
Astrophys Space Sci (2015) 360:66
DOI 10.1007/s10509-015-2574-2

O R I G I NA L A RT I C L E

Bifurcations of nonlinear ion-acoustic travelling waves
in a multicomponent magnetoplasma with superthermal electrons

M.M. Selim1 · A. El-Depsy1 · E.F. El-Shamy1,2

Received: 11 July 2015 / Accepted: 14 November 2015 / Published online: 24 November 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Properties of nonlinear ion-acoustic travelling
waves propagating in a three-dimensional multicomponent
magnetoplasma system composed of positive ions, nega-
tive ions and superthermal electrons are considered. Using
the reductive perturbation technique (RPT), the Zkharov-
Kuznetsov (ZK) equation is derived. The bifurcation theory
of planar dynamical systems is applied to investigate the ex-
istence of the solitary wave solutions and the periodic travel-
ling wave solutions of the resulting ZK equation. It is found
that both compressive and rarefactive nonlinear ion-acoustic
travelling waves strongly depend on the external magnetic
field, the unperturbed positive-to-negative ions density ratio,
the direction cosine of the wave propagation vector with the
Cartesian coordinates, as well as the superthermal electron
parameter. The present model may be useful for describing
the formation of nonlinear ion-acoustic travelling wave in
certain astrophysical scenarios, such as the D and F-regions
of the Earth’s ionosphere.
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1 Introduction

Multicomponent plasmas, which contain both negative and
positive ion species as well as electrons, have a great sig-
nificance to various fields of plasma science and technol-
ogy. In astrophysical environments, the presence of heavy
negative ions in the upper region of Titan atmosphere has
been confirmed by Cassini spacecraft (Coates et al. 2007).
These particles may act as organic building blocks for even
more complicated molecules. Moreover, the existence of a
considerable number of negative ions in the Earth’s iono-
sphere (Massey 1976) and cometary comae (Chaizy et al.
1991) is observed. In addition, positive-negative ion plas-
mas are found in neutral beam sources (Bacal and Hamil-
ton 1979), plasma processing reactors (Gottscho and Gaebe
1986), and in low-temperature laboratory plasma experi-
ments (Jacquinot et al. 1977; Ichiki et al. 2002). Therefore,
the importance of positive-negative ion to the field of plasma
physics is growing day by day.

Actually, most research work of ion acoustic (IA) waves
are based on electrons and ions with Maxwell-Boltzmann
distributions. Nevertheless, numerous observations in space
and astrophysical plasma environments, viz., the iono-
sphere, auroral zones, mesosphere, lower thermosphere, etc.
are not often of Boltzmann distribution feature. They re-
ally have distributions with more complicated shapes ex-
hibiting long tails which strongly deviate from the sim-
ple Maxwellians. Also, non-Maxwellian particles can pre-
cisely model various astrophysical plasmas, such as solar
wind, magnetosphere, interstellar medium, and auroral zone
plasma (Lundin et al. 1987; Sahu 2010; Cairns et al. 1995;
Gill et al. 2007). In fact, there are many regions in space
and laboratory plasmas in which high energetic particles
(thermal and supper thermal) are present. The superther-
mal particles may arise from the effect of external force
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acting on the natural space environment plasmas or to wave-
particle interactions. Hence, kappa distribution (the gener-
alized Lorentzian distribution) has been found to be more
appropriate rather than the other distributions (Saha and
Chatterjee 2014d; Samanta et al. 2013a, 2013c). It has
been utilized to analyze and interpret spacecraft data on
the Earth’s magnetospheric plasma sheet, Jupiter (Leubner
1982) and Saturn (Armstrong et al. 1983) and it is found that
many space plasmas can be modeled more effectively by
kappa distribution than by superposition of the Maxwellian
distribution. However, Kappa distribution reduces to the
Maxwellian distribution for very large values of the spec-
tral index symbol; kappa (i.e., κ → ∞).

