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Abstract This study is conducted to examine the validity of
thermodynamical laws in a modified f (T ) gravity involving
a direct coupling of torsion scalar with matter contents. For
this purpose, we consider spatially flat FRW geometry with
matter contents as perfect fluid and formulate the first ther-
modynamical law in this gravity at apparent horizon. It is
found that equilibrium description of thermodynamics ex-
ists in this modified gravity in a similar way to Einstein and
other gravities. Further we discuss generalized second law
of thermodynamics at apparent horizon of FRW universe for
three different f (T ) models using Gibbs law as well as the
assumption that temperature of matter within apparent hori-
zon is similar to that of horizon. It is found that for some
particular cosmologically consistent values of coupling pa-
rameters, GSLT remains valid in observationally consistent
cosmic eras.

Keywords f (T ) theory with torsion matter coupling ·
Dark energy · Thermodynamics

1 Introduction

After the astronomical evidences of speedy cosmic expan-
sion, the investigation of complete historical picture of cos-
mos (from beginning inflationary epochs to final fate of
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universe) has become one of the most fascinating issue of
this century. In this regards, many cosmological and grav-
itational developments like rapid cosmos expansion in late
eras and its responsible factor dark energy (an unusual
sort of energy), DE candidates including modified grav-
ities are proposed by the scientists (Bamba et al. 2012;
Capozziello and Faraoni 2011; Felice and Tsujikawa 2010;
Sotiriou and Faraoni 2010). On the basis of comparison
among various DE candidates, the modified gravitational
theories like Gauss-Bonnet theory, f (R) and f (R,T ) the-
ories, scalar-tensor theories emerge as the most successful
tool for discussing numerous cosmic aspects. Such gravita-
tional modifications are obtained by introducing either min-
imal or non-minimal couplings between different fields like
higher-order curvature correction terms, matter and scalar
fields as well as torsion scalar.

In contrast to Einstein’s relativity and its proposed modi-
fications where the source of gravity is determined by curva-
ture scalar terms, another formulation is presented since the
time of Einstein himself which comprises torsional formu-
lation as gravity source (Einstein 1928; Maluf 2013). This
theory is labeled as TEGR (teleparallel equivalent of gen-
eral relativity) and is determined by Lagrangian density in-
volving curvature less Weitzenböck connection instead of
torsion less Levi-Civita connection with the vierbein as a
fundamental tool. This theory is then further extended to a
generalized form by the inclusion of f (T ) function in the
Lagrangian density and has been tested cosmologically by
numerous researchers (Bamba et al. 2011; Bengochea and
Ferraro 2009; Ferraro and Fiorini 2008, 2011; Linder 2010;
Jamil et al. 2012; Wei et al. 2012). Later, Harko et al. (2014)
proposed a comprehensive form of this theory by involving
a non-minimal torsion matter interaction in the Lagrangian
density. In a recent paper Zubair and Waheed (2015), have
investigated the validity of energy constraints for some spe-
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cific f (T ) models and discussed the feasible bounds of in-
volved arbitrary parameters. Another interesting modifica-
tions of this theory have also been discussed in literature
(Chandia and Zanelli 1997; Harko et al. 2014; Kofinas and
Saridakis 2014a, 2014b) on cosmological landscape.

On the basis of fundamental study of black holes ther-
modynamics that was carried in 1930, it is found that the
assumption of proportionality between horizon area and
entropy together with the condition dQ = T dS (Q, S,
T are notations for energy flux, entropy and temperature)
leads to the formulation of dynamical equations of Ein-
stein’s relativity (Bekenstein 1973; Bardeen et al. 1973;
Hawking 1975). In this arena, the pioneer work was pre-
sented by Jacobson (1995) in which he verified such con-
nection for Rindler model by considering the observer (mea-
suring such quantities) is also in motion within the hori-
zon. In BH thermodynamics, BHs are assumed as thermo-
dynamical systems whose quantities like temperature and
entropy are interconnected with geometrical terms like sur-
face gravity and horizon area. Gibbons and Hawking (1977)
explored these thermodynamical characteristics for de Sit-
ter model. Frolov and Kofman (2003) studied the connec-
tion of gravity and thermodynamics for the flat quasi de-
Sitter inflationary model of cosmos and found that Fried-
mann equations can be recovered from dE = T dS in case
of slowly rolling scalar field. Such connection has also been
investigated for spherically symmetric BHs by Padmanab-
han (2002) who proved that field equations can be written
in the form dE + PdV = T dS. While in the context of
braneworld, it is shown (Cai and Cao 2007) that at appar-
ent horizon, Friedmann equations can corresponds to first
thermodynamical law. This work is then also extended to
warped DGP braneworld (Sheykhi et al. 2007a) and Gauss-
Bonnet braneworld (Sheykhi et al. 2007b).

