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Abstract Exact solution of modified Einstein’s field equa-
tions are considered within the scope of spatially homo-
geneous and isotropic Fraidmann-Robertson-Walker (FRW)
space-time filled with perfect fluid in the frame work of
Brans-Dicke scalar-tensor theory of gravity. In this paper we
have investigated the flat, open and closed FRW models and
the effect of dynamic cosmological term on the evolution of
the universe. Two types of FRW cosmological models are
obtained by setting the power law between the scalar field φ

and the scale factor a and deceleration parameter (DP) q as
a time dependent. The concept of time dependent DP with
some proper assumptions yield two type of the average scale

factors (i) a(t) = [sinh(αt)] 1
n and (ii) a(t) = [tαet ] 1

n , α and
n �= 0 are arbitrary constants. In case (i), for 0 < n ≤ 1, it
generates a class of accelerating models while for n > 1, the
models of the universe exhibit phase transition from early
decelerating to present accelerating phase and the transi-
tion redshift zt has been calculated and found to be in good
agreement with the results from recent astrophysical obser-
vations. In case (ii), for n ≥ 2 and α = 1, we obtain a class
of transit models of the universe from early decelerating
to present accelerating phase. Taking into consideration the
observational data, we conclude that the cosmological con-
stant behaves as a positive decreasing function of time. The
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physical and geometric properties of the models are also dis-
cussed with the help of graphical presentations.
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1 Introduction

The gravitational constant G, velocity of light c and cos-
mological constant Λ are all proper constants in Einstein’s
general theory of relativity. In 1961 Brans and Dicke con-
tributed an interesting alternative to general relativity based
on Mach’s principle. To understand the reasons leading to
their field equations, we first note that the concept of a vari-
able mass. For how do we compare masses at two different
points in space time? Masses are measured in certain units,
such as masses of elementary particles, which are them self
subject to change. We need an independent unit of mass
against which an increase or decrease of a particle mass can
be measured. Such a unit is provided by gravity, the so called
Planck mass. Thus, if we insist on using mass unit that are
the same everywhere, a change of dimensionless quantity
χ = m( G

�c
)1/2 would tell us that G is changing. This is the

conclusion Brans and Dicke arrived at in their approach to
Mach’s principle. They looked for a framework in which the
gravitational constant G arises from the structure of the uni-
verse, so that a changing G could be looked upon as the
Machian consequences of a changing universe.

These intuitive concepts are contained in the Brans-Dicke
action principle, which may be written in the form

A = c3

16π

∫
�
(
φR + ωφ−1φkφk

)√−gd4x + Λ. (1)
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Notice first that the coefficient of R is c3φ/16π instead of
c3φ/16πG as in the Einstein-Hilbert action due to antici-
pated behaviour of G. The second term, with φk ≡ ∂φ/∂xk ,
ensures that φ will satisfy a wave equation, while the third
term includes, through a Lagrangian density L, all the mat-
ter and energy present in the space time region �. The en-
ergy momentum tensor T ik is related to Λ, ω is coupling
constant.

The variation of A for small changes of gik leads to the
field equations

Rik − 1

2
gikR = − 8π

c4φ
Tik − ω

φ2

(
φiφk − 1

2
gikφ

lφl

)

− 1

φ
(φ;ik − gik�φ), (2)

where � = 1
c2

∂2

∂t2 − ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2 = 1
c2

∂2

∂t2 − �2, � is
Laplace’operator.

Similarly, the variation of φ leads to the following equa-
tion for φ:

2φ�φ − φkφ
k = R

ω
φ2. (3)

This latter equation can be simplified by substituting for R

from the contracted form of Eq. (2). We finally get

�φ = 8π

(2ω + 3)c4
T , (4)

where T is the trace of T i
k . Equation (4) leads to the an-

ticipated scalar wave equation for φ with sources in mat-
ter. Because it contains a scalar field φ in addition to the
metric tensor gik , the Brans-Dicke (BD) is often referred to
as the scalar-tensor theory of gravitation. BD theory is ex-
plained by a scalar function φ and a constant coupling con-
stant ω, often known as the BD parameter. This can be ob-
tained from general theory of relativity by letting ω → ∞
and φ = constant (Sahoo and Singh 2003). The BD the-
ory of gravity is most promising one among all existing al-
ternative theories of gravitation which has very effectively
solved the problems of inflation and the early and late time
behaviour of the universe (Linde 1990).

Recent measurements of redshift and luminosity-distance
relations of type Ia Supernovae indicate that the expan-
sion of the Universe is accelerating (Perlmutter et al. 1999;
Riess et al. 1998). These observations give rise to the search
for a matter field, which can be responsible for accelerated
expansion. There are several proposals regarding this, Cos-
mological Constant, Quintessence, Dark Energy (Caldwell
et al. 1998; Al-Rawaf and Taha 1996; Sahni and Starobin-
sky 2000; Padmanabhan 2003) being some of the competent
candidates. Since the observed universe is almost homoge-
neous and isotropic, space-time is usually described by a

Friedman-Lemaitre-Robertson-Walker (FLRW) cosmology.
However, most of these models fit only to spatially flat
(k = 0) FRW model (Banerjee and Pavon 2001), though a
few models (Chimento et al. 2000) work for open universe
(k = −1) also.

