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Abstract Present paper provides a new non-singular model
for anisotropic charged fluid sphere in (2 + 1)-dimensional
anti de-Sitter spacetime corresponding to the exterior BTZ
spacetime (Banados et al., Phys. Rev. Lett. 69:1849, 1992).
The model is obtained by assuming Krori and Barua (KB)
ansatz (Krori and Barua, J. Phys. A, Math. Gen., 8:508,
1975). To solve the Einstein-Maxwell field equations we
choose modified Chaplygin gas. Various physical quantities
have been discussed and from our analysis we show that
our model satisfies all required physical conditions for rep-
resenting compact stars.

Keywords Anisotropy · Charged fluids · Chaplygin
equation of state · 2 + 1 dimension

1 Introduction

Recently, a lot of interest has been developed in construc-
tion of solutions in Einstein’s theory with (2 + 1) dimen-
sional spacetime. In this framework, Newtonian theory can
not be achieved, however, (2 + 1) dimensional spacetime
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usually used in studying the cosmological models, star
formation or blackhole phenomenon (Gurtug et al. 2012,
and references therein; Meusburger 2009, and references
therein). Moreover, this scenario yields some new features
towards a better understanding of the physically relevant
(3 + 1) dimensional gravity (Banados et al. 1992; Mann
and Ross 1993; Lubo et al. 1999; Sakamoto et al. 1998;
Cruz and Zanelli 1995; Cruz et al. 2004; Carlip 1995;
Sharma et al. 2011). For instance, a concerning applica-
tion of (2 + 1)-dimensional spacetime in the exact solutions
for point masses (Gott and Alpert 1984; Deser et al. 1984;
Giddings et al. 1984) give directly the exact solutions for
strings in (3 + 1)-dimensional spacetime (Gott 1985).

Abbott (1884) was the first who look at (2 + 1)-dimen-
sional spacetime describing the whole universe with only
two spatial dimensions. Rahaman et al. (2012a) suggested
a new model of a gravastar in (2 + 1)-dimensional anti-
de Sitter spacetime as well as charged gravastar (Rahaman
et al. 2014a). The wormhole solutions are also studied in
(2+1) dimensional spacetime (Rahaman et al. 2007, 2012b;
Jamil et al. 2010; Kim et al. 2004; Perry et al. 1992). Ra-
haman et al. (2013) investigated singularity-free star so-
lutions in this spacetime. Rahaman et al. (2014b) provide
a new class of exact solutions for the interior in 2 + 1-
dimensional spacetime. The solutions was obtained for the
perfect fluid model both with and without cosmological con-
stant (Λ) are found to be regular and singularity free. The
solution was obtained by assuming isotropic pressure. Solu-
tions without Λ are found to be physically acceptable.

Bhar et al. (2014) provided a new class of interior solu-
tion of a (2 + 1)-dimensional anisotropic star in Finch and
Skea spacetime corresponding to the BTZ black hole. They
developed the model by considering the MIT bag model
EOS and a particular ansatz for the metric function grr pro-
posed by Finch and Skea (1989). The model is free from
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central singularity and satisfies all the physical requirements
for the acceptability of the model. Noncommutative geom-
etry inspired 3-dimensional charged black hole solution in
an anti-de Sitter background spacetime is studied by Ra-
haman et al. (2015). In this paper the authors report a 3-
D charged black hole solution in an anti-de Sitter space in-
spired by noncommutative geometry. In this construction,
the black hole exhibits two horizons, which turn into a sin-
gle horizon in the extreme case. They investigate the im-
pacts of electromagnetic field on the location of the event
horizon, mass and thermodynamic properties such as Hawk-
ing temperature, entropy, and heat capacity of the black
hole. The geodesics of the charged black hole are also ana-
lyzed. Stability of thin-shell wormholes from noncommuta-
tive BTZ black hole is studied by Bhar and Banerjee (2015).
In this paper, the authors constructed thin-shell wormholes
in (2+1)-dimensions from noncommutative BTZ black hole
by applying the cut-and-paste procedure implemented by
Visser. The stability analysis of the thin shell wormhole is
also discussed.

