (13)

H−
j + ∂ϕ

∂t−j
+ χT

[
∂ψ

∂t−j

]
= 0, (14)

−H+
j + ∂ϕ

∂t+j
+ χT

[
∂ψ

∂t+j

]
= 0, (15)

where the subscript j indicates the variables when the j th
impulse is imposed, ψ is a vector that collects all equality
constraints, and χ is a vector of all numerical multipliers.
The equality constraints for this problem include the follow-
ing:

r
(
t+1

) − ra = 0, (16)

r
(
t−2

) − rm = 0, (17)

where ra is the position of the asteroid at t1, and rm is the
position of the stable invariant manifold’s state at t2. Denote
by χ i (i = 1,2) the numerical multipliers associated with
the constraints in Eqs. (16)–(17). To determine the optimal
value of tm, the partial derivative with respect to tm must be
0 to guarantee optimality, that is,

−χ1 · ∂rm

∂tm
− χ2 · ∂vm

∂tm
= 0. (18)

Taking into account that x
q
s is numerically propagated from

0 to −tm, the derivative of x
q
s with respect to tm is

∂rm

∂tm
= −vm,

∂vm

∂tm
= −am, (19)

where am is the acceleration obtained from Eq. (1) with the
corresponding rm and vm.

By substituting Eqs. (16)–(17) into equations (12)–(15)
and eliminating the unknown numerical multipliers, the
transversality conditions and the stationary conditions for
optimality are derived as follows:

λv

(
t+1

) + �v1

‖�v1‖ = 0, (20)

λr

(
t+1

) · �v1 = 0, (21)

λr

(
t−2

) · ∂rm

∂tm
+ λv

(
t−2

) · ∂vm

∂tm
= 0, (22)

λv

(
t−2

) + �v2

‖�v2‖ = 0, (23)

H
(
t−2

) = 0. (24)

Provided with the tentative values of the unknown variables,
Eq. (20) is then used to obtain the value of λv(t

+
1 ). To nu-

merically integrate Eqs. (1) and (11) from t1 to t2, λr (t
+
1 )

is guessed, and r(t+1 ) is selected to be equal to the posi-
tion of the asteroid. The TPBVP is established by satisfying
v(t+2 ) = vm and the boundary conditions given by Eqs. (21)–
(24).

To solve this TPBVP, Minpack (Moré et al. 1980) is
used. This is a package of FORTRAN subprograms that
solve nonlinear equations and nonlinear least-square prob-
lems. The Jacobian matrix can be provided by the user or
approximated with the forward-difference method, which is
used by Minpack. To provide an initial guess for the TP-
BVP, the approximate results obtained from the PSO search
are used, including t1, t2, and tm. The Lambert solver is used
to estimate the two impulses, which are first obtained in the
IRF and then transformed into the BRF. The initial value of
λr (t

+
1 ) is obtained by random guesses with prior satisfaction

of Eq. (21).

4.2 Low-energy low-thrust optimization

Indirect methods are applied to optimize the low-energy
low-thrust trajectory and estimate the largest retrievable
mass. To obtain the fuel-optimal bang-bang control, the ho-
motopic approach is used to find an approximate solution
and provide initial guesses. Then the shooting function is
built with a switching detection technique embedded into
the numerical integrator. With the results from homotopic
approach as initial guesses, the shooting method easily con-
verges to the fuel-optimal bang-bang control.

4.2.1 Homotopic approach

The homotopic approach (Bertrand and Epenoy 2002; Jiang
et al. 2012) converts bang-bang controls into continuous
controls and reduces the sensitivity of the shooting function.
The original performance index is included by adding an
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energy perturbation that decreases gradually so that it tends
to settle at the desired bang-bang control. As suggested by
Jiang et al. (2012), the performance index is multiplied by
another positive numerical factor λ0, which does not affect
the optimality of the solution.