The cosmological constant (Λ) was introduced by Ein-
stein in 1917 as the universal repulsion to make the Uni-
verse static in accordance with generally accepted picture of
that time. In absence of matter described by the stress en-
ergy tensor Tij , Λ must be constant, since the Bianchi iden-
tities guarantee vanishing covariant divergence of the Ein-
stein tensor, G

ij

;j = 0, while g
ij

;j = 0 by definition. If Hub-
ble parameter and age of the universe as measured from
high red-shift would be found to satisfy the bound H0t0 > 1
(index zero labels values today), it would require a term
in the expansion rate equation that acts as a cosmological
constant. Therefore the definitive measurement of H0t0 > 1
and wide range of observations would necessitate a non-zero
cosmological constant today or the abandonment of the stan-
dard big bang cosmology (Krauss and Turner 1995). How-
ever, a constant Λ cannot explain why the calculated value
of vacuum energy density at Plank epoch following quan-
tum field theory is 123 orders of magnitude larger than its
value as observed or as predicted by standard cosmology
at the present epoch (Weinberg 1989). In attempt to solve
this problem, variable Λ was introduced such that Λ was
larger in the early universe and then decayed with the evo-
lution (Dolgov 1983). A dynamic cosmological term Λ(t)

remains a focal point of interest in modern cosmological
theories as it solves the cosmological constant problem in
a natural way. In theories with a variable Λ-term, one either
introduces new terms (involving scalar fields, for instance)
into the left hand side of the Einstein’s field equations to
cancel the non-zero divergence of Λgij (Bergmann 1968;
Wagoner 1970) or interprets Λ as a matter source and moves
it to the right hand side of the field equations (Zeldovich
1968), in which case energy momentum conservation is un-
derstood to mean T

∗ij

;j = 0, where T ∗
ij = Tij − (Λ/8πG)gij .

It is here that the first assumption that leads to the cosmo-
logical constant problem is made. It is that the vacuum has
a non-zero energy density. If such a vacuum energy den-
sity exists, Lorentz invariance requires that it has the form
〈Tμν〉 = −〈ρ〉gμν . This allows to define an effective cosmo-
logical constant and a total effective vacuum energy den-
sity Λeff = Λ + 8πG〈ρ〉 or ρvac = 〈ρ〉 + Λ/8πG. Note
at this point that only the effective cosmological constant,
Λeff , is observable, not Λ, so the latter quantity may be
referred to as a ‘bare’. For detail discussions, the read-
ers are advised to see the references (Peebles and Ratra
2003; Sahni and Starobinsky 2000; Padmanabhan 2003,
2008).

The deceleration parameter (DP) is the most important
observational parameter in cosmology. The values of DP
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separates decelerating (q > 0) from accelerating (q < 0)

periods in the evolution of the universe. Determining the DP
from the Count-Magnitude Relation for galaxies is a diffi-
cult task due to evolutionary effects. It has been shown by
Riess et al. (1998) and Perlmutter et al. (1998) that the ob-
served redshift-magnitude relation for supernovae of type Ia
suggests that the DP q0 is negative. The present value q0

of DP obtained from observations (Schuecker et al. 1998)
are −1.27 ≤ q0 ≤ 2. Studies of galaxy counts from redshift
surveys provide a value of q0 = 0.1, with an upper limit
of q0 < 0.75 (Schuecker et al. 1998). Recent observations
(Riess et al. 1998; Perlmutter et al. 1998, 1999) show that
the DP of the universe is in the range −1 ≤ q ≤ 0, and the
present day universe is undergoing accelerated expansion.
But of course these results do not exclude the existence of a
decelerating phase in the early history of our universe. Mak
and Harko (2002) obtained general solution of the gravita-
tional field equations for a Bianchi type I space time with
causal bulk viscous fluid for an arbitrary time dependent de-
celeration parameter q = q(t). They also presented the gen-
eral representation of the solution in terms of the DP. Prad-
han and Otarod (2006, 2007) have also investigated a new
class of universes with time dependent DP. Amirhashchi
et al. (2011) have obtained two-fluid dark energy models in
FRW universe with time dependent DP. Akarsu and Dereli
(2012) have proposed a special law for DP which is linear in
time with negative slope. This law covers the law of Berman
(1983) and Berman and Gomide (1988). Recently, Ahmed
and Pradhan (2014) and Pradhan et al. (2015) have obtained
Bianchi type-V cosmology in f (R,T ) gravity and Bianchi
type-I transit cosmological models respectively by using a
law of variation of scale factor which yields a time depen-
dent DP.

The cosmological implications of the FRW models in
Branse-Dicke theory of gravity with variable deceleration
parameter and dynamic Λ-term will be discussed in detail
in this paper. The out line of the paper is as follows: In
Sect. 2, the metric and basic equations are described. Sec-
tion 3 deals with the solutions of field equations by consid-
ering two types of scale factors. In Sect. 4, we discussed
the physical and geometric properties of the two models de-
pending on two different scale factors. Section 5 deals with
the physical acceptability of the derived solutions. Finally,
conclusions are summarized in the last Sect. 6.