The investigation about the validity of thermodynamical
laws in GR as well as modified theories has been carried out
by numerous researchers in literature. In this regards, Sharif
and Zubair (2013a) developed some constraints on coupling
parameter for the validity of first and second thermodynam-
ical laws by considering apparent horizon of FRW geometry
in f (R,T ,RμνT

μν) theory. They have also discussed ther-
modynamical properties for some modified f (R,T ) theo-
ries (Sharif and Zubair 2012, 2013b, 2013c). Debnath and
Chattopadhyay (2013) discussed thermodynamical laws by
taking FRW geometry with dark matter and new holographic
DE as matter contents for both event and apparent horizon.
Abdolmaleki and Najafi (2015) examined the validity of
generalized second thermodynamical law for two different
f (G) models in modified Gauss-Bonnet gravity by assum-
ing FRW universe with matter and radiations for dynamical
apparent horizon. Cai et al. (2008) studied the thermody-
namical properties of generalized Vaidya spacetime at ap-
parent horizon by considering effective energy-momentum

tensor in dynamical equations as well as unified first law in
Einstein relativity and they discussed an entropy expression
for this horizon.

In this context, thermodynamic laws are studied by
Eling et al. (2006) in f (R) gravity. They concluded that
non-equilibrium description of thermodynamics needed,
whereby an additional entropy term djS is appeared in
Clausius relation resulting in the form δQ = T (dS + djS).
Karami et al. (2012) discussed thermodynamical laws for
ordinary matter FRW geometry in f (R) theory by taking
a well famed f (R) model. It is concluded that for the va-
lidity of GSLT in early epochs, a specific range of equation
of state parameter is required while it is valid for all values
in final cosmic epochs. Farajollahi et al. (2011) explained
the validity of thermodynamical laws by considering per-
fect fluid FRW model for dynamical apparent horizon in
chameleon cosmology. The question about the validity of
thermodynamical laws in Brans-Dicke theory has been in-
vestigated by Bhattacharya and Debnath (2011) for constant
BD parameter with power law scalar field on apparent hori-
zon of FRW geometry. Mazumder and Chakraborty (2011)
examined the validity of GSLT for FRW model with matter
contents as a mixture of perfect fluid and the holographic
dark energy in a generalized scalar-tensor gravity at the
event horizon. In the presence of magnetized fluid, Sharif
and Waheed (2013a, 2013b) explored the validity of ther-
modynamical laws in some scalar-tensor gravities by taking
FRW and Bianchi geometries at different horizons with en-
tropy corrected formulas.

In this study, we are focused on the validity of thermo-
dynamical laws in a modified f (T ) gravity involving a di-
rect interaction between torsion scalar and matter field. The
present paper is coordinated in this format. In Sect. 2, we
give a brief introduction of this gravity and the respective
field equation for FRW geometry with perfect fluid as mat-
ter contents. In Sect. 3, the first law of thermodynamics at
apparent horizon is defined for this theory. The validity of
GSLT at apparent horizon for three different f (T ) models
is investigated in Sect. 4. Last section presents an outlook of
all findings.