The influence of low thrust is implemented by adding a
perturbation to the equations of motion as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r̈ + 2

⎡

⎣
−ẏ

ẋ

0

⎤

⎦ = ∂Ω
∂r + uTmax

m
α,

ṁ = −u Tmax
Ispg0

,

(25)

where Tmax is the maximum thrust, and m is the instanta-
neous mass of the joint system. The control variables consist
of the engine thrust ratio u ∈ [0,1] and the thrust direction α,
which is a unit vector. Length and time are made nondimen-
sional using the aforementioned method. Masses of the joint
system are made nondimensional with the spacecraft’s ini-
tial mass.

To estimate the largest retrievable mass, the goal is to
maximize the initial mass of the joint system. The original
performance index of the optimal control problem is

J = −m(t0) + Tmax

Ispg0

∫ tf

t0

udt, (26)

which requires maximizing the collected mass and minimiz-
ing the fuel consumption at the same time.

After adding an energy perturbation and multiplying
by λ0, the new performance index is

J = −λ0m(t0)+λ0
Tmax

Ispg0

∫ tf

t0

{
u − ε ln

[
u(1 − u)

]}
dt . (27)

By introducing Lagrange multipliers λ = (λr ;λv;λm) the
Hamiltonian is built as

H = λT
r ṙ + λT

v r̈ + λmṁ

+ λ0
Tmax

Ispg0

{
u − ε ln

[
u(1 − u)

]}

= λT
v

(
u

Tmax

m
α

)
+ λ0

Tmax

Ispg0

{
u − ε ln

[
u(1 − u)

]}

− λm

uTmax

Ispg0
+ F, (28)

where F is given by

F = λT
r ṙ + λT

v

⎛

⎝∂Ω

∂r
− 2

⎡

⎣
−ẏ

ẋ

0

⎤

⎦

⎞

⎠ , (29)

which does not depend on the control variables or affect the
minimization of H . The optimal control variables are deter-

Fig. 3 Relation between ρ and u for Different ε

mined by

α = − λv

‖λv‖ (30)

and

u = 2ε

ρ + 2ε + √
ρ2 + 4ε2

, (31)

where ρ is the switching function determined by

ρ = 1 − Ispg0‖λv‖
mλ0

− λm

λ0
. (32)

As shown in Fig. 3, the control determined in this way tends
to a bang-bang control as ε tends to 0.

The adjoint dynamics is readily derived through the
Euler–Lagrange equations as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ̇r = −( ∂H
∂r )T = −λT

v
∂
∂r ( ∂Ω

∂r )T,

λ̇v = −( ∂H
∂v )T = −λr +

⎡

⎣
0 2 0

−2 0 0
0 0 0

⎤

⎦λv,

λ̇m = − ∂H
∂m

= −uTmax‖λv‖
m2 .

(33)

Another constraint on the mass of the joint system is given
by

m(t0) − m(tf ) − (m0 − md) = 0, (34)

which means that all the fuel is consumed to maximize
the retrievable mass. The starting and terminating bound-
ary conditions constrain the equality about the position and
velocity of the joint system. The constraints are written as

r(t0) − ra = 0, (35)

v(t0) − va = 0, (36)

r(tf ) − rm = 0, (37)

v(tf ) − vm = 0. (38)
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By introducing numerical multipliers χm, χ r0
, χv0

, χ rf
,

and χvf
into Eqs. (34)–(38), the transversality conditions at

t0 and tf are

⎧
⎪⎨

⎪⎩

λr (t0) + χ r0
= 0,

λv(t0) + χv0
= 0,

λm(t0) + χm − λ0 = 0

(39)

and
⎧
⎪⎪⎨

⎪⎪⎩

−λr (tf ) + χ rf
= 0,

−λv(tf ) + χvf
= 0,

−λm(tf ) − χm = 0,

(40)

respectively. Combining Eqs. (39) and (40) to eliminate χm

yields

λm(t0) − λm(tf ) − λ0 = 0. (41)

In fact, having free starting and terminating moments
increases the number of variables and makes the problem
even harder to solve. Their values are chosen to be equal to
the results obtained from local direct optimization methods.
Therefore, neither of the stationary conditions at t0 and tf is
introduced. To determine tm, it is derived that

−χ rf
· ∂rm

∂tm
− χvf

· ∂vm

∂tm
= 0, (42)

which is combined with Eq. (40) to eliminate the unknown
numerical multipliers.

