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Abstract We explore the phenomenon that phantom-like
dark energy prevents the formation of black holes by assum-
ing the generalized ghost version of pilgrim dark energy in
the background of generalized teleparallel gravity. In this
scenario, we construct f (T ) model for explaining the evo-
lutionary behavior of equation of state parameter, ωΛ − ω′

Λ

and r − s planes. We discuss these cosmological parameters
graphically by taking different values of redshift parameter
and pilgrim dark energy parameter. It is found that the equa-
tion of state parameter shows phantom like behavior while
ωΛ −ω′

Λ plane possesses thawing region for some particular
values of pilgrim dark energy parameter. The statefinder pa-
rameters in r − s plane indicate the behavior of quintessence
and phantom models. Finally, we discuss the first and sec-
ond laws of thermodynamics and investigate the behavior of
entropy production term.

Keywords f (T ) gravity · Pilgrim dark energy ·
Cosmological parameters

1 Introduction

Cosmology is one of the most stimulating field in all phys-
ical sciences that deals with the study of origin and evolu-
tion of the universe. General relativity (GR) laid down the

B M. Sharif
msharif.math@pu.edu.pk

K. Nazir
awankanwal@yahoo.com

1 Department of Mathematics, University of the Punjab,
Quaid-e-Azam Campus, Lahore 54590, Pakistan

2 Department of Mathematics, Lahore College for Women
University, Lahore 54000, Pakistan

foundation of modern cosmology which leads to accelerat-
ing expansion phase of the universe. The force behind this
phenomenon is an exotic type of energy called “dark en-
ergy” (DE) whose nature is unknown. The simplest model
compatible with all cosmological observations is a ΛCDM
model but it suffers issues like fine tuning and cosmic coin-
cidence problems leading to some alternatives to investigate
its description. There are two possible ways to describe the
present status of the universe: dynamical DE models and the
modification of gravity.

Dynamical models are obtained by modifying the matter
part with unchanged gravitational part such as cosmological
constant, quintessence, k-essence and perfect fluid models
(Kamenshchik et al. 2001; Li 2004; Cai 2007; Wei 2009;
Sheykhi and Jamil 2011). The modified theories of grav-
ity are based on generalized models that came into being
by modifying gravitational part of the Einstein-Hilbert ac-
tion while matter part remains unchanged. The f (T ) the-
ory of gravity is the generalization of teleparallel gravity in
which curvature free Weitzenböck connection is considered
instead of torsionless Levi-Civita connection. By applying
Born-Infeld strategy, Ferraro and Fiorini (2007, 2008) firstly
introduced this theory and solved particle horizon problem
as well as obtained singularity free solutions with positive
cosmological constant. Many phenomena have extensively
been studied in this gravity like static and dynamical worm-
hole solutions, reconstruction via dynamical models, insta-
bility ranges of collapsing stars, discussion of Birkhoff’s
theorem, accelerated expansion of the universe, solar system
constraints and many more.

Wu and Yu (2010, 2011) studied dynamical behavior of
this theory for a concrete power-law model and analyzed
that the crossing of phantom divide line is consistent with re-
cent cosmological observational data by proposing two new
f (T ) models. Bamba et al. (2011) investigated the evolu-
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tion of effective equation of state (EoS) for different f (T )

models. Sharif and Rani (2011) considered Bianchi type I
universe to discuss accelerated expansion of the universe.
Daouda et al. (2012) constructed this model corresponding
to holographic DE (HDE) model and found that the recon-
structed model shows phantom behavior as well as unifica-
tion of DE and dark matter.