2 Metric and field equations

In standard spherical coordinates (xi) = (t, r, θ,φ), a spa-
tially homogeneous and isotropic FRW line-element has the
form

ds2 = −dt2 + a2(t)

{
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)}, (5)

where a(t) is cosmic scale factor, which describes how these
distances (scales) change in an expanding or contracting uni-
verse, and is related to redshift of 3-space; k is the curvature
parameter, which describes geometry of the spatial section
of space-time with closed, flat and open universes corre-
sponding to k = 1,0,−1 respectively. The coordinates r , θ

and φ in Eq. (5) are co-moving coordinates. FRW models
have been remarkably successful in describing the observed
nature of universe. The modified EFE in the frame work
of Brans-Dicke gravity theory along cosmological constant
may be written (in units G = c = 1) as

Rμν − 1

2
Rgμν − Λgμν + ω

φ2

[
φ,μφ,ν − 1

2
gμνφ,ηφ

,η

]

+ 1

φ
[φμ;ν − gμν�φ] = 8π

φ
Tμν (6)

�φ = φ
,μ

;μ = 8π

2ω + 3
T , (7)

where φ is a scalar field, ω is a dimensionless constant and
T = T

μ
μ is the trace of the energy momentum tensor. Here

a semicolon indicates covariant derivative and a comma
stands for ordinary derivative with respect to xk . The en-
ergy momentum tensor (Tμν) for the cosmic fluid may be
expressed as

Tμν = (ρ + p)uμuν + gμνp, (8)

where ρ is the energy density, p is the isotropic pressure
and uμ is four velocity vector. In a co-moving coordinate
system uμ = (0,0,0,1) with property uμuμ = −vμvμ = 1,
and uμvμ = 0. The Brans-Dicke field equations (6) and (7)
for the FRW metric given by Eq. (5) with the help of Eq. (8)
yield the following set of field equations:

3ȧ2

a2
+ 3

ȧφ̇

aφ
− ωφ̇2

2φ2
+ 3

k

a2
= 8π

φ
ρ + Λ, (9)

2ä

a
+ ȧ2

a2
+ φ̈

φ
+ 2

ȧφ̇

aφ
+ ωφ̇2

2φ2
+ k

a2
= −8π

φ
p + Λ, (10)

φ̈

φ
+ 3

ȧφ̇

aφ
= 8π(ρ − 3p)

φ(3 + 2ω)
+ 2Λ

3 + 2ω
, (11)

where an overhead dot denotes derivatives with respect to
cosmic time t .

Let us introduce some physical parameters such as the
spatial volume V , the expansion scalar θ , the Hubble pa-
rameter H and red shift parameter z for the FRW metric (5)

V = a3, (12)

θ = 3H = 3
ȧ

a
, (13)

z = −1 + a0

a
, (14)

where a0 is the present value of the cosmic scale factor a.
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The deceleration parameter q in cosmology is the mea-
sure of the cosmic acceleration of the universe expansion
and is defined as

q = −aä

ȧ2
= −

(
Ḣ + H 2

H 2

)
. (15)

3 Solution of field equations

The field equations (9)–(11) are a system of three indepen-
dent equations along with five unknown parameters a, φ, p,
ρ and Λ, therefore two more constraints are required to find
the exact solution of this system of equations. For the exact
solution of the set of above stated field equations we use the
two constraints as follow.

(i) The deceleration parameter q is taken as a function of
cosmic time ‘t’ i.e.

q(t) = −aä

ȧ2
= d

dt

(
1

H

)
− 1 (16)

Mak and Harko (2002) have discussed to obtain general
solution of field equations for q = q(t) as already men-
tioned in previous section of Introduction. The motivation
to choose time dependent DP is behind the fundamental fact
that the Universe has accelerated expansion at present and
decelerated expansion in the early time. The time-dependent
behaviour of q is supported by recent observations of SNe Ia
(Perlmutter et al. 1999; Riess et al. 1998; Tonry et al. 2003;
Clocchiatti et al. 2006) and CMB anisotropies (Bennett
et al. 2003; de Bernardis et al. 2007; Hanany et al. 2000).
These observations clearly argue an accelerating expansion-
ary universe at present, which has been decelerating in
past. In their preliminary analysis, it is found that super-
novae (SNe) data favour recent acceleration (z < 0.5) and
past deceleration (z > 0.5). Recently, High-Z Supernova
Search (HZSNS) team have prevailed transition redshift
zt = 0.46 ± 0.13 at (1 σ ) c.1. (Riess et al. 2004) which has
been further amended to zt = 0.43±0.07 at (1σ ) c.1. (Riess
et al. 2007). Supernova Legacy Survey (SNLS) (Astier et al.
2006), as well as the one recently compiled by Davis et al.
(2003), bring forth zt ∼ 0.6(1σ) in better agreement with

flat �CDM model (zt = (2ΩΛ/Ωm)
1
3 − 1 ∼ 0.66). Thus,

the deceleration parameter (DP) which by definition is the
rate with which the universe decelerates, must show sig-
nature flipping (Riess et al. 2001; Padmanabhan and Roy-
chowdhury 2003; Amendola 2003) between positive and
negative values. Several authors (Pradhan and Otarod 2006;
Akarsu and Dereli 2012; Pradhan et al. 2012) have discussed
models of the universe with variable DP in different context.