After introducing the boundary conditions at t0 and tf ,
the low-thrust trajectory optimization problem is trans-
formed into a TPBVP. When provided with an initial state,
with the tentative values for the costate variables and with
the mass of the joint system, Eqs. (25) and (33) are numer-
ically integrated from t0 to tf . The errors on the bound-
ary conditions can be determined. The shooting function
is solved numerically using Minpack. The solution usually
starts with a relatively large ε, such as 0.01. Then the solu-
tion can be used as an initial guess for the next iteration with
a smaller ε. However, ε cannot be adjusted to be 0 because
then u is undefined when ρ ≤ 0, as indicated by Eq. (31).
Although the bang-bang control cannot be obtained by grad-
ually adjusting ε to 0, it is still an acceptable approximation.
The result is used to provide an initial guess for the next step
in the process to obtain perfect bang-bang control.

4.2.2 Switching moments detection method

After rejecting the perturbation, the performance index to be
minimized is

J = −λ0m(t0) + λ0
Tmax

Ispg0

∫ tf

t0

udt . (43)

The Hamiltonian becomes

H = λr ṙ + λv r̈ + λmṁ

= λv

(
u

Tmax

m
α

)
+ λ0

uTmax

Ispg0
− λm

uTmax

Ispg0
+ F, (44)

whose optimal control to minimize H is

α = − λv

‖λv‖ (45)

and
⎧
⎪⎨

⎪⎩

u = 1 if ρ < 0,

u = 0 if ρ > 0,

u ∈ [0,1] if ρ = 0,

(46)

where ρ is again given by Eq. (32). To detect the switching
moments of ρ during the numerical integration, the deriva-
tive of ρ with respect to time is needed. It is calculated as

ρ̇ = Ispg0‖λv‖
m2λ0

ṁ − 1

λ0
λ̇m − Ispg0

λ0m‖λv‖λv · λ̇v, (47)

and substituting Eq. (33) into Eq. (47) yields

ρ̇ = − Ispg0

λ0m‖λv‖λv · λ̇v. (48)

Because λv and m are always continuous with respect to
time, and λ̇v does not depend on u, the continuity of ρ and ρ̇

is guaranteed even if u switches between 0 and 1. It is easy
to conclude that ρ is continuous and differentiable.

Integrators with adaptive step sizes are preferable be-
cause of their efficiency. Immediately after every integration
step, the sign of ρ is checked, and any changes are detected.
Because the integration steps are small, the possibility that
the sign of ρ changes more than once during a single in-
tegration step is neglected. Denote by [tk, tk+1] the domain
where the sign of ρ changes and by tm ∈ [tk, tk+1] the ex-
act moment when ρ = 0. Because tm < tk+1, the integration
error from t0 to tm is smaller than the required tolerance.
The accuracies of x(tm) and ρ(tm) are guaranteed. Newton’s
method is applied to find the accurate tm, which is initially
chosen to be equal to tf and then corrected according to
ρ(tm) and ρ̇(tm) with

tm − ρ(tm)

ρ̇(tm)
→ tm. (49)

The processes to determine the switching domain and the
accurate switching moment are shown in Figs. 4 and 5, re-
spectively.

The trajectory is separated into several segments that are
categorized into two types according to the sign of ρ. Seg-
ments with negative ρ, called thrusting segments, are subject
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Fig. 4 Process of numerical integration with switching moments de-
tection

Fig. 5 Process of finding the accurate switching moments

to full thrust, and u always equals 1 along such segments.
The segments with positive ρ, called coasting segments, are
subject to null thrust, and u always equals 0. The accurate
switching moments for the sign of ρ are found using the
aforementioned methods. The solution obtained from the
homotopic approach with a relatively small ε is used as the
initial guess, which converges easily to perfect bang-bang
control.