2 Modified f (T ) gravity with non-minimal
torsion-matter coupling

In this section, we explain some basics of the theory un-
der consideration. A more general f (T ) gravity involving
non-minimal coupling between torsion scalar and matter La-
grangian is defined by the action (Harko et al. 2014)

A = 1

2κ2

∫
dx4e

{
T + f1(T ) + [

1 + λf2(T )
]
Lm

}
, (1)

where κ2 = 8πG, fi(T ) (i = 1,2) are arbitrary functions of
torsion scalar, λ is the coupling parameter of torsion scalar
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with geometry (taken as a positive constant) and Lm denotes
the Lagrangian density corresponding to matter part. The
field equations in non-minimal f (T ) theory can be deter-
mined by varying the action with respect to the tetrad e

μ
i

and are given as follows

(
1 + f ′

1 + λf ′
2Lm

)[
e−1∂μ

(
eeσ

i Sρμ
σ

) − eσ
i T μ

νσ Sνρ
μ

]

+ (
f ′′

1 + λf ′′
2 Lm

)
∂μT eσ

i Sρμ
σ + 1

4
e
ρ
i (f1 + T )

− 1

4
λf ′

2∂μT eσ
i S(m)ρμ

σ + λf ′
2e

σ
i Sρμ

σ ∂μLm

= 4πG(1 + λf2)e
σ
i T (m)ρ

σ , (2)

where S
(m)ρμ
i = ∂Lm

∂∂μei
ρ

and prime denotes the differentiation

with respect to torsion scalar. Equation (2) reduces to the re-
spective dynamical equation in f (T ) gravity for the choice
λ = 0 or f2(T ) = 0. The contribution to the energy momen-
tum tensor of matter is taken as perfect fluid defined by the
following form

Tμν = (ρm + pm)uμuν − pmgμν.

We set the matter Lagrangian density as Lm = −ρm, which
further implies S

(m)ρmμ
i = 0.

We consider the homogeneous and isotropic flat FRW
metric defined by

ds2 = dt2 − a2(t)dx2, (3)

where a(t) represents the scale factor and dx2 contains the
spatial part of the metric and corresponding tetrad com-
ponents are ei

μ = (1, a(t), a(t), a(t)). In such settings, the
modified Friedmann equations are obtained as follows

3H 2 = 8πG
[
1 + λ

(
f2 + 12H 2f ′

2

)]
ρm − 1

6

(
f1 + 12H 2f ′

1

)
,

(4)

Ḣ = − 4πG(ρm + pm)[1 + λ(f2 + 12H 2f ′
2)]

1 + f ′
1 − 12H 2f ′′

1 − 16πGλρm(f ′
2 − 12H 2f ′′

2 )
,

(5)

where H = ȧ/a is the Hubble parameter and dot denotes
the derivative with respect to cosmic time t . Equations (4)
and (5) can be rewritten as

3H 2 = 8πGρeff , −(
2Ḣ + 3H 2) = peff , (6)

where the effective energy density and effective pressure of
dark components are given by

ρeff = [
1 + λ

(
f2 + 12H 2f ′

2

)]
ρm − 1

2κ2

(
f1 + 12H 2f ′

1

)
,

(7)

peff = (ρm + pm)

× [1 + λ(f2 + 12H 2f ′
2)]

1 + f ′
1 − 12H 2f ′′

1 − 2κ2λρm(f ′
2 − 12H 2f ′′

2 )

+ 1

2κ2

(
f1 + 12H 2f ′

1

)

− [
1 + λ

(
f2 + 12H 2f ′

2

)]
ρm. (8)

3 Thermodynamic laws in modified f (T ) gravity

This section comprises of thermodynamic laws in the back-
ground of non-minimally coupled f (T ) gravity. It is inter-
esting to explore the description of thermodynamical laws
in modified f (T ) gravity involving non-minimal coupling
between torsion and matter Lagrangian. In particular, we
address the issue of non-equilibrium description of ther-
modynamics, which appears in modified theories involv-
ing curvature matter coupling like f (R,T ), f (R,T ,Q) and
f (R,Lm) (Sharif and Zubair 2012, 2013a, 2013b, 2013c).
In our recent papers (Sharif and Zubair 2012, 2013a, 2013b,
2013c), we have discussed the non-equilibrium thermody-
namics in non-minimally coupled modified gravity theories.

3.1 First law of thermodynamics

Here we define first law of thermodynamics in this mod-
ified gravity and examine the equilibrium picture of ther-
modynamics. The radius of dynamical apparent horizon is
defined by hαβ∂αr̃A∂β r̃A = 0, where hαβ denotes hαβ =
diag(−1, a2/(1 − kr2)). It is mentioned that we have con-
sidered the apparent horizon in this thermodynamic study
however one can also see the future event horizon which is
given by

Rh = a(t)

∫ ∞

t

d t̂

a(t̂)
= a(t)

∫ ∞

a

da′

Ha′2 .