While much literatures are concentrated on finding the
solitary, shock, and periodic solutions of plasma evolu-
tion equations by traditional methods, the dynamical sys-
tem approach is proved to be crucial in initiating new con-
ceptual and theoretical tools. In this sense, the bifurcation
theory is one of the most famous and important theories
to study the dynamical behaviour for any plasma system
(Chow and Hale 1981). Till now, a few work has been done
in the field of plasma dynamics. For instance, Samanta et
al. (2013b, 2013c, 2013d) have used the bifurcation theory
of planar dynamical systems to investigate nonlinear trav-
elling waves in plasmas in the frameworks of Kadomtsev-
Petviashili (KP) and Zkharov-Kuznetsov (ZK) equations.
Thereafter, Saha and Chatterjee (2014a) have used the bi-
furcation theory to study nonlinear electron acoustic travel-
ling waves in an unmagnetized quantum plasma with cold
and hot electrons in the framework of KdV equation ob-
tained by the reductive perturbation technique (RPT). Later,
they have generalized this model to study nonlinear dust ion
acoustic travelling waves in the framework of MKP equa-
tion in a magnetized dusty plasma with superthermal elec-
trons (Saha and Chatterjee 2014b) and with q-nonextensive
velocity distributed ions (Saha and Chatterjee 2014c). Fur-
thermore, Saha and Chatterjee (2014d) have used the bifur-
cation theory to investigate the propagation of dust acoustic
solitary waves and periodic waves in an unmagnetized dusty
plasma with kappa distributed electrons and ions through
non-perturbative approach. Cairns et al. (1995) investigated
the effect of the superthermal electrons population on the
ion-acoustic structures observed by the FREJA satellite. In
addition, the simultaneous existence of negative and positive
ions with non-Maxwellian electron distribution in a plasma
introduces a new aspect of the nonlinear ion-acoustic travel-
ling waves. Indeed, (H+,O−

2 ) and (H+,H−) plasmas com-
position occur in the D and F-regions of the Earth’s iono-
sphere, where negative ions and superthermal electrons are
found (Swider 1988). To the best of our knowledge, the ba-
sic features of nonlinear ion-acoustic travelling waves in
a three-dimensional multicomponent magnetoplasma sys-
tem through the bifurcation analysis are untouched before.

It therefore seems interesting to study the nonlinear ion-
acoustic travelling waves in a multicomponent magneto-
plasma with kappa distributed electrons. So, the aim of the
present study is discussing bifurcations of solitary wave and
periodic wave solutions, with the help of bifurcation theory
of planar dynamical systems. Furthermore, we investigate
the combined effects of kappa distributed electron, mag-
netic field, and the density ratios of the positive and negative
ions on the basic features of nonlinear ion-acoustic travel-
ling waves. This paper is organized as follows; In Sect. 2 we
present the basic equations of our model and a ZK equation
is derived using the RPT (Washimi and Taniuti 1966). The
nonlinear propagation of solitary wave solutions and peri-
odic travelling wave solutions is described by the bifurca-
tion theory. Section 3 is allocated to present numerical re-
sults and conclusions

2 Basic equations

We consider a multicomponent magnetoplasma whose con-
stituents are positive ions, negative ions, and superthermal
electrons. A uniform external static magnetic field B = B0x̂

is applied in the x-axis direction, where x̂ is the unit vec-
tor along the x-axis, and B0 is the intensity of the magnetic
field. In 3D geometry, our plasma system is governed by the
following normalized equations.

∂nj

∂t
+ ∇ · (nj uj ) = 0, (1)

(

∂

∂t
+ uj · ∇

)

uj ∓ Qj∇φ + 5

3
Qjσjn

−1
3

j ∇nj

+ Ωj uj × x̂ = 0, (2)

∇2φ = n− − n+ + ne, (3)

where, j = (+,−) for positive and negative ions, respec-
tively. The upper sign in Eq. (2), and in the remaining equa-
tions, is assigned for negative ions, while the lower one is
allocated for positive ions. nj and uj [≡ (uj , vj ,wj )] are
the densities and velocities with (uj , vj ,wj ) represent the
velocity components in the Cartesian coordinates, respec-
tively. φ is the electrostatic wave potential. Q+ = 1 and
Q− ≡ Q = m+

m− , where, m+ and m− are the positive and
negative ion masses, respectively. σj = Tj/Te is the temper-
ature ratio of the positive/negative ion to the electron. The
number density for electrons is expressed as

ne = μ

(

1 − φ

κ − 3
2

)−κ+ 1
2

, (4)

where κ is the spectral index, which determines the hard-
ness of the energy spectrum corresponding to the presence
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of excess superthermal electrons in the tail of the distribu-
tion function. μ = ne0

n+0
is the ratio between the unperturbed

electron-to-positive ion density.
The density nj has been scaled in terms of the unper-

turbed positive ion density, n0+ and uj is scaled in the ion
sound speed, Cs = (kBTe/m+)1/2, the potential φ is nor-
malized by the thermal potential, kBTe/e. The space and
time variables are scaled in the positive ion Debye radius,
λDi = (kBTe/4πe2n+0)