Equation (16) may be rewritten as

ä

a
+ q

ȧ2

a2
= 0. (17)

In order to solve the Eq. (17), we assume q = q(a). It is im-
portant to note here that one can assume q = q(t) = q(a(t)),
as a is also a time dependent function. It can be done only if
there is a one to one correspondences between t and a. But
this is only possible when one avoid singularity like big bang
or big rip because both t and a are increasing functions.

The general solution of Eq. (17) with the assumption
q = q(a), is obtained as
∫

e
∫ q

a
dada = t + k, (18)

where k is an integrating constant. One cannot solve (18) in
general as q is variable. So, in order to solve the problem
completely, we have to choose

∫ q
a
da in such a manner that

(18) be integrable without any loss of generality. Hence we
consider
∫

q

a
da = lnf (a), (19)

which does not affect the nature of generality of solution.
Hence from (18) and (19), we obtain
∫

f (a)da = t + k. (20)

Of course the choice of f (a), in (20), is quite arbitrary but,
since we are looking for physically viable models of the Uni-
verse consistent with observations, we consider the value of
function f (a) as

f (a) = nan−1

α
√

1 + a2n
, (21)

where α and n > 0 are arbitrary constants. In this case, on
integrating equation (20) and neglecting the integration con-
stant k, we obtain the exact solution as

a(t) = [
sinh(αt)

] 1
n . (22)

Relation given by Eq. (22) is also recently used by Chawla
et al. (2012) in studying the Bianchi type-I string cosmolog-
ical models in Einstein’s field equations with variable gravi-
tational and cosmological constants. This relation (22) gen-
eralizes the value of scale factor derived by Pradhan et al.
(2012) in connection with the study of dark energy models
in Bianchi type-VI0 space-time. Recently, Pradhan (2014)
used Eq. (22) to study two-fluid atmosphere from decelerat-
ing to accelerating FRW dark energy models.

Following Pradhan and Amirhashchi (2011), Yadav
(2012) and Pradhan et al. (2013), we assume the follow-
ing ansatz for the scale factor, where increase in terms of
time evolution is

a = (
tαet

) 1
n , (23)
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where α and n are positive constants. It is found that the
ansatz (23) generalizes (Saha et al. 2012; Pradhan 2013;
Pradhan et al. 2014). The choice of scale factor attracts
a time-dependent deceleration parameter which brings that
dark energy era, the solution gives inflation and radia-
tion/matter dominance era with subsequent transition from
deceleration to acceleration. This theme motivates to choose
such scale factor (23) that yields time dependent decelera-
tion parameter.

(ii) Secondly we consider a power law relation between
scale factor a and BD scalar field φ. We have reduced the
cosmological equations to quadrature, assuming this rela-
tion. Brans-Dicke theory is a simple modification of Ein-
stein general relativity where the purely metric coupling of
matter with gravity is preserved, thus the universality of free
fall (equivalence principle) is ensured (Liu and Zhang 2009).
Here, the gravitational constant is replaced with the inverse
of a time-dependent scalar field, namely, φ(t) = 1/8πG,
and this scalar field couples to gravity with a coupling con-
stant ω. It also passes the experimental tests from solar sys-
tem (Bertotti et al. 2003) and is able to provide an expla-
nation of the accelerated expansion of the universe (Mathi-
azhagan and Johri 1984). Landsberg and Bishop (1975) in-
vestigated Newtonian cosmology with G ∝ aβ and an anal-
ogous procedure would lead to φ ∝ aβ . There is another in-
vestigation of cosmology presupposing φ ∝ aβ (Dehnen and
Obregon 1971, 1972a, 1972b) in which the theory of gravity
used in Brans-Dicke.

Since the field equations contain a and φ and their deriva-
tives, so without any loss of generality, we shall assume that
the BD scalar field φ is some power of the average scale fac-
tor. The power law relation between scale factor a and scalar
field φ has already been used by Johri and Desikan (1994) in
the context of Robertson Walker Brans-Dicke models. Thus,

φ = φ0a
β, (24)

where β is ordinary constant whereas φ0 is the proportion-
ality constant. The assumption of a power law between the
scalar field φ and the cosmological expansion factor a, it
is possible to reduce the cosmological equations to quadra-
ture for the scalar-tensor theory with cosmological constant
(Pimentel 1985a, 1985b). Mach’s principle has many dif-
ferent formulations, the central idea being that the local
properties of the Universe are connected to the overall dis-
tribution of matter in the Universe, represented by a. The
simplest choice of function is φ ∝ aβ . In order to predict
the past or future behaviour of the cosmological model the
function φ must be specific, and the constraint given by
Eq. (24). A full discussion is given by Bishop (1976). Arik
et al. (2011) have shown that if φ is taken to be a com-
plex scalar field, then an exact solution to the vacuum equa-
tions requires that the Friedmann equations possesses both

a constant term and one which is proportional to the in-
verse sixth power of the scale factor. Several authors have
assumed the same law in previous papers in different scalar-
tensor theory (Dehnen and Obregon 1971; Obregon and Pi-
mentel 1978; Chauvel and Obregon 1979; Pimentel 1987;
Ahmadi-Azar and Riazi 1995; Bahrehbakhsh et al. 2011;
Shamir and Bhatti 2012).

