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Abstract The photogravitational restricted four-body prob-
lem is employed to describe the motion of an infinitesimal
particle in the vicinity of three finite radiating bodies. The
fourth body P4 of infinitesimal mass does not affect the mo-
tion of the three bodies (P1,P2,P3) that are always at the
vertices of an equilateral triangle. We consider that two of
the bodies (P2 and P3) have the same radiation and mass
value μ while the dominant primary body P1 is of mass
1 − 2μ. The equilibrium points (Lz

1,L
z
2) lying out of the or-

bital plane of the primaries as well as the allowed regions of
motion as determined by the zero velocity curves are studied
numerically. Finally the stability of these points is studied
and they are found to be unstable.

Keywords Equilibrium points · Restricted four-body
problem · Radiation · Zero velocity curves · Stability

1 Introduction

To study the motion of celestial bodies, restricted four-body
problem (RFBP, for short) is one of the important prob-
lem in the dynamical system. The restricted four body has
many possible uses in the dynamical system for example,
the fourth body is very useful for saving fuel and time in
the trajectory transfers in the restricted four-body problem
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(Machuy et al. 2007). The restricted four-body problem de-
scribes the motion of negligible mass under the Newtonian
gravitational attraction of three much bigger bodies (called
the primaries) moving in circular orbits around their center
of mass fixed at the origin of the coordinate system. Few
bodies problems have been studied for long time in celes-
tial mechanics, either as simplified models of more complex
planetary systems or as benchmark models where new math-
ematical theories can be tested. Today the few-body prob-
lem is recognized as a standard tool in astronomy and astro-
physics, from solar system dynamics to galactic dynamics
(Murray and Dermott 1999). It is known that in the planar
problem of three bodies attracting each other according to
Newtonian gravitational law, there exist only two permanent
central configurations, namely, the collinear (Eulerian) and
the triangular (Lagrangian). In the first case, the primaries of
the problem lie on a single straight line while in the second
one, the primary bodies lie at the vertices of an equilateral
triangle. We will consider the latter case which are solutions
of the central configuration equations for which the three
bodies with nonzero mass are at the vertices of an equilat-
eral triangle. The model was used, among others, by Peder-
sen (1944, 1952), Simo (1978), Alvarez-Ramirez and Vidal
(2009), Baltagiannis and Papadakis (2011), Papadouris and
Papadakis (2013), Reena and Badam (2014), etc. A different
version of the problem arises when some or all the primaries
are sources of radiation. The existence of strong radiation
sources in the universe has repeatedly been confirmed from
a very early period. In 1891, the Russian physicist Labedev
experimentally demonstrated the minute pressure exerted by
light on bodies and stated a law carrying his name, accord-
ing to which, this pressure is inversely proportional to the
square of the distance between the light source and the il-
luminated body (Labedev 1891). The existence of the out
of the orbital plane equilibrium points, in the photogravita-
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tional restricted three-body problem, was first pointed out
by Radzievskii (1950) studying the case Sun-Planet-particle
and Galaxy Kernel-Sun-particle. He found two equilibrium
points on the (x, z) plane in symmetrical positions with re-
spect to the (x, y) plane. The stability of these points was
first studied in the solar problem by Perezhogin (1976) and
by the same author (1982) in the whole range of existence
when the smaller body is considered non-luminous.

Later Simmons et al. (1985) proved the existence of two
more out of plane equilibrium points both on the (x, z)

plane, when both primary bodies are radiation sources and
certain relations between the mass and the radiation pressure
parameters hold.

As we have already mentioned, several authors based
their works on Radzievskii’s model (Chernikov 1970;
Perezhogin 1976; Schuerman 1980; Simmons et al. 1985;
Kunitsyn and Polyakhova 1995; Ragos and Zagouras 1988a,
1988b; Douskos and Markellos 2006; Shankaran et al. 2011;
Das et al. 2009; Singh 2012, etc.) to understand various is-
sues related to the dynamics of a particle around radiating
primaries. This model has interesting applications for artifi-
cial satellites, future space colonizations or even for ‘sailing’
vehicles and spacecraft ‘parking’ (Friedman 1976).

The classical restricted four-body problem may be gen-
eralized to include different types of effects such as radi-
ation pressure force, Poynting-Robertson drag, oblateness
coefficient, Coriolis and centrifugal force, variation of the
masses of the primaries, etc. So, using the equations of the
three-dimensional problem given in the literature we wish to
study the existence and stability of “out-of- plane” equilib-
rium points.

Here, we consider the three primary bodies P1, P2, P3

of masses m1, m2, m3 as radiation sources while two of the
bodies (P2 and P3) have the same radiation and mass value.
Also, the infinitesimal body is assumed to have no influence
on the motion of the primaries. The model may be applied
to examine the dynamic behavior of small objects such as
cosmic dust, grains, etc.