In de Sitter space time RH = 1/H and the future event hori-
zon becomes the same as the de Sitter (Hubble) horizon. The
role of future event horizon has been discussed in various
perspectives (Setare 2006, 2007; Setare and Vagenas 2008;
Jamil et al. 2010a, 2010b).

In case of flat FRW geometry, this turns out to be

r̃A = 1

H
. (9)

Differentiating with respect to time, it results into the fol-
lowing equation

r̃−3
A dr̃A

dt
= HḢ .
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Substituting the above result in Eq. (5), we get

1

2πr̃A

(
2πr̃Adr̃A

G

)

= 4πr̃3
AHdt(ρm + pm)

{
1 + λ

(
f2 + 12H 2f ′

2

)}
/
{
1 + f ′

1

− 12H 2f ′′
1 − 2κ2λρm

(
f ′

2 − 12H 2f ′′
2

)}
. (10)

Multiplying the whole Eq. (10) by the factor (1 − ˙̃rA
2Hr̃A

),
leads to

T dS = (
4πr̃3

AH − 2πr̃2
A

˙̃rA
)
(ρm + pm)

{
1 + λ

(
f2

+ 12H 2f ′
2

)}
/
{
1 + f ′

1 − 12H 2f ′′
1

− 2κ2λρm

(
f ′

2 − 12H 2f ′′
2

)}
dt, (11)

where T = |κsg |
2π

represents the temperature of apparent hori-

zon with κsg = 1
r̃A

(1 − ˙̃rA
2Hr̃A

) being the surface gravity

and A = 4πr̃2
A is the area of apparent horizon. Moreover,

the Bekenstein-Hawking entropy relation (Bekenstein 1973;
Bardeen et al. 1973; Hawking 1975) S = A/4G is employed
in Eq. (11) to set the first law of thermodynamics (FLT) in
this gravity.

The matter energy density inside a sphere of radius r̃A

at the apparent horizon is defined by the relation E = Vρtot

with V = 4/3πr̃3
A. In modified f (T ) gravity, we have

dE = 4πr̃2
A(ρm + ρDE)dr̃A − 4πr̃3

A(ρm + pm)

× Hdt
{
1 + λ

(
f2 + 12H 2f ′

2

)}
/
{
1 + f ′

1

− 12H 2f ′′
1 − 2κ2λρm

(
f ′

2 − 12H 2f ′′
2

)}
. (12)

Putting dE in Eq. (11), we get

T dS = −dE + 2πr̃2
A(ρm + ρDE − pm − pDE)dr̃A. (13)

Now introducing the total work density which is defined as
(Hayward 1998; Hayward et al. 1999)

W = −1

2
T (tot)αβhαβ = 1

2
(ρtot − ptot). (14)

Finally, Eq. (13) takes the standard form of FLT given by

T dS = −dE + dW, (15)

which is FLT in modified f (T ) gravity involving non-
minimal torsion-matter coupling. We conclude that equi-
librium description of thermodynamics exists in this mod-
ified gravity and results are identical to that in Einstein,
Gauss-Bonnet and Lovelock gravities (Padmanabhan 2002;
Cai and Cao 2007; Sheykhi et al. 2007a, 2007b).

4 GSLT in modified f (T ) gravity

Here we investigate the validity of GSLT in the context of
modified f (T ) gravity. It states that the sum of the hori-
zon entropy and entropy of ordinary matter fluid compo-
nents always increases in time (Wu et al. 2008). The va-
lidity of GSLT has been tested in modified gravities includ-
ing f (R), f (R) theory involving matter geometry coupling,
f (T ), f (R,T ), f (R,T ,Q), f (R,Lm) and scalar tensor
theories. The Gibb’s equation which relates the entropy of
matter and energy sources inside the horizon Sin to the den-
sity and pressure in the horizon is defined by the relation

TindSin = d(ρmV ) + pmdV. (16)

Equation (16) can be rewritten as

TinṠin = 4πr̃2
A(ρm + pm)( ˙̃rA − Hr̃A). (17)