Putting the value of φ from Eq. (24) into field equations
(9)–(11), we obtain the following set of field equations:

(
6 + 6β − ωβ2

2

)
ȧ2

a2
+ 3

k

a2
= 8π

φ0aβ
ρ + Λ, (25)

(2 + β)
ä

a
+ 2 + 2β + 2β2 + ωβ2

2

ȧ2

a2
+ k

a2
= −8π

φ
p + Λ,

(26)

(3 + 2ω)

[
β

ä

a
+ β(β + 2)

ȧ2

a2

]
= 8π(ρ − 3p)

φoaβ
+ 2Λ. (27)

A combination of Eqs. (25)–(27) leads to

2(3 − ωβ)
ä

a
+ (

6 − 4ωβ − ωβ2) ȧ2

a2
+ 6

k

a2
= 2Λ. (28)

In this paper we have constructed two models of the universe

by applying two scale factors a(t) = [sinh(αt)] 1
n and a(t) =

(tαet )
1
n as expressed by Eqs. (22) and (23) respectively.

4 Physical and geometric properties

4.1 Model 1: a(t) = [sinh(αt)] 1
n

Using Eq. (22), the model given by Eq. (5) reduces to

ds2 = −dt2 + (
sinh(αt)

) 2
n

×
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)]. (29)

Putting the value of a(t) into Eqs. (25)–(27), we get the fol-
lowing expressions for cosmological parameters such as Λ,
ρ and p for model (29)

2Λ = α2(6 − 3ωβ − 3n + ωβ − ωβ2

2 )

n2
coth2(αt)

+ n(3 − ωβ) + 3k
(
cosech2(αt)

) 1
n (30)

ρ = α2φ0(sinh(αt)
β
n )

8π

×
[

3ωβ + 3β − 3 + 3n − ωβn

n2
coth2(αt) + ωβ − 3

n

]

(31)
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Fig. 1 Plot of deceleration parameter q versus time t

p = φ0(sinh(αt))
β
n

8π

×
[
α2(3 − 2β − β2 − ωβ − ωβ2)

n2
coth2(αt)

+ α(ωβ + β − 1)

n
− 2k

(
cosech(αt)

) 2
n

]
(32)

The expressions for kinematic parameters such as spatial
volume (V ), Hubble parameter (H ), expansion scalar (θ)

and deceleration parameter (q) are obtain for the model (29)
as:

V = a3 = (
sinh(αt)

) 3
n (33)

θ = 3H = 3α

n
coth(αt) (34)

q = −1 + n sech2(αt) (35)

From Eq. (35), we observe that q > 0 for t < 1
α

tanh−1

(1 − 1
n
)

1
2 and q < 0 for t > 1

α
tanh−1(1 − 1

n
)

1
2 . It is also

observed that for 0 < n ≤ 1, our model is in accelerating
phase but for n > 1, our model is evolving from decelerat-
ing phase to accelerating phase. Also, recent observations
of SNe Ia, expose that the present universe is accelerating
and value of DP lies to some place in range −1 ≤ q < 0.
It follows that in our derived model, one can choose values
of DP consistent with observations. Figure 1 depicts vari-
ation of deceleration parameter (q) versus time (t) which
gives the behaviour of q for different values of n. It is
also clear from Fig. 1 that for n ≤ 1, the model is evolv-
ing only in accelerating phase whereas for n > 1 the model
is evolving from early decelerated phase to present acceler-
ating phase.

Further, DP (q) as a function of redshift parameter z =
−1+ a0

a
, where a0 is the present value of the scale factor i.e.

at z = 0, is given by

q(z) = n − 1 − n

[
tanh

(
sinh−1

√
n − 1 − q0

(q0 + 1)(z + 1)2n

)]2

.

(36)

Such type of relation obtained by us also provides a two-
parameter (n, q0) parametrization just like a linear two-
parameter expansion for q(z) = q0 +q1z (Riess et al. 2004),
where q0 is the present value of deceleration parameter and
q1 is the deviation in the redshift evaluated at z = 0. If we
set q0 = −0.73 (Cunha 2009), then a positive transition red-
shift (zt ) may be obtained only for the positive values of q1

since q0 is negative and the dynamic transition (from decel-
eration to acceleration) occurs at q(zt ) = 0, or equivalently,
zt = − q0

q1
. Another parametrization of considerable interest

is q(z) = q0 + q1z(1 + z)−1 (Xu and Liu 2008) where the
parameter q1 describes the total correction in the distant past
(z � 0, q(z) = q0 + q1). Moreover, a positive zt may be ob-
tained for the positive values of q1 > |q0| and the dynamic
transition occurs at zt = − q0

q0+q1
.

