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Abstract In the present paper we propose a new model
of an anisotropic strange star which admits the Chaplygin
equation of state. The exterior spacetime is described by
a Schwarzschild line element. The model is developed by
assuming the Finch–Skea ansatz (Finch and Skea in Class.
Quantum Gravity 6:467, 1989). We obtain the model param-
eters in closed form. Our model is free from a central singu-
larity. Choosing some particular values for the parameter we
show that our model corroborates the observational data of
the strange star PSR J1614-2230 (Gangopadhyay et al. in
Mon. Not. R. Astron. Soc. 431:3216, 2013).

Keywords General relativity · Finch–Skea spacetime ·
Chaplygin equation of state · Strange star

1 Introduction

Studies of relativistic models of compact stars have been
an intersecting topic to researchers for the last few decades.
The possible compact objects are strange stars and neutron
stars. Strange stars are composed of quarks or strange mat-
ter consisting of u, d, and s quarks, whereas on the other
hand neutron stars are composed of neutrons. The forma-
tion of strange matter can be classified into two ways: the
quark–hadron phase transition in the early universe and con-
version of neutron stars into strange stars at ultrahigh den-
sities (Witten 1984). Bodmer (1971) proposed that a phase
transition between hadronic and strange quark matter may
occur in the universe at a density higher than the nuclear
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density when a massive star explodes as a supernova. So one
expects to find the strange quark at the inner core of a neu-
tron star or a quark star. According to Ruderman (1972) the
pressure inside the highly compact astrophysical objects like
an X-ray pulsar, Her-X-1, X-ray buster 4U 1820-30, the mil-
lisecond pulsar SAX J 1804.4-3658, PSR J1614-2230, LMC
X-4 etc. that have a core density beyond the nuclear den-
sity (1015 gm/cc) show anisotropy , i.e., the pressure inside
these compact objects can be decomposed into two parts: the
radial pressure pr and the transverse pressure pt where pt

is in the direction perpendicular to pr . � = pt −pr is called
the anisotropic factor. The reasons behind these anisotropic
nature are the existence of a solid core, the presence of a
type P superfluid, a phase transition, a rotation, a magnetic
field, a mixture of two fluids, the existence of an external
field, etc. Local anisotropy in self-gravitating systems was
studied by Herrera and Santos (1997) (please, see the ref-
erences therein for a review of anisotropic fluids). A large
number of works have been done earlier by assuming an
anisotropic pressure of the underlying fluid. By assuming
a special type of matter density Dev and Gleiser (2004) pro-
posed a model of an anisotropic star. From their analysis the
authors have shown that the absolute stability bound 2M

R
< 8

9
can be violated and the star’s surface redshift may be arbi-
trarily large. A strange star in Krori–Barua spacetime is de-
scribed by Rahaman et al. (2011). A strange quintessence
star and a singularity free quintessence star in Krori–Barua
spacetime are obtained by Bhar (2015a,b). A new class of
interior solutions of a (2 + 1)-dimensional anisotropic star
in a Finch–Skea spacetime corresponding to the exterior
BTZ black hole was developed by Bhar et al. (2014). The
model is obtained by considering the MIT bag model equa-
tion of state, and a particular ansatz for the metric function
grr was proposed by Finch and Skea (1989). A relativis-
tic stellar model admitting a quadratic equation of state was
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proposed by Sharma and Ratanpal (2013) in a Finch–Skea
spacetime. The earlier work is generalized to a modified
Finch–Skea spacetime by Pandya et al. (2014) by incorpo-
rating a dimensionless parameter n. In a very recent work
Bhar (2015) obtained a new model of an anisotropic super-
dense star which admits conformal motions in the presence
of a quintessence field which is characterized by a parameter
ωq with −1 < ωq < −1/3. The model has been developed
by choosing the ansatz from Vaidya and Tikekar (1982). One
of the most important discoveries in the recent past is that
the expansion of our universe is accelerating, which is ob-
served by Type Ia supernovae (Riess et al. 1998; Perlmutter
et al. 1999). Dark energy is the most useful hypothesis to ex-
plain this phenomenon. As a result the Chaplygin gas EOS
is very useful in order to explain the accelerating phase of
our present universe as well as to unify the dark energy and
dark matter. As the Chaplygin gas EOS is a specific form of
polytropic EOS, it describes dark energy. On the other hand,
it is believed that dark energy exerts a repulsive force on
its surrounding, which prevents the star from gravitational
collapse in the same manner as an electric charge. Lobo
(2006) has given a model of a stable dark energy star by
assuming two spatial types of mass function: one is of con-
stant energy density and the other mass function is Matese
and Whitman (1980) a constant mass. All the features of
the dark energy star have been discussed and the system is
stable under a small linear perturbation. Very recently Bhar
and Rahaman (2015) proposed a new model of a dark en-
ergy star consisting of five zones, namely, a solid core of
constant energy density, a thin shell between core and in-
terior, an inhomogeneous interior region with anisotropic
pressures, a thin shell, and an exterior vacuum region. They
discussed various physical properties. The model satisfies
all the physical requirements. The stability condition un-
der a small linear perturbation is also discussed. The gen-
eralized Chaplygin gas model is based on the equation of
state Pch = − A

