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Abstract In the Earth-Moon-spacecraft circular restricted
three-body problem (CRTBP), the evaluation of the orbits
near the Moon can distinctly reflect the complexity of the
dynamical system. In this paper, the long-term behavior of
the spatial orbit near the Moon is investigated in the CRTBP.
The Poincare section, where the section points are defined
as the lunar apsides, is an effective tool. The distribution of
the long-term capture solutions and the orbital elements of
the section points display the long-term behavior of the spa-
tial lunar orbits from the qualitative and quantitative angles,
respectively. As two kinds of important long-term lunar or-
bits, the quasi-periodic and periodic orbits are also investi-
gated. Using the continuation scheme, we obtain the spatial
lunar periodic orbit families. The characters of the periodic
orbit families are discussed in detail. In addition, some ap-
plications of the spatial lunar periodic orbits are given. The
method to investigate the long-term behavior of the spatial
lunar orbits we present is simple and direct. We can easily
locate the lunar quasi-periodic orbit and obtain the spatial
periodic orbit family.

Keywords Spatial lunar orbit · Circular restricted
three-body problem · Poincare section · Periodic orbit
family · Trajectory design

1 Introduction

In the Earth-Moon-spacecraft circular restricted three-body
problem (CRTBP), the dynamics in the vicinity of the Moon
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is a hot topic in the astrodynamics. In the vicinity of the
Moon, the lunar gravity is dominant, but the effect of the
larger primary body, Earth, is also significant. Therefore,
compared with the other regions in the restricted problem,
the dynamical circumstance near the Moon is more compli-
cated, which leads to many complex phenomena, such as the
gravitational capture, chaotic orbits and the quasi-periodic
and periodic orbits near the libration points. Many schol-
ars have investigated this problem and tried to discover the
mechanism behind the complex phenomena. Besides, many
studies focused on the applications of the dynamics to the
space missions, which are markedly different from the re-
sults of the traditional two-body model.

To investigate the dynamics in the vicinity of the smaller
primary, many methods have been developed. Poincare sec-
tion is an effective tool to study the long-term behavior of
the orbits. By the means of chaos dynamics and the Poincare
section, Astakhov et al. (2004) proposed a new dynamical
model to capture irregular moons which identifies chaos as
the essential feature responsible for initial temporary grav-
itational trapping within a planet’s Hill sphere. Periapsis
Poincare maps were first defined and introduced by Villac
and Scheeres (2003) to relate a trajectory escaping the vicin-
ity of smaller primary back to its previous periapsis in the
planar Hill problem. Davis and Howell (2012) investigated
the evolution of various orbits over both short- and long-
term propagations in the vicinity of smaller primary using
the periapsis Poincare maps. Haapala and Howell (2014)
presented a method to represent the information in higher-
dimensional Poincare maps using a planar visualization. In
addition, the manifolds associated with the L1 and L2 pe-
riodic orbits have also been used to predict the long-term
behavior of the orbits in the CRTBP (Gómez et al. 2001).
Jorba and Masdemont (1999) devised an effective computa-
tion of the center manifold of the collinear points to give an
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overall qualitative description of the dynamics of these li-
bration orbits. Koon et al. (2000) discussed and showed the
existence of the heteroclinic connections between periodic
orbits using the complex manifolds structure.

Due to the complex dynamical circumstance in the vicin-
ity of the Moon, the lunar orbits are not the conics of the
two-body model any more. The evaluation of orbits near
the smaller primary can reflect the dynamical complexity
of the CRTBP distinctly. Hénon (1969, 1970, 1973, 2003,
2005) published a series of articles to investigate the exis-
tence and stability of the periodic and non-periodic orbits
about the smaller primary in the Hill restricted three-body
problem (HRTBP). Russell (2006) performed a grid search
to find planar and spatial periodic orbits in the restricted
three-body problem using the dimensioned parameters as-
sociated with the Jupiter-Europa system. Besides, the peri-
odic and quasi-periodic orbits near the L1 and L2 are also
investigated by many scholars, such as the Halo orbits (Far-
quhar 1966), the Lyapunov orbits (Szebehely 1967), the Lis-
sajous orbits (Howell and Pernicka 1988), the vertical orbits
and the butterfly orbits (Grebow et al. 2006). These orbits
not only enrich the types of the orbits in the CRTBP, but
also are valuable for the space missions, for example, the
Genesis Discovery mission (Howell et al. 1997), the Solar
and Heliospheric Observatory (SOHO) mission (Simo et al.
1986) and the Lunar Communications and Navigation Sys-
tems (LCNS) group (Grebow et al. 2006).