In recent past, Krori and Barua (KB) (1975) devel-
oped static, spherically symmetric solutions with particu-
lar choice of the metric components g00 and g11 in curva-
ture coordinates. By following this approach, various inter-
esting star models have been constructed (Rahaman et al.
2010, 2012c, 2012d; Monoar et al. 2012; Mehedi et al. 2012;
Varela et al. 2010). There have been several investigations of
the Einstein-Maxwell system of equations for static spheri-
cally symmetric gravitational fields usually with isotropic
pressure to include the effects of the electromagnetic field.
The purpose of the present work is also to find exact in-
terior solutions for perfect fluid model with cosmological
constant in the presence of electromagnetic field. Further,
the assumption of equation of state (EoS), p = mρ, seems to
be very reasonable for describing the matter distribution in
the study of relativistic objects like stars (Varela et al. 2010;
Rahaman et al. 2010), wormholes (Rahaman et al. 2012d;
Burdyuzha 2009) and gravastars (Dymnikova 2002).

That is why, we assume the equation of state (EoS) of
modified Chaplygin gas in the present work in order to find
the new exact solutions in the scenario of KB as an inte-
rior spacetime with the inclusion of charge and cosmologi-
cal constant. We also choose static and charged BTZ black
hole as an exterior boundary of the fluid sphere. The paper
is organized as follows: In Section 2, we elaborate the basic
scenario. In Sect. 3, we extract the exact solutions through
matching conditions. In Sects. 4–7, we discuss some physi-
cal properties of obtained solutions. In Sect. 8, we summa-
rized our results.

2 Basic equations

Here, we consider the interior space-time of a fluid sphere
described by KB metric which has (2+1) dimensional form

as follows (Krori and Barua 1975)

ds2 = −eν(r)dt2 + eμ(r)dr2 + r2dθ2, (1)

where the functions μ(r) and ν(r) are defined as μ(r) =
Ar2 and ν(r) = Br2 + C, where A, B and C appears as
arbitrary constants and their values will be calculated with
the help of different physical conditions.

Let us consider the charged fluid as anisotropic in nature.
In this framework, the Einstein Maxwell equations in the
presence of cosmological constant Λ < 0 turn out to be

μ′e−μ

2r
= 8πρ + E2 + Λ, (2)

ν′e−μ

2r
= 8πpr − E2 − Λ, (3)

e−μ

2

(
1

2
ν′2 + ν′′ − 1

2
μ′ν′

)
= 8πpt + E2 − Λ, (4)

σ(r) = e− μ
2

4πr
(rE)′, (5)

where prime denotes the differentiation with respect to ra-
dial coordinate ‘r’. Here ρ, pr and pt describe the energy
density, radial pressure and transverse pressure, respectively,
while E = E(r) represents the electric field which takes the
following form

E(r) = 4π

r

∫ r

0
yσ(y)e

μ(y)
2 dy = q(r)

r
. (6)

where q(r) indicates the total charge of the sphere under
consideration.

3 Solutions

The Chaplygin gas model is one of the predicting candidates
to explain the present accelerated expansion of the universe.
The interesting feature of Chaplygin gas is its connection to
the string theory. It can be obtained from the Nambu-Goto
action for a D-brane moving in a (D+2)-dimensional space-
time in the light cone parametrization (Fabris et al. 2002;
Bilic et al. 2002; Kamenshchik et al. 2000). The Chaplygin
gas model represents first dust behavior and in late times as
cosmological constant. It depicts like a mixture of cosmo-
logical constant and a perfect fluid with equation of state,
p = − K

ρα in intermediate stages. This parameter involves in
this equation, makes the Chaplygin gas model as more flex-
ible for comparison against observations. The equation of
state which combines many models of Chaplygin gas model
given by

p = Hρ − K

ρα
, (7)

where α, H and K are positive constants.
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Fig. 1 (Left) Variation density
against the radius r is shown in
the figure. (Right) Variation of
the radial pressure pr and
transverse pressure pt against
the radius r is shown in the
figure

To solve the Einstein-Maxwell field equations, we as-
sume the modified Chaplygin gas model with α = 1. Solv-
ing Eqs. (2)–(6) with the help of Eq. (7) we obtain the model
parameters as follows

ρ = f + √
f 2 + 4hK

2h
, (8)

pr = f − f + √
f 2 + 4hK

2h
, (9)

E2 = Ae−Ar2 − 8π
f + √

f 2 + 4hK

2h
− Λ, (10)

pt = 1

8π

[
e−Ar2

(B − A)
(
1 + Br2) + Λ

+ 8π

(
f + √

f 2 + 4hK

2h

)]
, (11)

q2 = Ar2e−Ar2 − 8πr2 f + √
f 2 + 4hK

2h
, (12)

where h = 1 + H and f (r) = (A+B)
8π

e−Ar2
.