1/2, and the negative ion plasma pe-
riod, ω−1

pi = (4πe2n+0/m+)−1/2, respectively. We have de-

fined Ω± = ωc±
ωpi

where ωc± = eB0
m±c

. The neutrality condition

implies μ + υ = 1, where υ = n−0
n+0

.
To investigate the propagation of the nonlinear ion-

acoustic travelling waves, we employ the RPT (Washimi
and Taniuti 1966). According to this method, we stretch the
independent variables into a moving frame in which the non-
linear wave moves at a phase speed, λ, as:

X = ε1/2(x − λt), Y = ε1/2y,

Z = ε1/2z and T = ε3/2t
(5)

where ε is a small (real) parameter measuring the weakness
of the nonlinearity. The dependent variables are expanded as

nj = ρ + εn
(1)
j + ε2n

(2)
j + · · · ,

uj = εu
(1)
j + ε2u

(2)
j + · · · ,

vj = ε3/2v
(1)
j + ε2v

(2)
j + · · · ,

wj = ε3/2w
(1)
j + ε2w

(2)
j + · · · ,

φ = εφ(1) + ε2φ(2) + · · · ,

(6)

where ρ = υ for negative ions and ρ = 1 for positive ions.
Substituting the stretching (5) and the expansions (6) into
the basic Eqs. (1)–(3) we obtain the lowest-order in ε

n
(1)
j = ∓ρQj

5
3Qjσjρ

2
3 υ − λ2

φ(1),

u
(1)
j = ∓λQj

5
3Qjσjρ

2
3 − λ2

φ(1),

(7)

w
(1)
j = ∓ 1

Ωj

(

Qjλ
2

5
3Qσjυ

2
3 − λ2

)

∂φ(1)

∂Y
,

v
(1)
j = ∓ 1

Ωj

(

Qjλ
2

5
3Qσjυ

2
3 − λ2

)

∂φ(1)

∂Z
,

(8)

and

(

λ2)2 − λ2
[(

5

3
Qσ−υ

2
3 + 5

3
σ+

)

+ 1 + υQ

μ( 2κ−1
2κ−3 )

]

+ 5

3
υQ

[

σ+ + σ−υ
−1
3

μ( 2κ−1
2κ−3 )

+ 5

3
υ

−1
3 σ−σ+

]

= 0, (9)

where, Eq. (9) is the compatibility condition. Apparently, the
modes are further significantly modified by the superthermal
electron distribution parameter κ . The phase velocities of the
two modes are given by the following expression:

λ2± = 5

6

(

Qσ−υ
2
3 + σ+

) + 1 + υQ

2μ( 2κ−1
2κ−3 )

± δ, (10)

where

δ =
{[

5

6

(

Qσ−υ
2
3 + σ+

) + 1 + υQ

2μ( 2κ−1
2κ−3 )

]2

− 5

3
υQ

[

σ+ + σ−υ
−1
3

μ( 2κ−1
2κ−3 )

+ 5

3
υ

−1
3 σ+σ−

]}1/2

. (11)

λ+ stands for the fast ion-acoustic mode, while λ− stands
for the slow one.

The next order in ε gives the following system of equa-
tions in the second-order perturbed quantities

∂n
(1)
j

∂T
− λ

∂n
(2)
j

∂X
+ ρ

∂u
(2)
j

∂X
+ n

(1)
j

∂u
(1)
j

∂X
+ u

(1)
j

∂n
(1)
j

∂X

+ ρ
∂v

(2)
j

∂Y
+ ρ

∂w
(2)
j

∂Z
= 0, (12)

∂u
(1)
j

∂T
− λ

∂u
(2)
j

∂X
+ u

(1)
j

∂u
(1)
j

∂X
∓ Qj

∂φ(2)

∂X

+ 5

3
Qjσjρ

−1
3

(

∂n
(2)
j

∂X
− n

(1)
j

3υ

∂n
(1)
j

∂X

)

= 0. (13)

Eliminating the second-order perturbed quantities in
Eqs. (12) and (13), making use of the first-order results,
Eqs. (7) to (9), we obtain a ZK nonlinear partial-differential
equation in the form

∂φ

∂T
+ Aφ

∂φ

∂X
+ B

∂3φ

∂X3
+ C

∂

∂X

(

∂2φ

∂Y 2
+ ∂2φ

∂Z2

)