Our goal in this paper is to study the effects of radiation
pressure on the motion of a small particle in the force field of
three radiating bodies much bigger than the particle, which
are always in Lagrangian configuration. More precisely, we
study the equilibrium points, the zero velocity curves and the
linear stability of the problem under the effects of radiation
pressure from the primaries.

This work may be applicable to the study of a test particle
in the Sun-Jupiter-Trojan-spacecraft system and the results
obtained in this study will have thus practical application in
astrophysics.

The paper is organized in six sections. Section 2 provides
the equations of motion for the system under investigation.
Section 3 locates the positions of the out of plane points.
Section 4 is devoted to the surfaces and curves of zero ve-
locity. The regions of allowed motion as determined by the

zero velocity curves as well as the positions of out of plane
points are given. Section 5 established their stability; while
Sect. 6 discusses the obtained results and conclusion of the
paper.

2 Equations of motion

The system we consider is the motion of an infinitesimal ob-
ject, e.g. a spacecraft, in the presence of three finite celestial
objects (P1,P2,P3) with masses m1, m2 and m3, which we
treat as point mass. We suppose that P1,P2,P3(m1 � m2 =
m3) always lie at the vertices of an equilateral triangle and
one of them, P1 (say), is on the negative x-axis at the ori-
gin of time. This configuration is well known to be stable
if the masses satisfy the condition of Gascheau’s inequal-
ity (see for details Gascheau 1843 and Baltagiannis and Pa-
padakis 2011). This system is also dimensionless, i.e., we
normalize the units with the supposition such that the sum of
the masses, the separation between the primaries, the Gaus-
sian constant and unit of time are equal to unity. The equi-
lateral configuration is possible for all distributions of the
masses, whilst the fourth body of negligible mass moves in
the same plane. The factors characterizing the radiation ef-
fects of the primaries are also taken into account. These are
related to the notation of Schuerman (1980) given by the re-
lation qi = 1 − βi , i = 1,2,3 where q1, q2 = q3 stand for
the mass reduction factors, β1, β2 and β3 are the ratios of
the magnitude of radiation (Fr ) to gravitational (Fg) forces,
from the respective primaries. For i = 1,2,3, it is clear that:
If qi = 1, the radiation pressure has no effect. If 0 < qi < 1,
the gravitational force is greater than the radiational one. If
qi = 0, the radiation force balances the gravitational one.
If qi < 0, the radiation pressure overrides the gravitational
attraction. Let the coordinates of the infinitesimal mass be
(x, y) and masses m1, m2, and m3 are

(−√
3μ,0),(√

3

2
(1 − 2μ),−1

2

)
and

(√
3

2
(1 − 2μ),

1

2

)

respectively, relative to the rotating frame of reference Oxyz,
where

μ = m2

m1 + m2 + m3
= m3

m1 + m2 + m3
<

1

2

is the mass parameter.
The differential equations of motion in three dimensions

in the dimensionless variables and the barycentric – synodic
coordinate system are written as (Papadouris and Papadakis
(2013)):

ẍ − 2ẏ = Ωx
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ÿ + 2ẋ = Ωy (1)

z̈ = Ωz

where

Ω = 1

2

(
x2 + y2) + q1(1 − 2μ)

r1
+ q2μ

r2
+ q3μ

r3
(2)

and

r2
1 = (x + √

3μ)2 + y2 + z2

r2
2 =

(
x −

√
3

2
(1 − 2μ)

)2

+
(

y + 1

2

)2

+ z2

r2
3 =

(
x −

√
3

2
(1 − 2μ)

)2

+
(

y − 1

2

)2

+ z2

where r1, r2 and r3 are the distances of the infinitesimal
body from the primaries, Ω is the photogravitational poten-
tial, dots denote time derivatives, the suffixes x and y in-
dicate the partial derivatives of Ω with respect to x and y

respectively.
System (1) admits the Jacobian integral

ẋ2 + ẏ2 + ż2 = 2Ω − C (3)

where C is the Jacobi Integral Constant.