When the maximum thrust increases, the analytic Jaco-
bian matrix of the shooting function becomes more and
more important to ensure convergence. The analytic ma-
trix is more accurate than that computed by finite-difference
methods. Sometimes, when the thrust is large, a forward dif-
ference approximation has difficult converging, whereas the
analytic Jacobian matrix guarantees convergence. In gen-
eral, denote by ϕ(y0, t0, t) the solution for a system of or-
dinary differential equations ẏ = F (t,y). The state transi-
tion matrix is defined as Φ(t, t0) = ∂ϕ(y0, t0, t)/∂y0, which
maps small variations caused by the initial condition differ-
ence δy0 over t0 → t , i.e., δy(t) = Φ(t, t0)δy0(t0). The ma-

Table 1 Classical orbit elements of 2008 UA202

Epoch a (AU) e i (deg) Ω (deg) ω (deg) Mm (deg)

56600 1.0591 0.0798 0.4245 129.467 335.86 123.9998

trix Φ(t, t0) is subject to the variational equation
{

Φ̇(t, t0) = DyFΦ(t, t0),

Φ(t0, t0) = In×n,
(50)

where n is the dimension of the ordinary differential equa-
tions, and DyF is the Jacobian of F (t,y). The calculation
of Φ(t, t0) often requires a numerical integration of n(n+1)

variables for which the accuracy is controllable. Disconti-
nuity of the control makes the calculation of Φ(t, t0) more
difficult because Φ(t, t0) only maps states along the control
that is continuous with respect to time. If tj is a switching
moment for the sign of ρ, a discontinuity in Φ(t, t0) occurs
and has to be redetermined. Such a discontinuity, denoted as
Ψ (tj ), is the partial derivative of the state just after tj with
respect to the state just before tj . The discontinuity Ψ (tj )

can be computed by (Zhang et al. 2015; Russell 2007)

Ψ (tj ) = ∂y(t+j )

∂y(t−j )
= In×n + (

ẏ|t+j − ẏ|t−j
)( ∂ρ

∂y

1

ρ̇

)
, (51)

where t−j and t+j represent the moments immediately before
and after tj , respectively. If there are N switching points at
t1, . . . , tN , then Φ(tf , t0) is derived as

Φ(tf , t0) = Φ
(
tf , t+N

)
Ψ (tN ) · · ·Ψ (t1)Φ

(
t−1 , t0

)
(52)

When the analytic Jacobian is used, λ0 is removed to avoid
calculating ∂y(tf )/∂λ0. The initial guess comes from earlier
results and contains λ0. It is necessary to use λ(t0)/λ0 as the
initial guess for the new shooting function.

5 Examples and discussion

One example is presented to demonstrate the validity of
the proposed methods. The target asteroid is 2008 UA202,
whose classical orbital elements are listed in Table 1, where
a is the semimajor axis given in astronomical units, e the
eccentricity, i the inclination, Ω the longitude of the as-
cending node, ω the argument of perigee, and Mm the mean
anomaly. The PSO search is first applied to find the prelim-
inary parameters of this mission. Then local direct and indi-
rect methods are used to optimize those parameters. Finally,
low-energy low-thrust transfers are optimized. The homo-
topic approach is applied to find an approximation that is
used as an initial guess to obtain the fuel-optimal bang-bang
control.
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Table 2 Optimal result for
low-energy two-impulse transfer Solver Depart (MJD) Coast (day) Az (km) τ (day) tm (day) Cost (m/s)

PSO 60646.0 752.3 −5.24 × 105 17.1 614.2 402.1

Direct 60645.0 788.1 −5.29 × 105 19.4 575.4 393.9

Indirect 60645.0 787.9 −5.29 × 105 19.4 575.4 393.9

5.1 PSO search

The sum of the magnitudes of the two impulses is the per-
formance index to be minimized. The parameters involved
in PSO are set in accordance with Jiang et al. (2012). The
maximum number of iterations nmax is set to be 300, and
the number of particles is set to be 100.