The profile of matter density (ρ) and radial pressure (pr)

and transverse pressure (pt ) are shown in Fig. 1(left) and
Fig. 1 (right) respectively. Figure 1 indicates that ρ,pr and
pt all are positive inside the stellar interior. We note that as
density and radial pressure are decreasing with the radial co-
ordinate ‘r’ which are the common features, however, trans-
verse pressure is increasing which is very unusual. Apart this
lone drawback our model consists with very much attractive
results which are discussed in the subsequent sections.

3.1 Matching condition

In this section we match our interior solution to the exte-
rior charged BTZ black hole solution as an electrovacuum

exterior (p = ρ = 0) which is given by line element

ds2 = −(−M0 − Λr2 − Q2 ln r
)
dt2

+ (
M0 − Λr2 − Q2 ln r

)−1
dr2 + r2dθ2 (13)

To match our interior solution to the exterior metric we im-
pose the continuity of gtt ,grr and ∂gtt

∂r
across a surface (S),

at r = a.
Which gives,

eBa2+C = −M0 − Λa2 − Q2 lna,

eAa2 = (−M0 − Λa2 − Q2 lna
)−1

,

− 2aΛ − Q2

a
= 2aBeBa2+C

(14)

These equations yield the values of A, B and C

A = − 1

a2
ln

(−M0 − Λa2 − Q2 lna
)
, (15)

B = 1

2a

[
2aΛ + Q2

a

M0 + Λa2 + Q2 lna

]
, (16)

C = ln
(−M0 − Λa2 − Q2 lna

)

− a

2

[
2aΛ + Q2

a

M0 + Λa2 + Q2 lna

]
(17)

On the boundary conditions r = 0 and r = a, ρ(0) = ρ0 and
pr(a) = 0 which yield the following two expressions

A − Λ

8π
= FeAa2 +

√
(FeAa2

)2 + 4hK

2h
= ρ0, (18)

F − F + √
F 2 + 4hK

2h
= 0, (19)
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where F = f (a) = A+B
8π

e−Aa2
. Solving the above two equa-

tions, we get

H = (A − Λ)2FeAa2 − (A−Λ)2

16π2

(A−Λ)2

16π2 − 4F 2
(20)

and

K = F 2
(A − Λ)2FeAa2 − (A−Λ)2

16π2

(A−Λ)2

16π2 − 4F 2
(21)

Thus we obtain the values of H and K in terms of the known
quantities A, a, Λ and F .

4 Physical property

Here, we discuss the physical properties of our solutions.
Firstly, we differentiate (8) with respect to radial parameter
which takes the following form

dρ

dr
= −Ar

h

A + B

8π
e−Ar2

×
[

1 + A + B

8π

e−Ar2

√
(A+B

8π
)2e−2Ar2 + 4hK

]
< 0 (22)

and at the point r = 0

dρ

dr
= 0 and

d2ρ

dr2
= −A(A + B)

8hπ

[
1 + A + B

8π

1√
(A+B

8π
)2 + 4hK

]
< 0.

(23)

Also,

dpr

dr
= −2Ar

A + B

8π
e−Ar2 + Ar

h

A + B

8π
e−Ar2

×
[

1 + A + B

8π

e−Ar2

√
(A+B

8π
)2e−2Ar2 + 4hK

]
, (24)

at the point r = 0

dpr

dr
= 0 and

d2pr

dr2
= −A(A + B)

8π

×
[

2 + A

h

{
1 + A + B

8π

1√
(A+B

8π
)2 + 4hK

}]
< 0.

(25)

Fig. 2 Variation anisotropy against the radius r is shown in the figure

Which shows that both the matter density and radial pres-
sure is monotonic decreasing function of ‘r’, i.e., they have
maximum value at the center of the fluid sphere and it de-
creases radially to the boundary and at the boundary of the
fluid sphere the radial pressure vanishes. This condition is
also verified by Fig. 1.