ρα
ch

where A and α are positive constants and

0 ≤ α ≤ 1. Bertolami and Paramos (2005) studied the gen-
eral properties of a spherically symmetric body described
through the generalized Chaplygin equation of state. They
conclude that such an object, dubbed a generalized Chaply-
gin dark star, should exist within the context of the general-
ized Chaplygin gas (GCG) model of the unification of dark
energy and dark matter, and they derive expressions for its
size and expansion velocity, whereas Rahaman et al. (2010)
have described anisotropic charged fluids with a Chaply-
gin equation of state. In this paper the authors deal with a
nonlinear EOS and are able to find solutions using an al-
gebraic method without solving any differential equations.
Gorini et al. (2009) investigate the Tolman–Oppenheimer–
Volkoff equations for the generalized Chaplygin gas with
the aim of extending their earlier work (Gorini et al. 2008),
where the authors studied static solutions of the Tolman–
Oppenheimer–Volkoff equations for spherically symmetric

objects (stars) living in a space filled with the Chaplygin
gas. The modified Chaplygin gas (MCG) EoS for the radial
pressure is described by pr(r) = Aρ(r) − B

ρ(r)α
. Here A, B ,

and α are constant parameters. Mubasher et al. (2009) con-
structed a stationary, spherically symmetric, and spatially in-
homogeneous wormhole spacetime supported by a modified
Chaplygin gas. In particular, if we take α = 1 we get the
Chaplygin equation of state. Inspired by all of the previous
works, in the present paper we want to model an anisotropic
star in a Finch–Skea spacetime incorporating the Chaplygin
equation of state. Our paper is planned as follows: In Sect. 2
we discuss the Einstein field equations. The solutions of the
system are treated in Sect. 3. The other features are given in
Sects. 4–10, and finally some concluding remarks are given
in Sect. 11.

2 Einstein field equations

To describe the interior of a static spherically symmetry dis-
tribution of matter the line element is given by

ds2 = −eν(r) dt2 + eλ(r) dr2 + r2(dθ2 + sin2 θ dφ2) (1)

in Schwarzschild co-ordinates xa = t, r, θ,φ. Here λ and
ν are functions of the radial co-ordinate r only. Let us as-
sume that the matter distribution inside the compact star
is anisotropic in nature, whose energy momentum tensor is
given by the following equation:

T μ
ν = (ρ + pr)u

μuν − ptg
μ
ν + (pr − pt)η

μην (2)

with uiuj = −ηiηj = 1 and uiηj = 0. Here the vector ui

is the fluid 4-velocity and ηi is the spacelike vector which
is orthogonal to ui , ρ is the matter density, pr and pt are,
respectively, the radial and the transversal pressure of the
fluid and pt lies in the direction orthogonal to pr .

Taking G = 1 = c the Einstein field equations can be
written as

8πρ = 1

r2

[
r
(
1 − e−2λ

)]′
, (3)

8πpr = − 1

r2

(
1 − e−2λ

) + 2ν′

r
e−2λ, (4)

8πpt = e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
. (5)

Here a prime denotes differentiation with respect to the
radial co-ordinate r . Now the mass contained within the
sphere of radius r is given by

m(r) =
∫ r

0
4πρ(ω)ω2 dω. (6)
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We assume that the radial pressure (pr ) and the matter den-
sity ρ are related as (Benaoum 2002)

pr = α1ρ + α2

ρ
. (7)

Here α1 and α2 are some constants. The above equation is
known as the generalized Chaplygin gas equation of state
for the fluid sphere. Now let us introduce the transformation

x = r2, Z(x) = e−2λ(r) and y2(x) = e2ν(r). (8)

Using this transformation Einstein field equations become

8πρ = 1 − Z

x
− 2Ż, (9)