3 Positions of out-of-plane equilibrium points

The locations of the out-of-plane equilibrium points can be
found from the equations of motion by setting all velocity
and acceleration components equal to zero and solving the
resulting system

Ωx = Ωy = Ωz = 0, (4)

numerically for x, y, z.
Considering z �= 0 we thus obtain that

x − (1 − 2μ)(x + √
3μ)q1

r3
1

− q2(x −
√

3
2 (1 − 2μ))μ

r3
2

− q3(x −
√

3
2 (1 − 2μ))μ

r3
3

= 0 (5)

y − (1 − 2μ)yq1

r3
1

− (y + 1
2 )μq2

r3
2

− q3(y − 1
2 )μ

r3
3

= 0 (6)

(
(1 − 2μ)q1

r3
1

+ μq2

r3
2

+ μq3

r3
3

)
z = 0 (7)

with

r2
1 = (x + √

3μ)2 + y2 + z2

r2
2 =

(
x −

√
3

2
(1 − 2μ)

)2

+
(

y + 1

2

)2

+ z2

r2
3 =

(
x −

√
3

2
(1 − 2μ)

)2

+
(

y − 1

2

)2

+ z2

If y = 0, Eq. (6) is fulfilled (since q2 = q3) and we solve
Eqs. (5) and (7) for y = 0 and z �= 0. This results in the
following equations

x0 − (1 − 2μ)(x0 + √
3μ)q1

r3
10

− 2q2(x0 −
√

3
2 (1 − 2μ))μ

r3
20

= 0 (8)

(1 − 2μ)q1

r3
10

+ 2q2μ

r3
20

= 0 (9)

where

r2
10 = (x0 + √

3μ)2 + z2
0

r2
20 = r2

30 =
(

x0 −
√

3

2
(1 − 2μ)

)2

+ 1

4
+ z2

0, q2 = q3

and the subscript ‘0’ is used to denote the equilibrium val-
ues.

From Eq. (9) we have that

r20

r10
=

[(−q2

q1

)
2μ

1 − 2μ

] 1
3 ≡ k (10)

which means that if k = constant the locus of these points is
an Apollonius circle (http://en.wikipedia.org/wiki/Circlesof
Apollonius).

From Eq. (10) it can be seen that, for the existence of any
real solution, one of the following conditions is necessary to
hold:

q1q2 < 0 or q1 = q2 = 0 (11)

The second conditions means that the gravitational attrac-
tions balance the corresponding radiation pressure forces.
This case will not be considered here.

The first condition means that the radiation pressure force
of just one of the primaries exceeds its gravitational attrac-
tion.

The existence of these points is of particular astronomi-
cal interest in connection with planetary system formation,
satellite motion, etc. These points are found to be located
in the (x, z) plane in symmetrical positions with respect to
the (x, y) plane. They are dynamically equivalent, which
means that are characterized by the same Jacobian con-
stant C and by the same state of stability. For any given

http://en.wikipedia.org/wiki/CirclesofApollonius
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38 Page 4 of 7 J. Singh, A.E. Vincent

μ, the existence, position and stability of these points de-
pend on q1 and q2. So, the value of radiation factors could
be taken in 0 < q2 ≤ 1, −1 ≤ q1 ≤ 0.

Now, for μ = 0.019 and 0 < q2 ≤ 1 there are intervals
of q1 of the form −1 ≤ q1 ≤ 0 for which there exist out
of the plane equilibrium points, which we call here Lz

1 and
Lz

2. In Figs. 1, 2 and 3 we show graphically their positions
in (x, q2) and (z, q2), as q2 varies, for fixed values of q1.
Figures 1, 2 and 3 show the effects of radiation parameters
i.e. q1 = −0.03, q2 in the interval [1,0.77], q1 = −0.01, q2

in the interval [1,0.26] and q1 = −0.001, q2 in the inter-
val [1,0.03], correspondingly on the positions of our out of

Fig. 1 Position of Lz
1 and Lz

2 in the (x–z) plane as a function of q2 in
the interval [1,0.77], for q1 = −0.03, μ = 0.019

plane points Lz
1 and Lz

2. From the results in Figs. 1, 2 and 3
it is obvious that as the radiation parameters increases the
positions of out of plane equilibrium points are significantly
affected.

4 Zero-velocity curves in the (x, z) plane

The usefulness of the Jacobi constant integral in clarifying
certain general properties of the relative motion of a small
body by the construction and investigation of zero velocity

Fig. 2 Position of Lz
1 and Lz

2 in the (x–z) plane as a function of q2 in
the interval [1,0.26], for q1 = −0.01, μ = 0.019
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Fig. 3 Position of Lz
1 and Lz

2 in the (x–z) plane as a function of q2 in
the interval [1,0.03], for q1 = −0.001, μ = 0.019

curves in every problem of celestial dynamics was pointed
out by many investigators in the past. In this section we
present the contours of the surface (3) on the (x, z) plane,
for zero velocity, which provide the zero velocity curves.
In Fig. 4 we plot these zero velocity curves for μ = 0.019,
q1 = −0.01 and for various values of the Jacobi constant C.
The green curves corresponds to the Jacobi constant value C

of the out of plane equilibrium point Lz
1 and Lz

2. Large
(black) dots indicate the primary bodies, while the small
ones are the out of plane equilibrium points of the problem.
We note here that between center of the dominant primary
P1 and its companion out of plane equilibrium points, the

Fig. 4 Zero velocity curves in the (x, z) plane for μ = 0.019,
q1 = −0.01 and for various values of the Jacobi constant C

zero velocity curves form small rhombus of regions not al-
lowed to motion.