The anisotropy factor 
 = pt − pr is given by


 = 1

8π
e−Aa2

(B − A)
(
1 + Br2) + Λ

8π
− f

+ 2

(
f + √

f 2 + 4hK

2h

)
. (26)

The profile of the anisotropic factor 
 is shown in Fig. 2.
From the figure it is clear that 
 > 0 in the stellar interior
which indicates that the anisotropic force is repulsive in na-
ture. It is also noted that E(0) = 0, ρ(0) = A−Λ

8π
,pr(0) =

B+Λ
8π

,pt (0) = B+Λ
8π

. Which shows that at the point r = 0
all the model parameters are regular. consequently our solu-
tions are regular at the center. Figures 1 and 2 also support
this.

Further, the equations of state parameter along the trans-
verse and radial directions are

ωt = pt

ρ

= [e−Ar2{(B − A)(Br2 + 1)}+Λ+8π(
f +

√
f 2+4hK

2h
)]

8π(
f +

√
f 2+4hK

2h
)

,

(27)

ωr = pr

ρ
= f − (

f +
√

f 2+4hK

2h
)

(
f +

√
f 2+4hK

2h
)

. (28)
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Fig. 3 (Left) Variation of radial
equation state parameter ωr

against the radius r is shown in
the figure. (Right) Variation of
radial equation state parameter
ωt against the radius r is shown
in the figure

Figure 3 shows the variations of equations of state parameter
along the radial and transverse directions.

Figure 3 indicates that ωr is monotonic decreasing func-
tion of ‘r’ and 0 ≤ ωr ≤ 1 whenever ωt is ever increasing.

5 TOV equation

To check the stability condition of our present model un-
der gravitational (Fg), hydrostatics (Fh), anisotropic (Fa)

and electric forces (Fe) let us consider the generalized TOV
equation given by,

−MG(ρ + pr)

r2
e

μ−ν
2 − dpr

dr
+ σ

q

r2
e

μ
2 + 2

r
(pt − pr) = 0

(29)

where MG = MG(r) = 1
2 r2e

μ−ν
2 ν′ represents the gravita-

tional mass inside a sphere of radius r . The above equation
can also be written as

Fg + Fh + Fe + Fa = 0, (30)

where

Fg = −Br(ρ + pr) = −Br
A + B

8π
e−Ar2

,

Fh = −dpr

dr
= 2Ar

A + B

8π
e−Ar2 − Ar

h

A + B

8π

× e−Ar2
[

1 + A + B

8π

e−Ar2

√
(A+B

8π
)2e−2Ar2 + 4hK

]
,

Fe = σEe
Ar2

2 ,

Fa = 2

r
(pt − pr).

Fig. 4 Variation of forces against the radius r is shown in the figure

Due to the complexity of the expression we will discuss the
stability of our present model with the help of graphical rep-
resentation. The variation of above forces (Fg,Fh,Fe,Fa)

along radial direction is shown in Fig. 4 for a particular
stellar configuration. The figure provides the information of
the static equilibrium since the combined effects of pressure
anisotropy and hydrostatic forces are counterbalanced by the
combine effects of gravitational electric forces.

6 Energy conditions

In order to show the viability of our solutions, we check
the null energy condition (NEC), weak energy condition
(WEC), strong energy condition (SEC) and dominant energy
condition (DEC) which are given by

ρ̃ + Ẽ2

8π
≥ 0, (31)
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ρ̃ + p̃r ≥ 0, (32)

ρ̃ + p̃t + Ẽ2

4π
≥ 0, (33)

ρ̃ + p̃r + 2p̃t + Ẽ2

4π
≥ 0, (34)

respectively. To check whether our present model satisfies
all the energy conditions we plot the LHS of (31)–(34) ver-
sus r as shown in Fig. 5. It can be observed that the plot
shows the consistency with the above inequalities.

7 Mass radius relation and redshift

In this section we will obtain the mass function,compactness
and surface redshift of our present model.