Wei (2012) has introduced the idea of pilgrim dark en-
ergy (PDE) with a key point of phantom-like universe to
prevent the black hole (BH) formation. He constructed PDE
model as ρΛ = 3δ2m4−u

p L−u, where u and δ are dimension-
less constants, mp is the reduced Planck constant. He inves-
tigated the behavior of interacting PDE models by using dif-
ferent cosmological parameters such as EoS, ωΛ − ω′

Λ and
statefinders. Sharif and Jawad (2013a, 2013b) studied the in-
teracting PDE in flat as well as non-flat universe models with
different IR cutoffs. Sharif and Rani (2014) developed PDE
model in f (T ) gravity to explain the behavior of BHs in the
presence of phantom energy in the universe. Jawad and Deb-
nath (2015) discussed the new agegraphic version of PDE
in f (T ,TG) gravity. Chattopadhyay et al. (2014) worked
on the reconstruction scenario of PDE in f (T ,TG) grav-
ity. Fernandez (2012) proposed ghost scalar field models
while Malekjani (2013) established different f (R) models
in ghost and generalized ghost DE (GGDE) models. Zubair
and Abbas (2015) discussed f (R,T ) theory in the frame-
work of quantum chromodynamics (QCD) ghost DE mod-
els. Jawad and Rani (2015) reconstructed generalized ghost
PDE (GGPDE) model in f (R) gravity.

The thermodynamic behavior of accelerating universe is
one of the major concerns in cosmology. The discovery of
BH thermodynamics (Bardeen et al. 1973; Bekenstein 1973;
Hawking 1975; Gibbons and Hawking 1977) suggests that
there should be some relation between thermodynamics and
gravitation. Jacobson (1995) was the first who discovered
this connection and derived the Einstein equations by us-
ing the relation between entropy and horizon area in ther-
modynamics. Bousso (2005) explored thermodynamics in
the quintessence dominated spacetime and showed that the
first law of thermodynamics holds at the apparent horizon.
Bamba and Geng (2011) studied both equilibrium and non-
equilibrium descriptions of thermodynamics of the apparent
horizon in this gravity. Sharif and Jawad (2013a, 2013b) in-
vestigated the validity of generalized second law of thermo-
dynamics with corrected entropies for three different sys-
tems in the closed universe.

In this paper, we investigate the behavior of GGPDE
model in f (T ) gravity to explore the EoS parameter,
ωΛ − ω′

Λ phase plane and statefinder parameters. We also
discuss thermodynamic laws for same temperature of the
universe. The format of the paper is as follows. In the next
section, we briefly review f (T ) gravity and its field equa-
tions. Section 3 provides construction of GGPDE model in

this gravity. In Sect. 4, we study the evolution trajectories
through cosmological parameters. Section 5 explores the va-
lidity of first and second laws of thermodynamics. Finally,
we conclude the results in Sect. 6.

2 f (T ) gravity and its field equations

A teleparallel structure is induced by a non-trivial tetrad
field on spacetime which is directly linked with the pres-
ence of gravitational field. For the tangent space, dynam-
ical tetrad field hA(xμ) is an orthonormal basis at each
point of the manifold. Dynamical tetrad field is analyzed by
tetrad components h

μ
A (μ,A = 0,1,2,3) in the coordinate

basis hA = h
μ
A∂μ related by hA

μh
μ
B = δA

B and hA
μhν

A = δν
μ.

Greek indices (μ, ν) are used to represent coordinates on
manifold and Latin indices (A,B) are used to represent
coordinates on tangent space. The product of the tetrad
field gives gμν = ηABhA

μhB
ν , where ηAB = diag(1,−1,

−1,−1) is the Minkowski metric for the tangent space. In
teleparallelism, we use curvatureless Weitzenböck connec-
tion (Γ̃ λ

μν = hλ
A∂νh

A
μ) whose antisymmetric torsion tensor is

given as

T ρ
μν = h

ρ
A

(
∂νh

A
μ − ∂μhA

ν

)
,

and superpotential tensor is

Sμν
ρ = 1

4

[−T μν
ρ + T νμ

ρ + T μν
ρ + 2δμ

ρ T θν
θ − 2δν

ρT
θμ
θ

]
.

Using these tensors, we can define torsion scalar as T =
S

μν
ρ T

ρ
μν .