One can find ρm and pm from Eqs. (4) and (5), and hence
using in Eq. (17), it results in

TinṠin = 4πr̃2
A( ˙̃rA − Hr̃A)

1

κ2(1 + λ(f2 + 12H 2f ′
2))

×
[

3H 2 + 1

2

(
f1 + 12H 2f ′

1

)

− 2Ḣ
(
1 + f ′

1 − 12H 2f ′′
1

)

+ 3H 2 + 1
2 (f1 + 12H 2f ′

1)

κ2(1 + λ(f2 + 12H 2f ′
2))

×
{

2κ2λ
(
f ′

2 − 12H 2f ′′
2

)
Ḣ

− κ2

2

(
1 + λ

(
f2 + 12H 2f ′

2

))}]
. (18)

Using the horizon entropy relation, one can find

ThṠh = 1

2r̃AHG

(
2Hr̃A ˙̃rA − ˙̃r2

A

)
. (19)

Now we discuss the validity of GSLT which requires
(ṪhṠh + ṪinṠin) � 0. It is natural to assume a relation be-
tween the temperature of apparent horizon and entire con-
tents within the horizon. In this setting, we limit our dis-
cussion to hypothesis of thermal equilibrium so that energy
would not flow in the system and horizon temperature is
more or less equal to temperature inside the horizon i.e.,
Tin = Th.

Using Eqs. (9), (18) and (19), GSLT takes the following
form

ThṠtot = −Ḣ

2GH 4

(
2H 2 + Ḣ

) − 4π

H 4

(
H 2 + Ḣ

)

× 1

κ2(1 + λ(f2 + 12H 2f ′
2))

[
3H 2 + 1

2

(
f1
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Fig. 1 Evolution of ωDE and GSLT for non-minimally coupled f (T )

model f1(T ) = −Λ + α1T
2, f2(T ) = β1T

2. We set the parameters as
Λ = 0.002, α = 1.01, β = 2.01, λ = 0.003 (black curve), Λ = 0.0024,

α = 1.02, β = 2.02, λ = 0.0034 (blue curve) and Λ = 0.0028,
α = 1.023, β = 2.023, λ = 0.0038 (red curve)

+ 12H 2f ′
1

) − 2Ḣ
(
1 + f ′

1 − 12H 2f ′′
1

)

+ 3H 2 + 1
2 (f1 + 12H 2f ′

1)

κ2(1 + λ(f2 + 12H 2f ′
2))

{
2κ2λ

(
f ′

2

− 12H 2f ′′
2

)
Ḣ − κ2

2

(
1 + λ

(
f2 + 12H 2f ′

2

))}]
.

(20)

Equation (20) represents the constraint for examining the va-
lidity of GSLT in modified f (T ) gravity. We are interested
to explore this condition for particular functional forms of
f1(T ) and f2(T ).

• f1(T ) = −Λ + α1T
2, f2(T ) = β1T

2

In the first place, we examine the case for which f1(T ) =
−Λ+α1T

2 and f2(T ) = β1T
2, where α1, β1 are model pa-

rameters and Λ > 0 is a constant. These functions involve
quadratic contribution from T and appear as corrections to
teleparallel theory. The derivatives of these functions are de-
fined as f ′

1 = 2α1T , f ′′
1 = 2α1, f ′

2 = 2β1T and f ′′
2 = 2β1.

Since torsion is defined in terms of Hubble parameter so
we can change the functional dependence from T to H as
f1(T ) ≡ f1(H) = −Λ + αH 4 and f2(T ) ≡ f2(H) = βH 4,
where α = 36α1, β = 36β1. For the derivatives of f1 and
f2, we have f ′

1(H) = −αH 2/3, f ′′
1 (H) = α/18, f ′

2(H) =
−βH 2/3 and f ′′

2 (H) = β/18.
In this case, GSLT takes the form

ThṠtot = −Ḣ

2GH 4

(
2H 2 + Ḣ

) − 4π

H 4

(
H 2 + Ḣ

)

× 1

κ2(1 − 3λβH 4)

[
3H 2 − 1

2

(
Λ + 3αH 4)