Fig. 5 Variation of energy against the radius r is shown in the figure

The mass function m(r) within the radius ‘r’ can be cal-
culated as follows

m(r) = 2π

∫ r

0

[
ρ + E2

8π

]
r̃dr̃ = 1

8

(
1 − Λr2 − e−Ar2)

(35)

The profile of the mass function m(r) versus ‘r’ is shown in
Fig. 6 (left). Now as r → 0, m(r) → 0 i.e., mass function is
regular at the center of the fluid sphere. Moreover m(r) > 0
inside the stellar interior and m(r) is monotonic increasing
function of ‘r’.

The compactness of the fluid sphere is given as

u = m(r)

r
= 1

8r

(
1 − Λr2 − e−Ar2)

, (36)

and correspondingly the surface redshift (z) is given by

z = (1 − 2u)−
1
2 − 1, (37)

where

z =
[

1 − 1

4r

(
1 − Λr2 − e−Ar2)]− 1

2 − 1. (38)

The plots of m(r)
r

against r is shown in Fig. 6 (middle) which

indicates that the ratio m(r)
r

are increasing functions of the
radial coordinate. Interestingly, one can note that maximum
allowed mass-radius ratio in this model falls within the limit
of the (3 + 1) dimensional case for the isotropic fluid sphere
i.e., (

m(r)
r

)max = 0.064 < 4
9 .

Thus, the maximum surface redshift of our (2 + 1) di-
mensional fluid sphere of radius 10.365 km is calculated as
Zs = 0.072. Figure 6 (right) shows the variation of redshift
function z with respect to radial coordinate.

Fig. 6 (Left) Variation of mass function against the radius r is shown
in the figure. (Middle) Variation of compactness against the radius r is
shown in the figure. The values of the parameters are taken as r0 = 1,

ρ0 = 0.0001. (Right) Variation of redshift function against the radius r

is shown in the figure
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8 Conclusion

In our present paper we obtained a new class of exact inte-
rior solution of Einstein-Maxwell field equations in (2 + 1)
dimensional spacetime by assuming KB metric correspond-
ing to the exterior charged BTZ spacetime. Our proposed
model is free from central singularities, i.e., density, radial
and transverse pressure all are regular at the center of the
fluid sphere. We have shown that density (ρ), radial pressure
(pr ), transverse pressure (pt ) all are non negative inside the
stellar interior which is expected to model a compact star.
Both density and radial pressure are monotonic decreasing
function of ‘r’, i.e., they have maximum value at the cen-
ter and it decreases radially outwards. We have matched our
interior solution to the exterior BTZ metric. For our model
we have shown that the anisotropic factor 
 = pt − pr > 0
i.e., anisotropic force is repulsive in nature. By assuming
generalized TOV equation we have shown that our model
is potentially stable under gravitational Fg , hydrostatics Fh

and anisotropic Fa and electric forces Fe .
All the energy conditions namely null energy conditions,

weak energy conditions,strong energy conditions are satis-
fied by our model. We have also calculated the mass func-
tion, compactness and surface redshift of our present model.
From our result we have shown that mass function is regular
at the center of the fluid sphere and it is monotonic increas-
ing function of ‘r’.

To get an idea about the physical characteristics of the
charged fluid sphere in (2+1) dimension, we have taken the
data from usual four dimensional fluid sphere i.e. a 3 spa-
tial dimensional object. Even though we don’t have exact
physical meaning by considering stelar objects of 2 spatial
dimensions, however, for the observer sitting in the plane,
θ = constant sees all characteristics as a (2+1) dimensional
picture. It seems that we can use all the parameters which
are more or less the same for both spacetimes. Therefore,
our studied fluid sphere in (2 + 1) dimension may reflect
the properties of usual compact stars. For the specific val-
ues of the parameters, we have found the radius of the fluid
sphere is 10.365 km and mass 0.97 M�. Also, by plugging
in G and c in the relevant equations, we have estimated the
central density ρ0 = 1.158 × 1016 gm cm−3, surface density
ρs = 1.143 × 1016 gm cm−3, central pressure pr(r = 0) =
pt(r = 0) = 8.03×1036 dyne cm−2. These results reflect the
characteristics of compact star. The compactification factor
of our model is calculated as (

m(r)
r

)max = 0.064 < 4
9 , lies in

the range of (3 + 1)D star and the maximum surface redshift
of our (2 + 1) dimensional fluid sphere of radius 10.365 km
is calculated as Zs = 0.072.
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