= 0, (14)

where, φ = φ(1), and

A = B

(

υQ2(3λ2 − 5
3Qσ−υ

5
3 )

( 5
3Qσ−υ

2
3 − λ2)3

− (3λ2 − 5
3σ+)

( 5
3σ+ − λ2)3

− 2

(

4κ2 − 1/4

2κ − 3

)

μ

)

, (15)

B = ( 5
3Qσ−υ

2
3 − λ2)2( 5

3σ+ − λ2)2

2λυQ( 5
3σ+ − λ2)2 + 2λ( 5

3Qσ−υ
2
3 − λ2)2

, (16)
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and

C = B

[

1

Ω2−
υQλ4

( 5
3Qσ−υ

2
3 − λ2)2

+ 1

Ω2+
λ4

( 5
3σ+ − λ2)2

+ 1

]

.

(17)

3 Bifurcation of phase portraits of ZK equation

To transform the ZK equation, Eq. (14), into the correspond-
ing ordinary differential equation, we introduce the transfor-
mation ξ = α(LX+MY +NZ−u0T ), where L, M , and N

are the directions cosines of the wave propagation vector, k,
with respect to X, Y , and Z axes, respectively and α is a
constant. u0 is the velocity of the moving frame normalized
by ion acoustic speed. Considering U(ξ) = φ(X,Y,Z,T ),
one can integrate Eq. (14) with respect to ξ and neglect the
integration constant. Therefore, Eq. (14) takes the following
form

d2U

d2ξ
= aU − bU2 (18)

where a = u0
α2L[L2(B−C)+C] and b = A

2α2[L2(B−C)+C] . Now
we can express Eq. (18) in the following dynamical system
of travelling wave equations

⎧

⎨

⎩

dU
dξ

= ψ,

dψ
dξ

= (a − bU)U.
(19)

The phase orbits defined by the vector fields of Eqs. (19)
determine all travelling wave solutions of Eq. (14), which is
a planar Hamiltonian system with Hamiltonian function:

H(U,ψ) = ψ2

2
−

(

a

2
− b

3
U

)

U2 = h1. (20)

According to the bifurcation theory (Chow and Hale 1981)
of phase portraits of Eqs. (19), there are two equilibrium
points, P0(U0,0) and P1(U1,0) at a �= 0 and b �= 0, where
U0 = 0 and U1 = 2u0

LA
. We will investigate the bifurcations of

phase portraits of Eqs. (19) in the (U,ψ) phase plane as the
parameters, κ , υ , σ+, σ− and u0 varies. Now let us consider

J = detM(Ui,0) = −a + 2bUi, (21)

where M(Ui,0) is the coefficient matrix of the linearized
system of Eqs. (19) at an equilibrium point Pi(Ui,0). It is
well known that (Chow and Hale 1981), if J < 0, the equi-
librium point Pi(Ui,0) of the Hamiltonian system will be a
saddle point, while it will be a center if J > 0. At J = 0 the
poincare index of the equilibrium point becomes 0, then the
equilibrium point Pi(Ui,0) will be a cusp.

Fig. 1 The variation of the nonlinear coefficient A against υ for
σ+ = 0.1, σ− = 0.01, and κ = 4

4 Numerical results and discussions

To validate the results found in this manuscript, we make use
of the typical parameters relevant to the observed situations
(El-Labany et al. 2010; Mehdipoor 2013). For example,
(H+,O−

2 ) and (H+,H−) plasmas have been found in the
D and F-regions of the Earth’s ionosphere. Particularly, we
analyze the effect of the spectral index, κ , the unperturbed
density ratio of negative-to-positive ions, υ , the temperature
ratio of positive/negative ions-to-electron, σ±, and the di-
rection cosines of the wave vector along the x-axis, L, on
the nonlinear ion-acoustic travelling waves in the (H+,O−

2 )

plasmas (Q = 0.03). Before going into details, let us first
investigate numerically the existence of compressive ion-
acoustic travelling waves (i.e., pulse at υ < 0.1) and rarefac-
tive ones (i.e., cavity at υ > 0.1). It is worth to notice that the
pulse is satisfied at the nonlinear coefficient A > 0, whereas
the cavity exists for A < 0, as depicted in Fig. 1. Now, in
Figs. 2 to 7, we study the exact explicit travelling wave so-
lutions of Eq. (14). For υ > 0.1 (υ < 0.1) and u0 > 0, the
travelling wave system, Eqs. (19), has a homoclinic orbit
at the equilibrium point P0 (U0,0) realized by Eq. (20) as
shown in Fig. 2 (Fig. 3). According to the above-mentioned
condition, A > 0 (A < 0), as illustrated in Fig. 4 (Fig. 5),
Eq. (14) gives a compressive (rarefactive) solitary wave so-
lution of the form (Saha et al. 2015)

φ(ξ) = φA sech2
[

ξ

W

]

, (22)

where φA(= 3u0/AL) and W(=
√

4α2L[L2(B−C)+C]
u0

) are
the amplitude and the width of ion-acoustic solitary wave,
respectively.