5 Linear stability of out-of-plane equilibrium
points

In order to study the linear stability of the out of plane equi-
librium point (x0,0, z0) we displace the infinitesimal body
to the point (x0 + ξ, η, z0 + ζ ) where ξη, ζ , are the corre-
sponding perturbations along the axes Ox, Oy and Oz. So
we linearize the system (1) to obtain the variational equa-
tions of motion as

ξ̈ − 2η̇ = ξ
(
Ωo

xx

) + η
(
Ωo

xy

) + ζ
(
Ωo

xz

)
η̈ + 2ξ̇ = ξ

(
Ωo

yx

) + η
(
Ωo

yy

) + ζ
(
Ωo

yz

)
(12)

ζ̈ = ξ
(
Ωo

zx

) + η
(
Ωo

zy

) + ζ
(
Ωo

zz

)

where the superscript ‘o’ indicates that the partial derivatives
are to be evaluated at out of plane points (x0,0, z0)

Explicitly, the partial derivatives of system (12) are

Ωo
xy = Ωo

yx = Ωo
yz = Ωo

zy = 0,

Ωo
xx = 1 − q1(1 − 2μ)

r3
10

[
1 − 3(x0 + √

3μ)2

r2
10

]

− 2q2μ

r3
20

[
1 − 3(x0 −

√
3

2 (1 − 2μ))2

r2
20

]
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Ωozx = Ωoxz = 3z0

[
q1(1 − 2μ)(x0 + √

3μ)

r5
10

+ 2q2μ(x0 −
√

3
2 (1 − 2μ))

r5
20

]

Ωoyy = 1 − q1(1 − 2μ)

r3
10

+ 2μq2

r5
20

[
3

4
− r2

20

]

Ωozz = (1 − 2μ)q1

r3
10

[
3z2

0

r2
10

− 1

]
+ 2μq2

r3
20

[
3z2

0

r2
20

− 1

]

with

r2
10 = (x0 + √

3μ)2 + z2
0

r2
20 = r2

30 =
(

x0 −
√

3

2
(1 − 2μ)

)2

+ 1

4
+ z2

0, q2 = q3

The characteristic equation corresponding to system (12) is

λ6 + aλ4 + bλ2 + c = 0 (13)

with

a = 4 − Ωoxx − Ωoyy − Ωozz

b = ΩoxxΩoyy + ΩoyyΩozz + ΩozzΩ0xx

− 4Ωozz − (
Ωoxz

)2

c = (
Ωoxz

)2
Ωoyy − ΩoxxΩoyyΩozz

which is a polynomial of sixth degree in λ.
The eigenvalues of the characteristic Eq. (13) deter-

mine the stability or instability of the respective equilibrium
points. An equilibrium point will be stable if the character-
istic equation has six imaginary roots or complex roots with
non-positive real parts.

We have computed the characteristic roots λi , i =
1,2, . . . ,6 as the radiation parameters varies in the in-
terval 0 < q2 ≤ 1, −1 ≤ q1 ≤ 0 with an arbitrary small
step and found no case in which all the roots are all
imaginary. This lead to the instability of the out of plane
points.

6 Discussion and conclusion

In this paper we study the location and the stability of the
out of plane equilibrium points for particles moving in the
vicinity of three massive bodies which emit light radiation
formulated on the basis of Lagrangian configuration. As it
is known, such points do not appear if only the gravitational
forces are considered. There are two out of plane equilib-
rium points that lie in the (x, z) plane in symmetrical posi-
tions with respect to the (x, y) plane. We found that as the

radiation parameters increases, the positions of out of plane
equilibrium points are significantly affected. The effects of
the parameters involved on the positions of the out of plane
points are shown graphically (Figs. 1, 2 and 3). The exis-
tence of these points is of particular astronomical interest
in connection with planetary system formation, satellite mo-
tion, etc. Radiation parameters is also seen to have signifi-
cant effects on the topology of the zero velocity curves in the
(x, z) plane (Fig. 4). In particular, between the center of the
dominant primary body and its companion out of plane equi-
librium points, the zero velocity curves form small rhombus
of regions not allowed to motion. Finally, the stability of
these points has been achieved numerically by determining
the roots of the characteristic equation. The numerical inves-
tigation of these roots shows no case in which the roots are
all imaginary. Consequently, the motion is unbounded, and
thus unstable, which agree with Papadouris and Papadakis
(2013) when only the dominant primary body is a radiation
source.
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