The action of f (T ) gravity is given by Ferraro and Fior-
ini (2007)

L = m2
p

2

∫
d4xh

(
f (T ) +Lm

)
, (1)

where m2
p = (8πG)−1 is the reduced Planck mass, Lm is the

matter Lagrangian density inside the universe, G is the grav-
itational constant and h = √−g. Varying the action with re-
spect to tetrad yields the following field equations

[
h−1∂μ

(
hS

μν
A

) + hλ
AT

ρ
μλS

νμ
ρ

]
fT + S

μν
A ∂μ(T )fT T + 1

4
hν

Af

= 1

2
κ2h

ρ
AT

ν
ρ ,

where T ν
ρ is the matter energy-momentum tensor and a sub-

script T denotes differentiation with respect to T . We take
spatially flat FRW universe as

ds2 = dt2 − a(t)2
∑(

dxi
)2

.
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For this metric, hA
μ = diag(1, a(t), a(t), a(t)), H = ȧ

a
,

T = −6H 2, where H is the Hubble parameter and dot rep-
resents time derivative. The modified Friedmann equations
are given by

12H 2fT + f = 2m−2
p ρ, (2)

48H 2ḢfT T − (
12H 2 + 4Ḣ

)
fT − f = 2m−2

p p, (3)

and the conservation equation is

ρ̇ + 3H(ρ + p) = 0. (4)

The corresponding first equation of motion is

H 2 = 1

3m2
p

(ρm + ρΛ), (5)

which in terms of fractional energy density can be written as

1 = Ωm + ΩΛ, Ωm = ρm

3m2
pH 2

, ΩΛ = ρΛ

3m2
pH 2

,

(6)

where ρm and pm represent energy density and pressure of
matter inside the universe. Also, ρΛ and pΛ are torsion con-
tributions to the energy density and pressure as

ρΛ = m2
p

2
(2TfT − f − T ), (7)

pΛ = −m2
p

2

(−8ḢTfT T + (2T − 4Ḣ )fT − f − T + 4Ḣ
)
.

(8)

The energy conservation equations corresponding to stan-
dard matter and DE are

ρ̇m + 3Hρm = 0, (9)

ρ̇Λ + 3HρΛ(1 + ωΛ) = 0. (10)

Here, ωΛ = pΛ

ρΛ
is the effective EoS parameter for f (T )

gravity. The resulting EoS parameter is

ωΛ = −1 + Ḣ

H 2

[
T (2TfT T + fT − 1)

2TfT − f − T

]
. (11)

3 Generalized ghost PDE model

Here, we construct f (T ) model for GGPDE model. The en-
ergy density of GGDE model is written as

ρT = αH + βH 2,

where H = ȧ
a

is the Hubble parameter and β is a constant.
Also, α > 0 is roughly of order Λ3

QCD and ΛQCD is quan-
tum chromodynamics (QCD) mass scale. For the present
time, it is noted that ΛQCD ∼ 100 MeV and H ∼ 10−33 eV.
Rozenzweig et al. (1980) investigated that the contribution
of Veneziano QCD ghost field to the vacuum energy is not
exactly of order H . It is found that vacuum energy of the
Veneziano ghost field can be written as H + O(H 2), where
the sub-leading term H 2 could be helpful in describing the
early evolution of the universe. We study cosmological pa-
rameters such as EoS parameter, ωΛ − ω′

Λ and statefinders
for this model. The GGDE density in terms of PDE is known
as GGPDE and is of the form

ρT = (
αH + βH 2)u

, (12)

where u is the dimensionless constant. Equating Eqs. (7) and
(13) as ρΛ = ρT , we obtain f (T ) model

f (T ) = T + c1
√

T + 1

m2
p

[
2αu

(u − 1)

(−1

6

) u
2

T
u
2

+ βαu−1u

(−1

6

) u+1
2

T
u+1

2

]
. (13)

4 Cosmological parameters

In this section, we examine the evolution of EoS parameter,
Hubble parameter, phase plane, statefinder parameter and
check the stability criteria through GGPDE f (T ) model by
taking different values of pilgrim parameter.