8πpr = 4Z
ẏ

y
+ Z − 1

x
, (10)

pt = pr + �, (11)

8π� = 4xZ
ÿ

y
+ Ż

(
1 + 2x

ẏ

y

)
+ 1 − Z

x
. (12)

Using Eqs. (7), (9), and (10) we obtain

ẏ

y
= α1

4Z

(
1 − Z

x
− 2Ż

)
+ α2

4Z
(8π)2

(
1 − Z

x
− 2Ż

)−1

− Z − 1

4Zx
. (13)

Here a dot denotes the derivative with respect to x. The mass
function becomes

m(x) = 2π

∫ x

0

√
ωρ(ω)dω. (14)

3 Solution

To solve the Einstein field equations let us take the ansatz
proposed by Finch and Skea (1989):

e2λ = 1 + r2

R2
. (15)

Using Eqs. (8) and (15) we get

Z(x) = (1 + ax)−1. (16)

Here a = 1
R2 . Using the expression of Z(x) from Eqs. (9)–

(13) we obtain

ẏ

y
= α1a

4

3 + ax

1 + ax
+ (8π)2 α2

4a

(1 + ax)3

3 + ax
+ a

4
. (17)

Integrating the above equations we get

ln(y) = α1

4

[
ax + 2 ln(1 + ax)

] + ax

4

+ (8π)2α2

4a2

[
(3 + ax)3

3
− 3(3 + ax)2

]

+ (8π)2α2

4a2

[
12ax − 8 ln(3 + ax)

] + C,

where C is the constant of integration, which will be deter-
mined from the boundary condition. The matter density and
the radial and transverse pressure are obtained as

ρ = 3a + a2x

8π(1 + ax)2
, (18)

pr = α1ρ + α2

ρ
, (19)

pt = pr + �, (20)

and the anisotropic factor � is obtained as

8π� = 4x

{
α1a

4

3 + ax

(1 + ax)2
+ (8π)2α2

4a

(1 + ax)2

3 + ax

}

×
{

α1a

4

3 + ax

(1 + ax)2
+ (8π)2α2

4a

(1 + ax)2

3 + ax
+ a

4

}

+ 4x

{
(8π)2α2

2

(1 + ax)(4 + ax)

(3 + ax)2
− α1a

2

2(1 + ax)3

}

− 2ax

[
α1a

4

3 + ax

(1 + ax)3
+ (8π)2α2

4a

1 + ax

3 + ax

+ a

4(1 + ax)2

]
− a

(1 + ax)2
+ a

1 + ax
.

4 Exterior spacetime and matching condition

In this section we match our interior solution to the exterior
Schwarzschild metric at the boundary r = rb where rb >

2M . The exterior spacetime is given by the line element

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)
dr2

+ r2(dθ2 + sin2 θdφ2). (21)

Now at the boundary r = rb the coefficients of grr , gtt all
are continuous. This implies

1 − 2M

rb
= e2ν(rb) (22)
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(
1 − 2M

rb

)−1

= 1 + ar2
b . (23)

From Eq. (22) we obtain

C = 1

2
ln

(
1 − 2M

rb

)
− α1

4

[
ar2

b + 2 ln
(
1 + ar2

b

)] − ar2
b

4

− (8π)2α2

4a2

[
(3 + ar2

b )3

3
− 3

(
3 + ar2

b

)2
]

− (8π)2α2

4a2

[
12ar2

b − 8 ln
(
3 + ar2

b

)]
. (24)

5 Physical analysis

(1) The matter density (ρ) and the radial pressure (pr )
should be non-negative inside the stellar interior. The
profile of ρ and pr are shown in Figs. 1 and 2, re-
spectively. From the figures it is clear that our proposed
model of a strange star satisfies this condition. At the
boundary of the star the radial pressure vanishes.

(2) Both dρ
dr

and dpr

dr
< 0 (see Fig. 4), i.e., ρ and pr are

monotonic decreasing functions of r , they have a max-
imum value at the center of the star and they decrease
radially outwards.

(3) For an anisotropic fluid sphere the trace of the energy
tensor should be positive, as suggested by Bondi (1999).
To check this condition for our model we plot ρ − pr −
2pt against r in Fig. 5. From the figure it is clear that
ρ − pr − 2pt ≥ 0.