For the present Universe (t0 = 13.75 GYr) with
q0 = −0.73 (Cunha 2009), Eq. (36) yields the following re-
lationship between the constants n and α:

α = 1

13.75
tanh−1

[
1 − 0.27

n

] 1
2

. (37)

It is self explanatory from the above relation that for the
present Universe, the model is valid only for n > 0.27. Fig-
ure 5 depicts the variation of the DP (q) versus time (t) for
different sets of the pair (n,α) satisfying the above rela-
tion (37). It is clearly observable from the figure that for
0 < n ≤ 1, our model is in accelerating phase but for n > 1,
our model is evolving from decelerating phase to acceler-
ating phase. It follows that in our derived model, one can
choose the value of n which gives the physical behaviour of
DP consistent with the observations.

It is remarkable to add here that time dependent scale fac-
tor is stable under metric perturbation (Chen and Kao 2001).
In term of redshift the above scale factor turns to

a = 1

1 + z
, z = 1

[sinh(αt)] 1
n

− 1. (38)

The red shift parameter z1 for model 1 may be expressed as

z1 = −1 + [
sinh(αt)

]− 1
n . (39)

In Figs. 2 and 3, we have presented the behaviour of cos-
mological constant Λ with cosmic time ‘t’ for flat, open
and closed FRW models for n = 1 and n = 1.5 respectively.
Figure 2 indicates that for k = 0,1 cosmological constant
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Fig. 2 Plot of cosmological constant Λ versus time t . For β = 0.3,
ω = 1, φ0 = 1

Fig. 3 Plot of cosmological constant Λ versus time t . For β = 0.3,
ω = 1, φ0 = 1

Λ is decreasing with time and approaches to a small posi-
tive value at present epoch, but for open universe (k = −1),
the cosmological constant is found to be negative increas-
ing behaviour with time and approaches to small positive
value at present epoch. We also observe that flat model
is sharply decreasing with time in comparison to closed
model of universe. Figure 3 shows that Λ is decreasing
with time for k = 0,1 but for k = −1, Λ is decreasing
sharply in early time from positive to negative value and
then increasing with time and converges to a small constant
value.

From Eq. (31), we observe that ρ is decreasing function
of time and ρ > 0 for all time if (n = 2, α = 0.1206) and for
other values of n ≥ 2 and their corresponding values of α

satisfying Eq. (37). Figure 4 depicts the variation of ρ versus

Fig. 4 Plot of energy density ρ versus time t . For β = 0.3, ω = 1,
φ0 = 1

Fig. 5 Plot of pressure p versus time t . For β = 0.3, ω = 1, φ0 = 1

time t by taking pair of (n,α) as (2,0.1206) as a toy model
of the universe. From this figure, we observe that ρ is de-
creasing function of time and approaches to zero at present
epoch which is consistent with observations. It is clear that
ρ was very large at early time and approaches to zero at
late time. Figure 5 shows the nature of pressure which de-
creases with time and approaches to zero at late time for flat
and closed models and p > 0 always but for open model
pressure in negative increasing function of t and ultimately
approaches to a small value near zero. Figure 6 shows the
variation of redshift parameter versus t . The redshift param-
eter decreases with time and approaches to a small positive
constant at present epoch.

From Eq. (33), it can be seen that spatial volume is zero at
t = 0 and it increases with time. This shows that the universe
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starts evolving with zero volume at t = 0 and expand with
cosmic time. From this analysis we conclude that it is the
choice of scale factor that makes the model inflationary at
early stages of the universe and radiation/matter dominance
phase before dynamic Λ (dark energy) dominated era. From
Eq. (34), we observe that when t → 0, expansion scalar θ

becomes infinity which indicates inflationary scenario. Also
from Fig. 1, we observe that before t ≈ 1, q > 0 indicating
radiation/matter dominance era of the universe. However,
after t ≈ 1, q < 0 which indicates DE dominated era. The
solution in our model does not blow up at any given epoch
for the choice of ansatz Eq. (23). Hence our derived model
is physically plausible.

From Table 1, we observe that all physical and geometric
quantities of Model 1 lie in the range of observable universe.
Hence our Model 1 is physically viable and consistent with
�-CDM standard model of the universe as already discussed
in Sect. 5.

4.2 Model 2: a(t) = (tαet )
1
n

Using Eq. (23), the model in Eq. (5) becomes

Fig. 6 Plot of red shift parameter z1 versus time t

ds2 = −dt2 + (
tαet

) 2
n

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)].

(40)

Putting the value a(t) into Eqs. (25)–(27), we get the expres-
sions for physical and kinemetric parameters for model (40)
as:

Λ = 1

2n2

[(
12 − 6ωβ − ωβ2)(1 + α

t

)2

− 2nα(3 − ωβ)
1

t2

]

+ 3k

(tαet )
1
n

, (41)

ρ = φ0(t
αet )

β
n

8π

[
3(ωβ + β − 1)

n2

(
1 + α

t

)2

+ α(3 − ωβ)

nt2

]
,

(42)

p = −φ0(t
αet )

β
n

8π

[
(β2 + ωβ2 + ωβ + 2β − 3)

n2

(
1 + α

t

)2

− α(ωβ + β − 1)

nt2
− 2k

(
tαet

)−2
n

]
, (43)

From Table 2, we observed that all physical and geometric
quantities of Model 2 lie in the range of observable universe.
Hence our model 2 is physically viable and consistent with
�CDM standard model of the universe.