− 2Ḣ
(
1 − αH 2) + 3H 2 − 1

2 (Λ + 3αH 2)

κ2(1 − 3λβH 4)

×
{
−2κ2λβH 2Ḣ − κ2

2

(
1 − 3λβH 4)}]

. (21)

In literature, Harko et al. (2014) explored the time varia-
tion of Hubble function H(t), scale factor a(t), matter en-
ergy density ρm(t), deceleration parameter q(t) and equa-
tion of state parameter ωDE for the above model in modi-
fied f (T ) gravity. They set the particular model parameters
and show that this model favors the cosmological constant
regime. Following Harko et al. (2014), we choose the model
and coupling parameters to show the evolution of EoS pa-
rameter ωDE versus cosmic time. Left plot in Fig. 1 indi-
cates that ωDE favors the cosmological constant regime. For
this choice of parameters, we explore the validity of GSLT
and find that GSLT can be met for these specific choices of
parameters for small positive range of cosmic time only as
shown in right plot of Fig. 1. Further, we assume the power
law solutions given by a(t) = a0t

m, where m > 0 is a con-
stant. We set m > 1 with matter contents as dust ρ = ρ0t

−3m

and see the validity of GSLT as shown in Fig. 2. In left and
right plots, we show the evolution of GSLT versus the model
parameters α and β respectively. Figure 3 shows the varia-
tion of GSLT versus Λ and t . It is seen that the range of
cosmic time for which the GSLT remains valid can be in-
creased only if we chose large values of α parameter when
other parameters are fixed as shown in left plot of Fig. 2. In
right plot we find that GSLT can be satisfied only for small
values of β . In a similar fashion, one can vary the time in-
terval and find that GSLT is satisfied for Λ > 0.

• f1(T ) = −Λ, f2(T ) = α2T + β2T
2

In this example, we consider the model defined by the fol-
lowing functions (Harko et al. 2014)

f1(T ) = −Λ, f2(T ) = α2T + β2T
2, (22)

where α2 and β2 are parameters for the model (22). We ex-
press the functions f1 and f2 in terms of H as f1(H) = −Λ,
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Fig. 2 Evolution of GSLT for non-minimally coupled f (T ) model
f1(T ) = −Λ + α1T

2, f2(T ) = β1T
2 in power law cosmology. In left

plot, we show the variation for parameter α and set Λ = 0.01, m = 5,

β = 0.001, λ = 0.2 and in right plot, we fix Λ = 0.01, m = 5, α = 2,
λ = 0.2 to show the variation for parameter β

Fig. 3 Evolution of GSLT for non-minimally coupled f (T ) model
f1(T ) = −Λ + α1T

2, f2(T ) = β1T
2 in power law cosmology versus

Λ with m = 5, α = 2, β = 0.001, λ = 0.2

f2(H) = αT + βT 2, where α = −6α2 and β = 36β2. Sim-
ilarly, the derivatives of f1 and f2 are given by f ′

1(H) =
f ′′

1 (H) = 0, f ′
2(H) = −γ /6 − δH 2/3 and f ′′

2 (H) = δ/18.
The constraint for validity of GSLT is found as

ThṠtot = −Ḣ

2GH 4

(
2H 2 + Ḣ

) − 4π

H 4

(
H 2 + Ḣ

)

× 1

κ2(1 − λ(αH 2 + 3βH 4))

[
3H 2 − Λ

2
− 2Ḣ

+ 3H 2 − Λ
2

κ2(1 − λ(αH 2 + 3βH 4))

{
−2κ2λ

(
α

6
+ βH 2

)

− κ2

2

(
1 − λ

(
αH 2 + 3βH 4))}]

. (23)

In this case, we set the model parameters to show the
crossing of phantom divide line in non-minimally coupled
f (T ) gravity. In left plot of Fig. 4, we show the variation
of equation of state parameter of DE versus cosmic time for
some specified model parameters. One can see that equa-
tion of state crosses the phantom divide line from phantom
phase (ωDE < −1) to quintessence phase (ωDE > −1) and
then evolves to cosmological constant regime ωDE = −1. In
right plot, we show the evolution of GSLT for the cosmo-
logical constant regime. It is observed that GSLT remains
valid only for a short interval of cosmic time for the selected
choice of model parameters.