The investigation of the long-term behavior of the trajec-
tories near the smaller primary can provide a better under-
standing of the complex dynamical circumstance. Davis and
Howell (2010) investigated the long-term evolution of pla-
nar trajectories in the vicinity of smaller primary in detail us-
ing the periapsis Poincare maps. After that, Davis and How-
ell (2012) discussed the out-of-plane long-term trajectory
evolution using the same method. However, the distribution
and the orbital characters of the long-term capture solutions
near the smaller primary were not investigated systemati-
cally in the previous literatures (to the best of the authors’
knowledge). To solve this problem, in this paper, taking the
Earth-Moon system as the example, we will investigate the
long-term behavior of the spatial orbits in the vicinity of the
Moon under the CRTBP and discuss their distribution and
orbital characters in detail. As mentioned before, Poincare
section is an effective tool to study the long-term behavior of
the orbits. Therefore, firstly, we introduce how to define and
obtain the Poincare section using the numerical calculation.
Then, via the distributions of the long-term lunar capture
solutions and the orbital elements of the section points, the
long-term behaviors of the spatial lunar orbits with differ-
ent parameters are discussed. In addition, the spatial quasi-
periodic and periodic lunar orbits will also be investigated
in this paper. The section points in the long-term lunar cap-
ture solutions can be applied to locate the quasi-periodic or-

bits. Then, using the differential correction and continuation
scheme, we can obtain the spatial lunar periodic orbits and
periodic orbit families, respectively. After that, the charac-
ters of the periodic orbit families, such as the stability, in-
clination and period, are analyzed in detail. At last, some
applications of the spatial lunar periodic orbits are given.

According to the above analysis, this paper can be di-
vided into 5 parts. The CRTBP is introduced as the basic
theory of this paper in Sect. 2. The Poincare section and
long-term lunar capture will be presented in Sect. 3 to in-
vestigate the long-term behavior of the spatial orbits near
the Moon. In Sect. 4, the spatial quasi-periodic and periodic
orbits will be obtained and analyzed. Section 5 is the appli-
cations of the spatial lunar periodic orbits. In Sect. 6, we will
give our conclusions of this paper.

2 Circular restricted three-body problem

In this paper, we will use the circular restricted three-body
problem (CRTBP), which describes the motion of a mass-
less particle in the gravitational force field created by two
primary bodies in circular motion around their barycenter of
mass. In this paper, the two primary bodies are the Earth and
the Moon, denoted by m1 and m2, respectively. The mass of
the spacecraft is supposed to be negligible.

In the rotating centrobaric reference system and with the
usual units of longitude, mass and time, the Earth is placed
at (−μ,0,0) and the Moon is placed at (1 − μ,0,0), where
the mass ratio μ = m2/(m1 + m2) = 0.01215. The equation
of motion of the spacecraft in the dimensionless Earth-Moon
rotating frame can be expressed as (Szebehely 1967)

ẍ − 2ẏ = Ūx

ÿ + 2ẋ = Ūy

z̈ = Ūz,

(1)

where

Ū (x, y, z) = 1

2

(
x2 + y2) + 1 − μ

r1
+ μ

r2
+ 1

2
μ(1 − μ) (2)

and

r2
1 = (x + μ)2 + y2 + z2

r2
2 = (x − 1 + μ)2 + y2 + z2.

(3)

The equations of the motion of the spacecraft are Hamil-
tonian and independent of the time. The system has the well-
known Jacobi constant (or Jacobi integral)

C(x, y, z, ẋ, ẏ, ż) = −(
ẋ2 + ẏ2 + ż2) + 2Ū (x, y, z). (4)
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For the given Jacobi constant C̄, the region

M =
{
(x, y, z)

∣∣Ū (x, y, z) ≥ 1

2
C̄

}

is the region of possible motion for spacecraft, known histor-
ically as the Hill’s region. The boundary of the M is known
as the zero velocity surfaces (ZVSs). Based on Eq. (4), the
spacecraft can only move on the side of this surface for
which the kinetic energy is positive. The other side of the
surface, where the kinetic energy is negative, is defined as
the forbidden region. The Hill region near the Moon and the
Earth are defined as the lunar region and the Earth region,
respectively (Koon et al. 2006).

These occur when the spacecraft moves in a circular orbit
with the same frequency as the primaries, so that it is station-
ary in the rotating frame. Numerical calculation sheds light
on that there are five equilibrium points or libration points.
We label these points Li , i = 1, . . . ,5. Since L1, L2 and
L3 lie along the x-axis, they are called the collinear points.
L4 and L5 lie at the vertices of two equilateral triangles with
common base extending from the Earth to the Moon, so they
called the equilateral points. Let Ci be the Jacobi energy
of the spacecraft at Li , then we can calculate the following
values, C1 ≈ 3.20034, C2 ≈ 3.18416, C3 ≈ 3.02415, and
C4 = C5 = 3.