V = a3 = (
tαet

) 3
n , (44)

θ = 3H = 3

n

[
1 + α

t

]
, (45)

q = −1 + nα

(α + t)2
. (46)

The red shift parameter z2 for Model 2 may be expressed as

z2 = −1 + [
tαet

]− 1
n . (47)

From Eq. (46), we observe that q > 0 for t <
√

nα − α and
q < 0 for t >

√
nα − α. It is observed that for n ≥ 3 and

Table 1 Calculated values of cosmological parameters with help of Model 1. (Here t0 = 13.75 Gyr)

Cosmological parameters n α q ρ Λ r s

Expected/observable values – – −1 ≤ q ≤ 0.5 +ve small +ve small r = 1 s = 0

Flat Model 1
(k = 0)

0.5 0.0621 −0.7402 −1.560 × 10−2 2.8238 0.4596 0.0732

1.0 0.0925 −0.7298 −6.400 × 10−3 2.7276 0.7301 0.0366

1.5 0.1092 −0.7297 −3.501 × 10−3 2.7055 1.000 0.0000

2.0 0.1206 −0.7291 4.200 × 10−3 2.6991 1.2693 −0.0365
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Table 2 Calculated values of cosmological parameters with help of Model 2. (Here t0 = 13.75 Gyr)

Cosmological parameters n α q ρ Λ r s

Expected/observable values – – −1 ≤ q ≤ 0.5 +ve small +ve small r = 1 s = 0

Flat Model 2
(k = 0)

0.5 0.0621 −0.9998 −1.1663 × 10−2 46.5352 0.9995 0.0001

1.0 0.0925 −0.9995 −91.9661 × 10−1 11.6314 0.9986 0.0003

1.5 0.1092 −0.9991 −15.2661 × 10−1 5.1660 0.9976 0.0005

2.0 0.1206 −0.9987 5.7016 × 10−4 2.9016 0.9966 0.0007

Fig. 7 Plot of deceleration parameter q versus time t

α = 1, our model is evolving from decelerating phase to
accelerating phase. Also, recent observations of SNe Ia ex-
pose that the present universe is accelerating and the value
of DP lies on some place in the range −1 < q < 0. It follows
that in our derived model, one can choose the value of DP
consistent with the observation. Figure 7 depicts the varia-
tion of deceleration parameter (q) with cosmic time, giving
the behaviour of q as in accelerating phase at present epoch
for different values of (n,α) which is consistent with re-
cent observations of Type Ia supernovae (Riess et al. 1998;
Perlmutter et al. 1999).

From Eqs. (44) and (45) we observe that the spatial vol-
ume is zero at t = 0 and the expansion scalar is infinite,
which show that the universe starts evolving with zero vol-
ume at t = 0 which is big bang scenario. From Eq. (23),
we observe that the spatial scale factor is zero at the initial
epoch t = 0 and hence the model has a point type singu-
larity (MacCallum 1971). We observe that proper volume
increases with time.

In Figs. 8 and 9, we have presented the behaviour of cos-
mological constant Λ with cosmic time ‘t’ for flat, open
and closed FRW models for n = 1 and n = 1.5 respec-

Fig. 8 Plot of cosmological constant Λ versus time t . For β = 0.3,
ω = 1, φ0 = 1

tively. Figure 8 indicates that for k = 0,1,−1 cosmologi-
cal constant Λ is decreasing with time and approaches to
a small positive value at present epoch. We also observe
that open model (k = −1) is decreasing sharply with time
compared to flat (k = 0) and closed (k = 1) models of uni-
verse. Figure 9 shows that Λ is negative increasing function
of time for all three types of open, flat and closed models
and ultimately converge to a small constant value at present
epoch.

From Eq. (42), we observe that ρ is decreasing function
of time and ρ > 0 for all time if (n = 2, α = 0.1206) and
for other values of n ≥ 2 and their corresponding values of
α satisfying Eq. (37). Figure 10 depicts the variation of ρ

versus time t by taking pair of (n,α) as (2, 0.1206) as a toy
model of the universe. The nature of energy density is same
as in Model 1.

Figure 11 shows the variation of pressure p with cosmic
time for all three flat, open and closed models. We observe
that in all three models pressure is negative increasing func-
tion of time and they approach to zero. Figure 12 shows the
variation of redshift parameter versus t . The redshift param-
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Fig. 9 Plot of cosmological constant Λ versus time t . For β = 0.3,
ω = 1, φ0 = 1

Fig. 10 Plot of energy density ρ versus time t . For β = 0.3, ω = 1,
φ0 = 1

Fig. 11 Plot of pressure p versus time t . For β = 0.3, ω = 1, φ0 = 1

Fig. 12 Plot of red shift parameter z2 versus time t .

Fig. 13 Plot of velocity of sound vs1 versus time t

eter decreases with time and approaches to a small positive
constant at present epoch.

5 Physical acceptability of the solutions

For the stability of corresponding solutions, we should
check that our model is physically acceptable.