We also discuss the evolution of GSLT versus coupling
parameters α and β in power law cosmology and show the
evolution in Fig. 5. It is observed that GSLT may be valid
for all values of α > 0 for fixed values of other parameters
as shown in left plot of Fig. 5. It is also seen that GSLT also
remains valid for small as well as large values of β parame-
ter as indicated in right plot of Fig. 5.

4.1 Exponential model

In this section, we discuss a specific case of non-minimal
coupling to show the difference in evolution of f (T ) model
with minimal coupling. We set f1(T ) = 0 and f2(T ) =
f (T ), so that action (1) takes the following form

A = 1

2κ2

∫
dx4e

{
T + (

1 + λf (T )
)
Lm

}
. (24)

In this case, one can find the relations for energy density and
Hubble parameter in this form

ρm(t) = 3H 2

1 + λ(f + 12H 2f ′)
, (25)
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Fig. 4 Variation of equation of state parameter and GSLT for non-
minimally coupled f (T ) model f1(T ) = −Λ, f2(T ) = α2T + β2T

2.
Here, we set Λ = 1, α = 0.1, β = 0.2, λ = 1 (black curve), Λ = 1.3,

α = 0.13, β = 0.23, λ = 1.3 (blue curve) and Λ = 1.6, α = 0.15,
β = 0.3, λ = 1.5 (red curve)

Fig. 5 Evolution of GSLT for non-minimally coupled f (T ) model
f1(T ) = −Λ, f2(T ) = α2T + β2T

2. In left plot, we set, Λ = 0.01,
m = 5, β = 30, λ = 0.2 to show evolution versus α and t , whereas

right plot shows the variation versus β and t for the values Λ = 0.01,
m = 5, α = 30, λ = 0.2

2Ḣ = −
{1 + λ(f + 12H 2f ′)}{ 3H 2

1+λ(f +12H 2f ′) + pm}
1 − 6H 2(f ′−12H 2f ′′)

1+λ(f +12H 2f ′)

. (26)

Here we are interested to discuss the exponential model in
non-minimal f (T ) gravity. We consider the following expo-
nential f (T ) model, initially proposed by (Linder 2010)

f (T ) = αT
(
1 − epTo/T

)
, α = − 1 − Ωm0

1 − (1 − 2p)ep
. (27)

Linder (2010) explored the effective equation of state ω ver-
sus scale factor a(t) for the model (27). It is shown that ω

crosses ω = −1 from ω > −1 to ω < −1 and then asymp-
totically approaches a de Sitter fate. In Bamba et al. (2011),
Bamba et al. discussed the evolution of exponential model
f (T ) model and conclude that the phantom crossing can-
not be realized in this case as it results in ω = −1. Such

type of models has also been tested with the varying fine
structure “constant” α = e2/�c (Wei et al. 2011). We in-
tegrate Eq. (26) for different values of parameters p and
Λ to find the evolution of Hubble parameter as shown in
Fig. 6. The variation of H(t) is similar to that in Harko
et al. (2014) for the non-minimally coupled f (T ) mod-
els. H(t) is decreasing function of t which approaches to
a constant value in future evolution. In right plot, we show
the evolution of equation of state parameter ωDE for vary-
ing values of p with λ = 4 ωm0 = 0.315 and H0 = 67.3
(Ade et al. 2014). In this plot, we find that ωDE repre-
sents the quintessence regime as compared to its evolution
in minimally coupled f (T ) gravity (Bamba et al. 2011;
Linder 2010). Such behavior of ωDE is consistent with the
recent observations (Ade et al. 2014) ω = −1.13+0.24

−0.25, (95%
Planck + BAO + WP). In this setting, we also test the va-
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Fig. 6 Evolution of H(t) and ωDE for the exponential model f (T ) = αT (1 − epTo/T ), α = − 1−Ωm0
1−(1−2p)ep . Here we set H0 = 67.3, ωm0 = 0.315

with p = .009 (blue curve), p = .006 (black curve) and p = .003 (red curve)

Fig. 7 Evolution of GSLT for the exponential model f (T ) =
αT (1 − epTo/T ), α = − 1−Ωm0

1−(1−2p)ep . Here we set H0 = 67.3,
ωm0 = 0.315 with p = .009 (blue curve), p = .006 (black curve) and
p = .003 (red curve)

lidity of GSLT and its evolution is shown in Fig. 7. It can
be observed that the GSLT remains valid for the range of
cosmic time approaching to zero with increasing values of
p parameter.