The epoch when the retrieval starts is between 60400 and
61400 MJD. The duration of the Lambert arc is between
400 and 1000 days. The amplitude of the halo orbit is be-
tween −7 × 105 and 7 × 105 km, meaning that both the
northern and southern families are taken into consideration.
Several results are obtained, which show little difference in
the performance index; the best one is chosen and further
optimized. The performance index of the optimal result is
402.1 m/s, and the details for the values of the parameters
are listed in Table 2.

5.2 Local direct optimization

Local direct optimization continues after the PSO search.
All the parameters that were optimized during the PSO
search and the two impulse vectors are optimized locally
again. Instead of the two-body model, the CRTBP is cho-
sen. The local direct optimization process is quite robust,
and the optimal result is also listed in Table 2. Compared
with the optimal result from the PSO search, the coast-
ing time along the stable invariant manifold is longer,
whereas the transfer time between the two impulses is
shorter. The target halo orbit and τ are also different.
The performance index improves a little. A small differ-
ence exists between the results from the PSO search and
the local direct optimization because Earth’s gravity is
taken into consideration. The small difference also demon-
strates the rationality of the simplification during the PSO
search.

5.3 Local indirect optimization

Local indirect optimization is applied based on the result
of the local direct optimization. Az and τ are chosen to
be the same as those obtained from the local direct op-
timization. As listed in Table 2, the performance index
is 393.9 m/s, which is close to the result from the lo-
cal direct optimization. The history of ‖λv‖ is shown in
Fig. 6. The magnitude of ‖λv‖ slightly exceeds unity for

Fig. 6 History of ‖λv‖

a short time during the transfer, which indicates that an-
other impulse can be inserted to lower the cost. Methods
to find the optimal three-impulse transfer can be found in
Davis et al. (2011), and it is not discussed here because
this paper focuses on the difference between direct meth-
ods and indirect methods. Compared with the results from
local direct optimization, only the coasting time is a little
shorter.

In conclusion, assuming that the PSO search provides
proper initial guesses, direct methods are better than indi-
rect methods because they are more robust and have clearer
physical meaning, so that they are easier to operate. How-
ever, indirect methods provide more information to check
the optimality of the result.

5.4 Approximation with homotopic approach

To generalize the solutions, the retrievable mass of the as-
teroid is scaled by the initial mass of the spacecraft. The
dry mass is assumed to be 25 % of the spacecraft’s ini-
tial mass, and the rest is fuel. Denoting by m0 the initial
mass of the spacecraft, another variable a0 = Tmax/m0 is in-
troduced to represent the relation between the initial mass
of the spacecraft and the maximum thrust of the low-thrust
propulsion.

The solution starts with ε = 0.01 and a0 = 1×10−3 m/s2.
The shooting process converges easily even using randomly
guessed initial costate variables and a forward-difference
Jacobian approximation. The initial costate variables and
λ0 are listed in Table 3. The time to coast along the sta-
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Table 3 Results for different ε
ε λ λ0 �tm (day) M

0.01 (−2.596 × 10−1, −8.092 × 10−1, 3.063 × 10−3, 4.914 × 10−1,
−1.901 × 10−1, 1.071 × 10−2, −5.630 × 10−3)

1.267 × 10−4 −1.15 46.30

0.001 (−2.596 × 10−1, −8.092 × 10−1, 3.124 × 10−3, 4.914 × 10−1,
−1.901 × 10−1, 1.07 × 10−2, −5.624 × 10−3)

1.266 × 10−4 −1.16 46.35

0 (−2.596 × 10−1, −8.092 × 10−1, 3.127 × 10−3, 4.914 × 10−1,
−1.901 × 10−1, 1.07 × 10−2, −5.624 × 10−3)

1.266 × 10−4 −1.16 46.35

Fig. 7 Thrust and ρ for low-energy low-thrust transfer with homotopic
form for a0 = 1 × 10−3 m/s2

ble invariant manifold is 1.15 days, which is shorter than
it was before. M is the largest retrievable mass and is
scaled to the initial mass of the spacecraft. The largest re-
trievable mass is 46.3, which means that the fuel cost is
only 1.62 % of the largest retrievable mass. Evaluated with
the same specific impulse, this fuel cost is equivalent to
that of the impulsive transfer for a characteristic velocity
480.5 m/s. Figure 7 shows the histories of the magnitude
of the thrust and ρ. The control is continuous and differ-
entiable, but it is still an acceptable approximation to the
bang-bang control. The sensitivity is reduced, and the con-
vergence domain of the shooting function increases. It is
obvious that the optimal control for this problem has four
thrusting segments, which will be examined in the follow-
ing section. The magnitude of the thrust changes rapidly
when ρ changes sign, which complies with optimal control
theory. The last two thrusting segments are very short during
which ρ stays negative for a short period and later changes
to positive.