3 Poincare section and long-term lunar capture

In this section, we investigate the long-term behavior of spa-
tial orbits near the Moon by the distribution of the long-
term capture solutions and the orbital elements of the section
points.

3.1 Poincare section

As we know, the lunar gravitation is dominant in the vicinity
of the Moon, therefore we can regard the CRTBP near the
Moon as a nearly-integrable system, seen as a perturbation
of the two-body integrable system. According to the KAM
theory, there are invariant tori in the nearly-integrable sys-
tem, i.e. the KAM tori (Arnold et al. 2006). The orbits in the
KAM tori are the periodic orbits or the quasi-periodic or-
bits around the Moon, which we call the regular orbits. The
long-term behaviors of regular orbits are predictable. In the
CRTBP, the spacecraft in the regular orbits can be long-term
captured by the Moon. The regions outside the KAM tori
are the chaotic areas, where the randomicity of the orbits are
high. The orbits in the chaotic areas more easily escape from
the Moon or collide with the Moon after long-term propaga-
tion. But Howell et al. (2012) found that some chaotic orbits
can also remain bounded for long time period.

Based on the above discussion, the regular orbits in the
KAM tori and some chaotic orbits outside the KAM tori
can be retained in vicinity of the Moon in long term, which
we call the long-term lunar capture orbits. In this paper, the
long-term lunar capture orbits are the emphasis of our in-
vestigation. The Poincare section is a valuable tool to gain
insight into the complicated dynamics in the CR3BP and
study the long-term behavior of the lunar orbits.

Qi and Xu (2014) applied the Poincare section to inves-
tigate the distribution of the KAM tori near the Moon in the
planar CRTBP. In this paper, we extend this method to the
spatial problem to investigate the distribution of the long-
term lunar capture. Given the constraint on the value of Ja-
cobi constant C∗, the section surface is defined by

S
(
C∗) = {

(x, y, z)|C(x, y, z, ẋ, ẏ, ż) = C∗, r2⊥v
}

where r2 = (x−1+μ,y, z)T is the vector from the center of
the Moon to the spacecraft and v = (ẋ, ẏ, ż)T is the velocity
vector of the spacecraft in the rotating frame. Therefore, the
section points are the lunar apsides. The section surface is
described in the 3-dimensional position phase space.

For the spatial CRTBP, the phase space is 6-dimensional.
The use of the Poincare section allows us to restrict the prob-
lem to the surface of section and, hence, reduce the prob-
lem by one dimension. As mentioned earlier, there exists
the Jacobi constant C in the problem that allows us to re-
duce the problem by one additional dimension. The Poincare
section is then computed at a given value of the constant
C and is 4-dimensional. However, the section surface de-
fined above is described in the 3-dimensional position phase
space. Apparently, this image surface cannot represent full
information of the 4-dimensional Poincare section. For the
section points, their spatial positions are described in the
3-dimensional position phase space. Their magnitude of the
velocity can be determined by the given value of the Jacobi
constant C. Therefore, the unknown information of the sec-
tion point is the direction of the velocity in spatial. To solve
this problem, Haapala and Howell (2014) explored a pla-
nar visualization method to represent the information of the
four-dimensional Poincare maps. However, we do not adopt
their method, because we think that 3-dimensional position
phase space can enough figure the distribution of the long-
term lunar capture orbits.

Next we introduce how to obtain the Poincare section us-
ing the numerical integration. Based on the definition of the
Poincare section, the section points (or the lunar apsides)
are generated by propagating initial conditions and display-
ing intersections of the resulting trajectories with the sec-
tion surface. Therefore, firstly, we should determine the ini-
tial conditions of the numerical integration. The initial point
includes the full six Cartesian states (three position coor-
dinates and three velocity coordinates) in the Earth-Moon
rotating frame. Using the experience of the classical orbital
elements, we can also propose some elements to represent
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the position p and the velocity v of any section point in the
Moon-centric rotating frame. For example, let the angles im,
Ωm and ωm be the inclination, the right ascension of the as-
cending node (RAAN) and the argument of the initial point
in the Moon-centric rotating frame, respectively, the initial
point (the position p and the velocity v) can be determined
by them in Fig. 1. The xm axis of the Moon-centric rotating
frame is along the direction from the Earth to the Moon. In

this figure, the position p can be obtained by the distance rp
and the matrix R:

p = R

⎡

⎣
rp
0
0

⎤

⎦ , (5)

where R is the transition matrix from the Moon-centric ap-
sis coordinate frame to the Moon-centric rotating frame:

R =
⎡

⎣
cosωm cosΩm − sinωm cos im sinΩm − sinωm cosΩm − cosωm cos im sinΩm sin im sinΩm

cosωm sinΩm + sinωm cos im cosΩm − sinωm sinΩm + cosωm cos im cosΩm − sin im cosΩm

sinωm sin im cosωm sin im cos im

⎤

⎦ .