4.1 Cosmological parameters

Here we study the behavior of Hubble parameter as well
as EoS parameter for the GGPDE model. Differentiating
Eq. (12), we get

ρ̇T = uρT

(
α + 2βH

α + βH

)
Ḣ

H
. (14)

Differentiating Eq. (5), then using ρm = ρm0a
−3 and

Eq. (14) with a = a0(1 + z)−1, we obtain

Ḣ

H 2
= 3H0

2Ωm0a
−3(α + βH)

u(α + 2βH)(αH + βH 2)u − 2H 2(α + βH)
. (15)

We plot the above differential equation of H versus the red-
shift parameter z for three different values of PDE parameter
u = 1.5,1.52,1.502 as shown in Fig. 1. The current values
of other parameters are ΩΛ = 0.76, Ωm = 0.24, α = 1.55,
β = 1.91 and H0 = 74. Figure 1 shows that the value of
Hubble parameter H versus z, where −1 ≤ z ≤ 2 lies in the



57 Page 4 of 8 M. Sharif, K. Nazir

Fig. 1 Plot of H for GGPDE with −1 � z � 2

Fig. 2 Plot of ωΛ for GGPDE with −1 � z � 2

range (74.00,74.025) for all values of PDE parameter. In-
serting Eq. (15) in (11), we have

ωΛ = −1 + H0
2Ωma−3u(α + βH)

2H 2(α + βH) − u(αH + βH 2)u(α + 2βH)

×
(

2α + u(u + 1)βH

2α + u2βH

)
. (16)

We discuss the EoS parameter ωΛ versus −1 � z � 2 with
respect to three different choices of PDE parameter u =
1.5,1.52,1.502 graphically. In Fig. 2, the EoS parameter
shows a ΛCDM model for −1.0 � z � −0.4. As z in-
creases, it moves towards the phantom region for −0.4 �
z � 2.

Now, we use the parameter squared speed of sound vs
2

for the stability analysis of the present model. It is given by

vs
2 = ṗ

ρ̇
= ωΛ + ω̇Λ

ρ

ρ̇
.

Using Eqs. (12), (14) and (16) in the above equation, it fol-
lows that

vs
2 = ωΛ −

(
2(α + βH)

3u(α + 2βH)

)
(1 + ΩΛωΛ)−1

Fig. 3 Plot of vs
2 for GGPDE with −1 � z � 2

×
[(−3u2βH(1 + ΩΛωΛ)(1 − 2αΩΛ)

− 6
(
ΩΛωΛ(ΩΛ − 1) − ξ(ΩΛ − Ωm)

)

× u
(
2α + βu2H

)(
2α + (

u2 + u
)
βH

))

× (
2
(
2α + βu2H

) − ΩΛu
(
2α + u(u + 1)βH

))−2

− ξ

(
ΩΛ − Ωm

ΩΛ

)(−6αΩΛβu2(1 + ΩΛωΛ)

× 6
(
ΩΛωΛ(ΩΛ − 1) − ξ(ΩΛ − Ωm)

)

× u
(
2α + βu2H

)(
2α + (

u2 + u
)
βH

))

× (
2
(
2α + βu2H

) − ΩΛu
(
2α + u(u + 1)βH

))−2

+ (
2
(
2α + βu2H

))(
3ξ

(
Ω2

m

Ω2
Λ

− 1

)
− 3ωΛ

Ωm

ΩΛ

)

× (
2
(
2α + βu2H

) − ΩΛu
(
2α + u(u + 1)βH

))−1
]
.

The graph of vs
2 is plotted against the redshift parameter

z in Fig. 3 for the same values of PDE parameter u. This
shows that vs

2 < 0 for all values of u which indicates the
instability of the model in the range −1 ≤ z ≤ 2.