Sound speed:
It is required that the velocity of sound υs should be less than
velocity of light (c). As we are working in the gravitational
units with unit speed of light, i.e. the velocity of sound exists
within the range 0 ≤ υs = (

dp
dρ

) ≤ 1.
We obtain the sound speed for Models I and II. The ve-

locity of sound vs1 and vs2 for first and second models are
respectively expressed as
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vs1 = α2{(β − 2n) coth2(αt) + 2n}{3 − 2β − β2 − ωβ − ωβ2} + αβn(ωβ − 1) + kn2(1 − β) × [csch(αt)] 1
n

α[{3ω + 3β − 3 + 3n − ωβn}{2α + (β − 2αn) coth2(αt)} + nβ(ωβ − 3)
(48)

and

vs2 = (t + α){β2 + ωβ2 + ωβ + 2β − 3}{(t + α)2 − 2αn} − αβn(ωβ − 1) + 2αn2(ωβ − 1)

(t + α){3ωβ2 + β2 − β)(t + α)2 + αn(6 − 6ωβ − ωβ2)} − 2αn2(3 − ωβ)
(49)

Here we observe that υs < 1. Figure 13 depicts the plot of
sound speed with time. We observe that υs < 1 throughout
the evolution of the universe.

Statefinder diagnostic:
Sahni et al. (2003) have introduced a pair of parameters
{r, s}, called Statefinder parameters. In fact, trajectories in
the {r, s} plane corresponding to different cosmological
models demonstrate qualitatively different behaviour. The
statefinder parameters can effectively differentiate between
different form of dark energy and provide simple diagnosis
regarding whether a particular model fits into the basic ob-
servational data. The above statefinder diagnostic pair has
the following form:

r = 1 + 3
Ḣ

H 2
+ Ḧ

H 3
and s = r − 1

3(q − 1
2 )

. (50)

The state finder pairs (r1, s1) and (r2, s2) for the model 1
and model 2 respectively written as

r1 = 1 + n(2n − 3) sech2(αt) (51)

s1 = n(2n − 3)

3{2n − 3 cosh2(αt)} (52)

Fig. 14 Plot of statefinder pair (r1, s1) and (r2, s2) for model 1 and
model 2

r2 = 1 − 3αn

(t + α)2
+ 2αn2

(t + α)3
(53)

s2 = 2αn{3(t + α) − 2n}
3(t + α){3(t + α)2 − 2nα} (54)

From Fig. 14, we observe that s1 and s2 are negative when
r1 ≥ 1 and r2 ≥ 1 respectively for both models. The figure
shows that the universes start from an asymptotic Einstein
static era (r → ∞, s → −∞) and go to the �CDM model
(r = 1, s = 0).

6 Concluding remarks

In this paper we have obtained two FRW cosmological mod-
els in the frame work of Brans-Dicke theory of gravitation
with variable deceleration parameter (q) and dynamic cos-
mological term Λ. We constructed two cosmological mod-
els by considering the power law relation of scalar field (φ)

and time dependent DP (q). The field equations have been
solved exactly with suitable physical assumptions. It is to be
noted that our methods of solving the field equations are dif-
ferent from technique of those authors who have solved field
equations by considering the constant DP whereas we have
considered time-dependent DP. As we have already men-
tioned in previous section that for a universe which has been
decelerating in past and accelerating at current epoch, DP
must show signature flipping. So, it is reasonable to consider
time dependent DP.

Main features of Models 1 and 2 are as follows:

• The Models have a transition of the universe from early
deceleration phase to recent accelerating phase which is
in good agreement with recent observations (Caldwell
et al. 2006).

• In Model 1, for different choice of n, we can generate a
class of cosmological models in FRW universe. It is ob-
served that such models are also in good harmony with
current observations. It may also be observed that for
n = 3

2 , one can obtain the expansion law for standard
�CDM cosmology.

• In Model 2, for different values of α and n, we can gen-
erate a class of models of the universe in FRW space-
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time with time dependent DP (q) and cosmological con-
stant (Λ). We observe that for n ≥ 2 and α = 1, we obtain
a class of transit models of the universe from early decel-
erated to present accelerating phase. For n ≤ 1 and α = 1,
we obtain accelerating models at present epoch.

• If we put n = 2 in Eq. (23), we obtain a(t) = √
(tαet ).

In this case, one can obtain the expressions for different
physical and geometric quantities.

• If we put n = 2 and α = 1 in Eq. (23), we obtain
a(t) = √

(tet ). In this case, one can obtain the expressions
for different physical parameters and geometric quanti-
ties.

• If we put n = 3 and α = 1 in Eq. (23), we obtain

a(t) = (tet )
1
3 . In this case, we obtain the expressions for

different physical parameters and geometric quantities as
usual.

• If we put n = 1 and α = 1 in Eq. (23), we obtain
a(t) = tet . In this case, we obtain the expressions for
different physical parameters and geometric quantities as
usual.

Thus, present works deal with most general cases of Model
1 and 2 in FRW space time in the frame work of BD theory
with variable q and Λ. From these solutions we can generate
a class of solutions which will be particular of our derived
solutions.
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