Figure 8 shows the projection of the optimal trajectory on
the xy-plane. The joint system is first guided into the stable
invariant manifold and then captured ballistically. This solu-
tion is used as an initial guess to solve the same problem now
with a smaller ε. For example, the results with ε = 0.001 are
close to the results with ε = 0.01, as listed in Table 3. The
performance index improves because the control is a better
approximation to bang-bang control.

Fig. 8 Projection of optimal trajectory on the xy-plane from asteroid
to LPO

Fig. 9 Thrust and ρ for low-energy low-thrust transfer for a0 = 1 ×
10−3 m/s2

5.5 Bang-bang control

Starting with the approximate result, the problem is solved
again to obtain the fuel-optimal bang-bang control. The re-
sult with ε = 0.001 is used as an initial guess, and this
guarantees the convergence of the shooting method even
with the forward-difference Jacobian approximation. The
optimal control is shown in Fig. 9. The performance in-
dex corresponding to bang-bang control is close to that with
ε = 0.001, which again shows that the homotopic approach
provides an acceptable approximation to bang-bang control.
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Table 4 Results for different magnitudes of accelerations

a0 (m/s2) M mf /M V (m/s)

5 × 10−4 35.80 2.09 % 605.8

1 × 10−3 46.35 1.62 % 469.7

2 × 10−3 52.42 1.43 % 416.0

4 × 10−3 54.57 1.37 % 399.8

The magnitude of the thrust switches between 0 and 1 when
ρ = 0, which demonstrates the validity of the switching de-
tection method. The retrieval of this asteroid has also been
studied by Mingotti et al. (2014a), where the optimal con-
trol problem is transformed into a nonlinear programming
problem and then solved by multiple shooting. The result is
not bang-bang, and the optimality decreases. The propellant
mass fraction mp/mi (the fraction of the propellant mass
out of the initial mass of the joint system) is 3.826 % in
Mingotti et al. (2014a). With the methods proposed in this
paper, it reduces to 1.584 %. The difference may arise from
two factors: (1) different preliminary design results in dif-
ferent boundary conditions; (2) the methods proposed by
Mingotti et al. (2014a) converge to a non-bang-bang control
that does not strictly satisfy Pontryagin’s minimum princi-
ple.

5.6 Influence of the maximum thrust

The problem is further studied using different thrusts to
investigate their influence on the final performance index.
Three more cases with different thrusts result in different
accelerations: a0 = 5 × 10−4 m/s2, 2 × 10−3 m/s2, and 4 ×
10−3 m/s2. Table 4 lists the results, where mf = m0 − md

is the mass of the fuel, and V is the equivalent characteristic
velocity.

For all these cases, the problem is first solved with the
homotopic form. This gives an approximate initial guess
to obtain the bang-bang control. A forward-difference ap-
proximation is enough to guarantee convergence, except
when the acceleration is 4 × 10−3 m/s2. For the excep-
tion, the thrust is so large that the shooting function is too
sensitive. Its convergence domain is so small that the ini-
tial guess must be very close to the solution to overcome
the difficulty. The analytic Jacobian matrix is employed to
guarantee convergence. A solution with a small ε (such as
0.0001) is obtained. After that, the initial guesses are gen-
erated by adding perturbations with small magnitudes in
random directions. Multiple guesses are used until conver-
gence occurs. In this case, the solution to obtain the bang-
bang control is quite complex, owing to the narrow conver-
gence domain when the bang-bang control can be solved
directly.