4.2 ωΛ − ωΛ′ analysis

The ωΛ − ωΛ′ plane is considered as a useful tool to study
the behavior of different models such as quintom (Guo
et al. 2006), phantom (Chiba 2006), quintessence (Scher-
rer 2006), family of HDE (Setare et al. 2007), pilgrim DE
(Sharif and Jawad 2013a, 2013b) etc. Caldwell and Linder
(2005) introduced that the area covered by the quintessence
DE model in phase plane can be divided into two regions,
i.e., thawing region (ω′ > 0 when ω < 0) and freezing re-
gion (ω′ < 0 when ω < 0). Using Eqs. (9) and (10) in (6), it
follows that
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Fig. 4 Plot of ωΛ − ωΛ′ for GGPDE with −1 � z � 2

Ω ′
m = 3ΩΛωΛΩm, (17)

Ω ′
Λ = −3ΩΛωΛ + 3Ω2

ΛωΛ. (18)

Taking the derivative of Eq. (16) and using Eqs. (17) and
(18), we obtain

ω′
Λ = −6u2βH0

2Ωm(1 + z)3(α + βH)H(1 − 2αΩΛ)

− 2
(
3ΩΛ

2ωΛ − 3ωΛΩΛ

)
u
(
2α + βu2H

)

× (
2α + (

u2 + u
)
βH

)(
2H 2(α + βH)

− u
(
αH + βH 2)u

(α + 2βH)
)(

2H 2(α + βH)

− u
(
αH + βH 2)u

(α + 2βH)
)−1(2

(
2α + βu2H

)

− ΩΛu
(
2α + u(u + 1)βH

))−2
. (19)

Figure 4 shows the plot of ω′
Λ with respect to ωΛ for GG-

PDE model. We can easily observe that the curves for all val-
ues of u are in the thawing region when −1.030 < ωΛ < −1.

4.3 Statefinder parameters

Sahni et al. (2003) introduced two parameters r = ...
a

aH 3

and s = r−1
3(q− 1

2 )
, where q is the deceleration parameter.

These parameters are called statefinder parameters. The
plane of these parameters define different well-known re-
gions of the universe like (r, s) = (1,1) shows CDM limit
and (r, s) = (1,0) describes ΛCDM limit. The phantom and
quintessence DE eras are represented by s > 0 and r < 1.
The statefinder parameters for GGPDE f (T ) model are ex-
pressed as

r = 1 − 3

2
ΩΛ

(−6u2βH0
2Ωm(1 + z)3(α + βH)

× H(1 − 2αΩΛ) − 2
(
3ΩΛ

2ωΛ − 3ωΛΩΛ

)

× u
(
2α + βu2H

)(
2α + (

u2 + u
)
βH

)(
2H 2(α + βH)

− u
(
αH + βH 2)u

(α + 2βH)
)(

2H 2(α + βH)

− u
(
αH + βH 2)u

(α + 2βH)
)−1(2

(
2α + βu2H

)

− ΩΛu
(
2α + u(u + 1)βH

))−2) + 9

2
ΩΛ

(
−1

+ H0
2Ωma−3u(α + βH)

2H 2(α + βH) − u(αH + βH 2)u(α + 2βH)

+ 2α + u(u + 1)βH

2α + u2βH

)

×
(

H0
2Ωma−3u(α + βH)

2H 2(α + βH) − u(αH + βH 2)u(α + βH)

+ 2α + u(u + 1)βH

2α + u2βH

)
(20)

s =
(

H0
2Ωma−3u(α + βH)

2H 2(α + βH) − u(αH + βH 2)u(α + 2βH)

)

×
(

2α + u(u + 1)βH

2α + u2βH

)

+ (
6u2βH0

2Ωm(1 + z)3(α + βH)H(2αΩΛ − 1)

− 2
(
3ΩΛ

2ωΛ − 3ωΛΩΛ

)
u
(
2α + βu2H

)

× (
2α + (

u2 + u
)
βH

)(
2H 2(α + βH)

− u
(
αH + βH 2)u

(α + 2βH)
))(

2H 2(α + βH)

− u
(
αH + βH 2)u

(α + 2βH)
)−1(2

(
2α + βu2H

)

− ΩΛu
(
2α + u(u + 1)βH

))−2
(

−3
(
2α + u2βH

)−1

+
(

3H0
2Ωma−3u(α + βH)(2α + u(u + 1)βH)

2H 2(α + βH) − u(αH + βH 2)u(α + 2βH)

)

× (
2α + u2βH

)−1
)

. (21)

The plot of statefinder parameters is shown in Fig. 5.
For the sake of better results, we consider −1 � z � 8.
This indicates that GGPDE model provides the regions of
quintessence and phantom DE eras as s > 0 and r < 1 when
u = 1.5,1.52,1.502.