Now, let us discuss the possibility of the propagation
of periodic travelling wave in the system under consider-
ation. For υ < 0.1, the travelling wave system, Eqs. (19),
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Fig. 2 Phase curves with υ = 0.005, L = 0.7, u0 = 1.1, σ+ = 0.1,
σ− = 0.01, and κ = 4

Fig. 3 Phase curves with υ = 0.16, L = 0.7, u0 = 1.1, σ+ = 0.1,
σ− = 0.01, and κ = 4

has a family of periodic orbits about the equilibrium point
P1 (U1,0) defined by Eq. (20) (see Fig. 2). Furthermore, at
U1 = 2u0/AL, we obtain

−AL

u0
φ3

n + 3φ2
n − 4u2

0

A2L2
= 0, (23)

where n = 1,2 and 3. The three real zeros of Eq. (23) are
φ1, φ2 and φ3. It should be mentioned here that the condi-
tions for the existence of a periodic travelling wave solution
of Eq. (14) require that φ1 > φ2 > φ3. Accordingly, the peri-
odic wave solution of Eq. (14) is given by (El-Shamy 2015)

φ(ξ) = φ3 + (φ2 − φ3) sn2[Dξ,k], (24)

where sn is the Jacobian elliptic function. For the nonlinear
coefficient A > 0, the amplitude of the periodic travelling
wave is given by (φ2 − φ3) > 0. The elliptic parameter k =

Fig. 4 Solitary wave for υ = 0.005, L = 0.7, u0 = 1.1, σ+ = 0.1,
σ− = 0.01, and κ = 1.6

Fig. 5 Solitary wave for υ = 0.16, L = 0.7, u0 = 1.1, σ+ = 0.1,
σ− = 0.01, and κ = 8

√

φ2−φ3
φ1−φ3

refers physically to the nonlinearity with the linear
limit corresponds to k → 0 and the extreme nonlinear limit
corresponds to k → 1. The parameter D is given by

D =
√

u0(φ1 − φ3)

12α2L[L2(B − C) + C] . (25)

For this case, the periodic travelling wave solution of
Eq. (14) is represented in Fig. 6. On the other side, for
υ > 0.1, the travelling wave system, Eqs. (19), has a family
of periodic orbits about the equilibrium point P1 (U1,0) re-
alized by Eq. (20) (see Fig. 3). Moreover, at U1 = 2u0/AL,
we have

−AL

u0
φ3

i + 3φ2
i − 4u2

0

A2L2
= 0, (26)

where i = 1,2 and 3. The three real zeros of Eq. (26) are φ1,
φ2 and φ3. The conditions for the presence of a periodic trav-
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Fig. 6 Periodic travelling wave for υ = 0.005, L = 0.7, u0 = 1.1,
σ+ = 0.1, σ− = 0.01, and κ = 4

Fig. 7 Periodic travelling wave for υ = 0.16, L = 0.7, u0 = 1.1,
σ+ = 0.1, σ− = 0.01, and κ = 4

elling wave solution of Eq. (14) require that φ1 > φ2 > φ3.
Therefore, the periodic wave solution of Eq. (14) is given by
(Samanta et al. 2013b)

φ(ξ) = φ1 − (φ1 − φ2) sn2[Dξ,m1], (27)

where the modulus m1 =
√

φ1−φ2
φ1−φ3

may be considered as a
fair indicator of the nonlinearity; with the linear limit being
m1 → 0 and the extreme nonlinear limit being m1 → 1. For
the nonlinear coefficient A < 0, the amplitude of the peri-
odic travelling wave is given by −(φ1 −φ2) < 0. In this case,
Fig. 7 demonstrates the periodic travelling wave solution of
Eq. (14). Here, we will study the impacts of the spectral in-
dex, κ , the direction cosine, L, and the intensity of the mag-
netic field, B0, on the basic properties of periodic travelling
waves. Numerically, the results are displayed in Figs. 8 to 10
(Figs. 11 to 13) for υ < 0.1 (υ > 0.1). In Fig. 8 (Fig. 11), the
effect of the spectral index κ on the profile of the periodic
travelling waves against the space coordinate ξ is studied. It
is clear that the amplitude of the periodic travelling waves