Fig. 10 Thrust and ρ for low-energy low-thrust transfer for a0 = 5 ×
10−4 m/s2

Fig. 11 Thrust and ρ for low-energy low-thrust transfer for a0 = 2 ×
10−3 m/s2

Fig. 12 Thrust and ρ for low-energy low-thrust transfer for a0 = 4 ×
10−3 m/s2

The optimal control for all the four cases are shown in
Figs. 10, 11, 12. It can be concluded that four thrusting seg-
ments are needed for the first two cases with lower thrust,
and only three segments are needed for the last two with
higher thrust. With larger thrust, the time to coast along the
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stable invariant manifold is increasing. It can be concluded
that the transfer is not feasible if a0 is too low, and either
more time or larger thrust is needed to get enough velocity
increment within a prescribed period.

With the increasing maximum thrust, the largest retriev-
able mass also increases. Consider two optimal control prob-
lems whose only difference is their maximum thrust, de-
noted as T1 and T2. Suppose that T1 < T2 and denote the per-
mission control set for each mission as U1 and U2. Because
the admissible control set with the lower thrust is a proper
subset of the admissible control set with higher thrust, i.e.,
U1 ⊂ U2, the optimal control u∗

1 ∈ U2, does not satisfy
Pontryagin’s minimum principle. So the optimal result with
larger thrust is definitely better than that with lower thrust.
When the thrust increases, the duration of thrusting seg-
ments decreases. The structure of the optimal control also
changes as the number of thrusting segments decreases from
4 to 3.

6 Conclusion

This paper studies a mission to retrieve an NEO on the
condition that the spacecraft has already reached the tar-
get NEO. By combining low-thrust propulsion and invariant
manifolds, the mass that can be captured to the desired LPO
is estimated with indirect methods. This can then be used
as a criterion to determine the possibility of capturing the
whole asteroid. In detail, the joint spacecraft-asteroid sys-
tem is retrieved into the stable invariant manifold that is ex-
tended from the desired LPO, and then the capture is purely
ballistic due to the intrinsic dynamics of CRTBP.

PSO search and local optimization methods are used to
find the optimal mission parameters. Then both direct and
indirect methods are investigated to find the optimal two-
impulse transfer in CRTBP, which is an intuitive but subop-
timal strategy for low-energy transfer. The results obtained
from direct and indirect methods are very close. However,
direct methods are preferred for their robustness.

To estimate the largest retrievable mass, an optimal con-
trol problem to maximize the initial mass of the spacecraft–
asteroid system is proposed. To solve this optimal control
problem and overcome the difficulty of solving for bang-
bang control, homotopic approaches that can enlarge the
convergence domain and ensure the efficiency of numerical
computation are used to get an approximation to the bang-
bang control. Then the TPBVP is built after rejecting the ho-
motopic. The bang-bang control is implemented to retrieve
the joint spacecraft–asteroid system. To guarantee the ac-
curacy of the numerical integration, the accurate switching
moments of the thrust are detected. The detection methods
are embedded in integrators with variable step sizes to en-
sure efficiency. The trajectory is divided into several seg-

ments, and the analytic Jacobian matrix is generated if nec-
essary. Taking the solution obtained from the homotopic ap-
proach as an initial guess, the fuel-optimal bang-bang con-
trol is effectively obtained. This approach has been used to
optimize the trajectory to place the spacecraft–asteroid sys-
tem into the stable invariant manifold associated with the de-
sired LPO. In most cases, only a few steps are required to get
optimal bang-bang control even with the use of a forward-
difference approximation and randomly guessed initial val-
ues. This demonstrates the efficiency and robustness of the
indirect methods proposed in this paper.

The effect of maximum thrust on the retrieval mass is
studied with numerical experiments. It is found that the ana-
lytic Jacobian matrix plays a critical role in the convergence
of the shooting method when the thrust is large. The re-
sults from numerical experiments show that a larger thrust
is more likely to capture an asteroid with larger mass. This
can be explained by the fact that the optimal control with
lower thrust is only a subset of the admissible control set
with higher thrust and it does not satisfy Pontryagin’s mini-
mum principle.
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