5 Thermodynamics

In this section, we investigate thermodynamics (Bamba et al.
2012) in f (T ) gravity. For this purpose, the equation of mo-
tion (5) can be redefined as

H 2 = 1

3m2
pfT

(ρm + ρ̃Λ), (22)

Ḣ = − 1

2m2
pfT

(ρm + ρ̃Λ + p̃Λ), (23)
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Fig. 5 Plot of r − s for GGPDE with −1 � z � 8

where

ρ̃Λ = m2
p

2
(TfT − f ),

p̃Λ = m2
p

2
(4HfT T − TfT + f ),

(24)

are redefined torsion contributions. The corresponding con-
tinuity equation is given by

˙̃ρΛ + 3H(ρ̃Λ + p̃Λ) = −m2
pT

2
fT T . (25)

In general relativity, the Bekenstein-Hawking horizon en-
tropy is

S̃ = ÃfT

4G̃eff
, (26)

where G̃eff = G̃
f ′ is the effective gravitational coupling and

f ′ is the derivative of f with respect to the correspond-
ing argument. Here, Ã = 4πR̃2

A is the area of horizon and
R̃A = 1

H
is the radius of apparent horizon. The time deriva-

tive of this relation ( ˙̃
RA = −HḢR̃A) yields

fT

4πG̃

dR̃A

dt
= H(ρm + ρ̃Λ + p̃Λ)R̃3

A. (27)

Using Eqs. (26) and (27), it follows that

1

2πR̃A

dS̃

dt
= 4πH(ρm + ρ̃Λ + p̃Λ)R̃3

A + R̃A

2G̃

dfT

dt
. (28)

The dynamical apparent horizon is covered by the bound-
ary of the universe for which Hawking temperature has the
following form

TH = 1

2πR̃A

(
1 −

˙̃
RA

2HR̃A

)
. (29)

Introducing TH in Eq. (28), we have

TH dS̃ = 4πH(ρm + ρ̃Λ + p̃Λ)R̃3
Adt

− 2π(ρm + ρ̃Λ + p̃Λ)dR̃A + πR̃2
A

G̃
TH dfT . (30)

In f (T ) gravity, the Misner-Sharp energy for Hubble
horizon can be modified as

Ê = R̃AfT

2G̃
= (ρm + ρ̃Λ)V, (31)

where volume inside the horizon is denoted by V =
(4/3)πR̃3

A. Its first derivative gives

dÊ = −4πH(ρm + ρ̃Λ + p̃Λ)R̃3
Adt

+ 4π(ρm + ρ̃Λ)R̃2
AdR̃A + R̃A

2G̃
dfT . (32)

Equations (30) and (32) yield

TH dS̃ + TH dS̃P = −dE + WdV, (33)

where the work density is

W = −1

2

(
T μν

m gμν + T̃
μν

Λ gμν

) = 1

2
(ρm + ρ̃Λ − p̃Λ), (34)

T̃
μν

Λ is the energy-momentum tensor of the dark compo-
nents. In the non-equilibrium thermodynamics, the addi-
tional term dS̃p in Eq. (33) can be described as an entropy
production term and has the general form

dS̃P = − R̃A

2TH G̃
(1 + 2πR̃ATA)dfT

= 6π

G̃

8HT + Ṫ

T (4HT + Ṫ )
dfT . (35)

The behavior of entropy production term can be discussed
by taking the second derivative of Eq. (14) and using it in
Eq. (35), it follows that

dS̃P

dt
= uπḢ

G̃m2
P (u − 1)

(
4H 2 + Ḣ

2H 2 + Ḣ

)

×
[

6αu

38

(
H0

u−1

H 4
+ (u − 2)Hu−5

)

+ (u2 − 1)βαu−1

12

(
Hu

0

H 4
+ (u − 1)Hu−4

)]
. (36)

It is observed that H 2 ± Ḣ > 0 due to the acceleration of the
universe. Moreover, Ḣ > 0 corresponds to an accelerating
expanded phantom-like universe while Ḣ < 0 corresponds
to an accelerating expanded quintessence-like behavior.