Fig. 1 The variation of matter density ρ is plotted against r inside the
stellar interior

Fig. 2 The variation of the radial pressure pr is plotted against r inside
the stellar interior

Fig. 3 The variation of the anisotropic factor � = pt − pr is shown
against r inside the stellar interior

(4) The profile of the anisotropic factor � = pt − pr is
shown in Fig. 3. The anisotropic factor � < 0 for our
model. So the anisotropic force is attractive in nature
and at the center of the star the anisotropic factor van-
ishes, which is expected.

(5) Moreover, for an anisotropic fluid sphere the radial and
transverse velocity of sound should be less than 1, which
is known as a causality condition. This condition is dis-
cussed separately in Sect. 7.
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Fig. 4 dρ
dr

, dpr

dr
are plotted against r inside the stellar interior

Fig. 5 The variation of ρ − pr − 2pt is plotted against r inside the
stellar interior

6 Adiabatic index

For an anisotropic fluid sphere the adiabatic index (γ ) is
given by

γ = ρ + pr

pr

dpr

dρ
. (25)

Heintzmann and Hillebrandt (1975) proposed that a neu-
tron star with an anisotropic equation of state will be stable
if γ > 4

3 . To see the characteristics of the adiabatic index for
our model the profile is shown in Fig. 6. From the figure we
see that γ > 4

3 everywhere within the interior of the fluid

Fig. 6 The adiabatic index γ (green curve) is shown against r inside
the stellar interior and the red line corresponds to r = 4

3

sphere. So according to Heintzmann and Hillebrandt (1975)
our model is stable.

7 Stability

Our proposed model of an anisotropic strange star will be
physically acceptable if the radial and transverse velocity of
sound should be less than 1, which is known as a causality
condition. Here the radial velocity (v2

sr ) and the transverse
velocity (v2

st ) of sound can be obtained as

v2
sr = dpr

dρ
, (26)

v2
st = dpt

dρ
. (27)

As regards the complexity of the expression of pt we prove
the above inequalities with the help of a graphical repre-
sentation. The profiles of v2

sr and v2
st are shown in Figs. 7

and 8. From these two figures it is clear that 0 < v2
sr , v2

st ≤ 1
everywhere within the anisotropic fluid sphere. Moreover,
0 < v2

sr < 1, 0 < v2
st < 1, therefore, according to Andreas-

son (2009) |v2
sr − v2

st | < 1, which is also satisfied by our
model (see Fig. 9).

8 TOV equation

To check whether our model is in equilibrium under the
three different forces, we consider the generalized Tolman–
Oppenheimer–Volkov (TOV) equation which is represented
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Fig. 7 The variation of radial velocity is shown against r inside the
stellar interior

Fig. 8 The variation of transverse velocity is shown against r inside
the stellar interior

by the formula

MG(ρ + pr)

r2
e

λ−ν
2 + dpr

dr
+ 2

r
(pt − pr). (28)

Here MG = MG(r) is the effective gravitational mass inside
the fluid sphere of radius r defined by

MG(r) = 1

2
r2e

ν−λ
2 ν′. (29)

The above expression of MG(r) can be derived from the
Tolman–Whittaker mass formula. Using the expression of

Fig. 9 |−v2
st + v2

sr | is shown against r inside the stellar interior

Eq. (29) in (28) we obtain the modified TOV equation as

Fg + Fh + Fa = 0, (30)

where

Fg = −ν′

2
(ρ + pr), (31)

Fh = −dpr

dr
, (32)

Fa = 2

r
(pt − pr); (33)

Fg , Fh, and Fa are known as gravitational, hydrostatic, and
anisotropic forces, respectively, of the system. The profiles
of the above three forces for the strange star are shown in
Fig. 10. This figure shows that the combined effect of hy-
drostatic and anisotropic forces are counterbalanced by the
gravitational forces. So the present system is in static equi-
librium under these three forces.

9 Energy condition

In this section we want to check whether our model of an
anisotropic strange star satisfies all the energy conditions.
It is well known that for an anisotropic fluid sphere all
the energy conditions, namely the Weak Energy Condition
(WEC), the Null Energy Condition (NEC) and the Strong
Energy Condition (SEC) are satisfied if and only if the fol-
lowing inequalities hold simultaneously for every point in-
side the fluid sphere:

NEC : ρ + pr ≥ 0, (34)
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Fig. 10 The variation of gravitational, hydrostatic, and anisotropic
forces are shown against r inside the stellar interior

Fig. 11 Energy conditions are shown against r inside the stellar inte-
rior

WEC : pr + ρ ≥ 0, ρ > 0, (35)

SEC : ρ + pr ≥ 0, ρ + pr + 2pt ≥ 0. (36)

As regards the complexity of the expression of pt we will
prove the above inequalities with the help of a graphical rep-
resentation. The l.h.s. of the above inequalities are plotted in
Fig. 11. The figure shows that all the energy conditions are
satisfied by our model of anisotropic strange star.