Fig. 8 Variation of periodic travelling wave for L = 0.7, υ = 0.005,
u0 = 1.1, σ+ = 0.1, σ− = 0.01, and κ = 3.8 (dashed curve) and κ = 4
(solid curve)

Fig. 9 Variation of periodic travelling wave for κ = 4, υ = 0.005,
u0 = 1.1, σ+ = 0.1, σ− = 0.01, L = 0.7 (solid curve) and L = 0.6
(dashed curve)

increases (decreases) due to the increase of κ . This behav-
ior, shown in Fig. 8, can be explained as follows: for certain
values of κ , the thermal energy is not sufficient enough to
increase the nonlinearity of the system, so the amplitude of
nonlinear periodic travelling wave shrinks. However, the sit-
uation in Fig. 11 is different. This means physically that for
lower values of κ , the restoring force of nonlinear periodic
travelling wave is provided by the electron pressure, which
increases due to the increase of the energetic superthermal
electrons in positive ion-negative ion-superthermal electron
plasma system. Therefore, the enhancement in the restoring
force leads to an increase in the amplitude of nonlinear peri-
odic travelling wave, which makes it taller. In Figs. 9 and 12,
the variation of the profile of the periodic travelling waves
with L is examined. It is obvious that both of the ampli-
tude and the width increase as L decreases. Physically, one
can predict that as the nonlinear periodic travelling wave ap-
proaches the direction perpendicular to the magnetic field,
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Fig. 10 Variation of periodic travelling wave for L = 0.7, υ = 0.005,
u0 = 1.1, σ+ = 0.1, σ− = 0.01, κ = 4, B0 = 0.5 (solid curve) and
B0 = 0.4 G (dashed curve)

Fig. 11 Variation of periodic travelling wave for L = 0.7, υ = 0.16,
u0 = 1.1, σ+ = 0.1, σ− = 0.01, κ = 4 (solid curve) and κ = 4.2
(dashed curve)

the amplitude and the width of it become extremely large,
and from this point, the nonlinear periodic travelling wave
disappears.

The impacts of intensity of the magnetic field B0 on the
periodic travelling waves is exhibited in Figs. 10 and 13. It is
seen that the width of the periodic travelling waves increases
as B0 decreases. On the other hand, B0 has no effect on the
amplitude of the periodic travelling waves. This means that
the magnetic field acts to bind the particles tightly to the
lines of force so that, in the motion of a fluid element, the
transverse movements of the particles are constrained within
the element. It is worth to notice that the considered plasma
may be contained entirely by the magnetic force, an arrange-
ment referred to as magnetic confinement (i.e., the magnetic
field makes the nonlinear periodic travelling wave structures
more spiky) (El-Shamy 2014).

Finally, we studied the nonlinear propagation of ion-
acoustic travelling waves in a three-dimensional magneto-

Fig. 12 Variation of periodic travelling wave for κ = 4, υ = 0.16,
u0 = 1.1, σ+ = 0.1, σ− = 0.01, L = 0.7 (solid curve) and L = 0.6
(dashed curve)

Fig. 13 Variation of periodic travelling wave for L = 0.7, υ = 0.16,
u0 = 1.1, σ+ = 0.1, σ− = 0.01, κ = 4, B0 = 0.5 (solid curve) and
B0 = 0.4 G (dashed curve)

plasma system composed of positive ions, negative ions
and superthermal electrons. Using the reductive perturbation
technique, a ZK equation is derived. The nonlinear propa-
gation of solitary waves and periodic travelling waves are
described by the bifurcation theory. The compressive and
rarefactive structures of solitary waves and periodic trav-
elling waves are formed. In details, we have discussed the
effects of the negative-to-positive ions density ratio, υ , the
spectral index, κ , the direction cosines, L, and the intensity
of the magnetic field, B0, on the nonlinear propagation of
ion-acoustic travelling waves. These parameters have strong
effects on the propagation of ion-acoustic travelling waves.
These results are found to be helpful to understand the prop-
agation and the formation of ion-acoustic travelling waves
in certain astrophysical scenarios, especially in the D and
F-regions of the Earth’s ionosphere.
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