Thus, the behavior of ˙̃
SP depends on the signs of Ḣ and u.



Cosmological evolution of generalized ghost pilgrim dark energy in f (T ) gravity Page 7 of 8 57

Fig. 6 Plot of Ṡtotal for GGPDE with −1 � z � 2

In this case, u �= 1 whereas u = 0 leads to zero entropy pro-
duction term which corresponds to teleparallel gravity.

In the phantom-like accelerating universe, we see that
˙̃
SP > 0 for u < 0 and u > 2, while the range 0 < u < 1
shows the decreasing entropy production term. Also, the
range 1 < u < 2 represent the increasing entropy produc-
tion term. A similar but opposite behavior is obtained for
a quintessence-like accelerated expanding universe. The
teleparallel gravity will be recovered in the case where one

has a decreasing additive entropy term (
˙̃
SP < 0) and it goes

to zero as the time evolves. With this type of behavior we
can conclude that the production of entropy cannot always
be viewed as permanent phenomenon. The Gibbs equation
is given by

TH dS̃in = d(V ρ̃Λ) + p̃ΛdV = V dt + (ρ̃Λ + p̃Λ)dV . (37)

The second law of thermodynamics obeys the following
condition

˙̃
S + ˙̃

Sp + ˙̃
Sin ≥ 0 (38)

Combining Eqs. (28), (35) and (36), we have

Ṡtotal = ˙̃
S + ˙̃

Sp + ˙̃
Sin

= Ḣ 2

2G̃H 4
+ uαuḢ 2

12G̃m2
p(u − 1)

[
Hu−1

0

H 5
− Hu−6

]

+ u(u + 1)αu−1βḢ 2

24G̃m2
p

[
Hu

0

H 5
− Hu−5

]
. (39)

Figure 6 shows that the generalized second law of thermo-
dynamics is satisfied for the present day value of H with
−1 � z � 0.8 and u �= 1 regardless the sign of Ḣ .

6 Concluding remarks

The GGPDE model has been discussed in different modi-
fied theories for different purposes such as describing evo-

lution of the universe through different cosmological param-
eters, analysis of ωΛ − ω′

Λ, r − s planes and thermodynam-
ics laws. Sharif and Jawad (2014) investigated the interact-
ing and non-interacting GGPDE model in the flat universe.
They analyzed the behavior of these parameters through
two constant parameters such as interacting and PDE. For
u ≥ 1.4 and u ≤ 0, the EOS parameter lies in the phantom
region. They found that GGPDE model exhibited stability
in the non-interacting scenario. The ωΛ − ω′

Λ plane showed
ΛCDM limit for non-interacting case. Finally, they pointed
out that the r − s plane possessed the regions of Chaplygin
gas, quintessence and phantom models.

In this paper, we have taken GGPDE model to discuss
the non-interacting case by evaluating the EoS parameter as
well as two cosmological planes (ωΛ − ω′

Λ and r − s). We
have analyzed GGPDE model through three different val-
ues of PDE parameter, i.e., u = 1.5,1.52 and u = 1.502 and
redshift parameter −1 ≤ z ≤ 2. It is seen that the evolution
of Hubble parameter lies in the range (74.00,74.025) for all
values of u as shown in Fig. 1.

It is found that EoS parameter satisfies PDE phenomenon
for all three values of PDE parameter in the range −0.4 ≤
z ≤ 2. We have found that the GGPDE exhibits instability in
the range −1 ≤ z ≤ 2. Also, the ωΛ −ω′

Λ plane provides the
thawing region for the same constant parameters. Finally,
we have discussed first and second laws of thermodynamics
by assuming the same temperature of the universe in non-
equilibrium description. We have found that the first law of
thermodynamics is violated for GGPDE model due to the
existence of entropy production term. However, the gener-
alized second law of thermodynamics holds for the present
day value of H with −1 � z � 0.8.
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