10 Some features

10.1 Mass of the strange star

The total mass of the anisotropic star within the radius r can
be obtained as

M =
∫ r

0
4πr2ρ dr = ar3

2(1 + ar2)
. (37)

The profile of the mass function is shown in Fig. 12. The
mass function is regular at the center of the star since as
r → 0, m(r) → 0. Moreover, the mass function is a mono-
tonic increasing function of r and it is positive inside the
stellar configuration.

11 Compactness

The ratio of the mass to the radius of a strange star, known
as the compactification factor, cannot be arbitrarily large.
Buchdahl (1959) showed that for a (3+1)-dimensional fluid
sphere 2M

rb
< 8

9 . To see the maximum allowable ratio of mass
to the radius for our model we calculate the compactness of
the star given by

u = m(r)

r
= ar2

2(1 + ar2)
. (38)

The profile of u(r) is shown in Fig. 13. The figure shows that
u(r) is a monotonic increasing function of r . To see twice
the maximum allowable ratio of the mass to the radius we
have calculated the values of 2m

rb
= 0.618 from our model of

strange star, which lies in the expected range of (Buchdahl
1959).

Fig. 12 The variation of the mass function is shown against r
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Fig. 13 The compactification factor is shown against r inside the stel-
lar interior

12 Surface redshift

The surface redshift function zs of our model of a strange
star is defined by

1 + zs = (1 − 2u)−
1
2 . (39)

Therefore, the surface redshift function zs can be obtained
as

zs =
(

1

1 + ar2

)− 1
2 − 1. (40)

The profile of the surface redshift is shown in Fig. 14. The
maximum value of the surface redshift for our model of a
strange star is obtained as 0.629.

13 Discussion and concluding remarks

In the present paper we have solved the Einstein field equa-
tions in closed form by choosing the Chaplygin equation
of state. The model is developed by choosing the Finch–
Skea ansatz. Our model is free from central singularities.
The model parameters ρ, pr are nonnegative and monotonic
decreasing function of r , i.e., they have a maximum value
at the center of the star and it decreases radially outward in-
side the stellar interior. By choosing some reasonable values
for the parameters we obtain the central density of the star
to be 2.84 × 1015 gm/cc. The pressure anisotropy is chosen
motivated by the fact that the central density is beyond the

Fig. 14 The surface redshift is shown against r inside the stellar inte-
rior

nuclear density. The anisotropic factor � < 0 for our model,
i.e., the anisotropic force is attractive in nature. Our pro-
posed model is in static equilibrium under gravitational, hy-
drostatic, and anisotropic forces. For our model v2

sr , v
2
st < 1,

i.e., the causality conditions hold. The adiabatic index for
our model of strange star γ > 4

3 . Plugging G and c in the
expression of pr , the central radial pressure is obtained as
5.74 × 1035 dyne/cm2. Taking a = 0.0176, α1 = 0.2365,
α2 = −5.07×10−8, and by using the conditions pr (rb) = 0
we obtain the radius of the star to be 9.69 km and the mass
to be 2.04 M⊙, which is very close to the observational data
of the strange star PSR J1614-2230 reported by Gangopad-
hyay et al. (2013). The maximum allowable ratio of mass
to the radius is obtained as 0.308 and the maximum sur-
face redshift calculated from our model is 0.629 < 1, lying
in the expected range of Barraco and Hamity (2002). From
the analysis we can conclude that our proposed model satis-
fies all the requirements to be physically acceptable. In this
work we have focused on the compact object PSRJ1614-
2230 whose estimated mass and radius are 1.97 times the
solar mass (1.97 ± 0.08M⊙) and 9.69 km as proposed by
Gangopadhyay et al. (2013), since this mass is so far the
highest yet measured with accurate precision; (Takisa et al.
2014) and Takisa et al. (2014) have shown in Sect. 4 that
PSRJ1614-2230 is consistent with a nonlinear equation of
state. We are also dealing with a nonlinear equation of state
in our present paper. So according to Takisa et al. (2014) this
model should be justified for the choice of a strange star; in
particular PSR J1614-2230. Our analysis can be similarly
applied to other pulsar objects.
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