5 Concluding remarks

In the present paper, we have discussed the thermodynami-
cal laws in the context of modified f (T ) theory, where T de-
notes the torsion scalar. Here we have taken flat FRW geom-
etry filled with dust fluid and discussed the FLT and GSLT at
apparent horizon. Firstly, we have presented the equilibrium
picture of thermodynamics in such gravity at the apparent
horizon of FRW model. Further we have investigated the va-
lidity of GSLT at apparent horizon using Gibbs relation. For
the purpose, we have taken two cosmologically consistent
models of f (T ) gravity namely

• f1(T ) = −Λ + α1T
2, f2(T ) = β1T

2;
• f1(T ) = −Λ, f2(T ) = α2T + β2T

2.

We have developed the constraints for the validity of GSLT
in terms of Hubble parameter and in terms of cosmic time
using power law model and check its evolution graphically.
We have also discussed the solutions and validity of GSLT
model for exponential model of f (T ) gravity as proposed by
Linder. The obtained results can be summarized as follows

• In modified f (T ) gravity involving non-minimal torsion-
matter coupling, the gravitational dynamical equations
can lead to standard form of FLT given by T dS = −dE +
dW . We have concluded that equilibrium description of
thermodynamics exists in this modified gravity and re-
sults are identical to that in Einstein, Gauss-Bonnet and
Lovelock gravities.

• In first example, we have found the dynamical behavior
of EoS parameter ωDE versus cosmic time numerically by
choosing appropriate selection of the model and coupling
parameters as indicated in Fig. 1 which favors the cos-
mological constant regime. For the same choice of free
parameters, we have investigated the validity of GSLT
graphically and it is found that GSLT can be met only for
small positive range of cosmic time closer to 0. Further,
we have considered the power law model of scale factor
for which the continuity equation leads to ρ = ρ0t

−3m

and explored the validity of GSLT graphically as given
in Figs. 2 and 3. It is seen that the range of cosmic time
for which the GSLT remains valid can be increased only
if we choose large values of α parameter when other pa-
rameters are taken fixed while for other choices of β and
Λ, the GSLT remains valid only on a short small interval
of cosmic time.

• In second example, we have explored the variation of
ωDE versus cosmic time for some specified selection of
model parameters. It is concluded that crossing of phan-
tom divide line from phantom phase (ωDE < −1) to
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quintessence phase (ωDE > −1) is admissible and finally
it evolves to cosmological constant regime ωDE = −1.
Further we have investigated the evolution of GSLT which
indicates that it remains valid only for a short interval of
cosmic time closer to 0 for the specified model parame-
ters. We have also determined the evolution of GSLT ver-
sus coupling parameters α and β graphically using power
law cosmology. It is shown that GSLT may be valid for
all values of α with cosmic time satisfying t ≥ 6 by tak-
ing other parameters fixed. It is also seen that GSLT also
remains valid for small as well as large values of β pa-
rameters with cosmic time satisfying t ≥ 2.

• In case of exponential f (T ) model, we have found nu-
merical solution for Hubble parameter by taking differ-
ent values of parameters p and Λ. It is concluded that
the H(t) is decreasing function of cosmic time which ap-
proaches to a constant value in future evolution which
is similar to that in Harko et al. (2014) for the non-
minimally coupled f (T ) models. Further, we have ex-
plored the evolution of ωDE for varying values of p with
some cosmologically consistent values of λ, ωm0 and H0.
It is seen that ωDE represents the quintessence regime
as compared to its evolution in minimally coupled f (T )

gravity (Bamba et al. 2011; Linder 2010) which is also
consistent with the recent observations (Ade et al. 2014)
ω = −1.13+0.24

−0.25, (95% Planck + BAO + WP). For such
selection of parameters, we have also discussed the va-
lidity of GSLT graphically. It is concluded that the GSLT
remains valid for the range of cosmic time approaching to
zero with increasing values of p parameter.
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