For the given value of the Jacobi constant C, we can ob-
tain the magnitude of the velocity of the initial point:

v =
√

−C + 2Ū (x, y, z). (6)

where the calculation of the effective potential Ū needs the
position coordinate of the initial point in the Earth-Moon
rotating frame

(x, y, z)T = p + (1 − μ,0,0)T (7)

Since the section points are the lunar apsides, the velocity
v of the section point in the Moon-centric rotating frame is
given by

v = R

⎡

⎣
0
v

0

⎤

⎦ , (8)

where the magnitude of the velocity v can be obtained from
Eq. (6).

Fig. 1 The initial point described by the elements in the Moon-centric
rotating frame

Because the velocity of the initial point in the Earth-
Moon rotating frame is consistent with that in the Moon-
centric rotating frame, we can obtain the full six states of
the initial point by Eqs. (7) and (8). The initial point is
described by four parameters: the distance rp , the angles
im, ωm and Ωm. The ranges of im, ωm and Ωm are from
0◦ to 180◦, from 0◦ to 360◦, and from 0◦ to 360◦, re-
spectively. When 0◦ ≤ im ≤ 90◦, the direction of motion of
the initial point is defined as the prograde motion. When
90◦ ≤ im ≤ 180◦, the direction of motion of the initial point
is defined as the retrograde motion. When im = 90◦, the di-
rection of motion of the initial point can be either prograde
or retrograde.

Fixed the Jacobi constant C and the angles im and Ωm,
rp is divided into 20 equal parts from 1838 km to 41738 km,
and ωm is divided into 20 equal parts from 0◦ to 360◦. Then,
we can obtain 400 initial points. In the Earth-Moon rotating
frame, these initial points are located on a series of coplanar
concentric circles around the Moon and their directions of
velocity are along the tangent of the circles. The correspond-
ing trajectories can be generated by forward integration from
these initial points. The integral time is 200 unit times, ap-
proximately 861 days. During the numerical integral, the or-
bits colliding with the Moon are regarded as the infeasible
orbits and excluded (the radius of the Moon is 1738 km).
The section points are the intersections of the trajectories
with the section surface. Figure 2(a) shows the Poincare
section in the Earth-Moon rotating frame when C = 3.07,
im = 120◦ and Ωm = 45◦. The long-term lunar capture so-
lutions can be extracted from the 3-dimensional cloud of the
propagated points via the following extract method.

Firstly, the long-term capture trajectories should retain in
the vicinity of the Moon in long term. In this paper, we apply
the definition of the sphere of the lunar influence proposed
by Yamakawa (1992), which considersthat the radius of the
sphere of the lunar influence is 100000 km. Therefore, we
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Fig. 2 The Poincare section (a)
and the long-term capture
solutions (b)

Fig. 3 Eccentricity and
inclination of the section points

demand that the section points of the long-term capture tra-
jectories should be confined to the sphere of the lunar influ-
ence during the integral time.

Besides, the relative stable and regular shape is another
requirement for the long-term capture trajectory. The classi-
cal orbital elements with respect to the Moon can provide a
more intuitive understanding of the shape of the orbits that
remain a long-term orbiting the Moon, especially the incli-
nation (relative to the Earth-Moon orbital plane) and the ec-
centricity. To make sure spacecraft captured by the Moon,
we demand the osculating eccentricities of all section points
of the long-term capture solution less than 1. The distribu-
tion of the osculating inclinations of the section points in the
long-term capture trajectory should be stable and concen-
trated. Then, we demand their variation range less than 90◦.

The extract method is based on the above requirements of
distance, eccentricity and inclination of the section points.
Using this extract method, we can classify the long-term
lunar capture solutions in the 3-dimensional cloud of the
propagated points. Figure 2(b) displays the long-term cap-
ture solutions extracted from the section points of Fig. 2(a).
The colored points denote the section points in the long-term
capture trajectories, and the different colors denote different
long-term capture trajectories. Figure 3 shows the osculat-
ing eccentricity and inclination of the section points based
on the 400 trajectories. The red points display the elements
of the long-term capture trajectories. The green points dis-

play the elements of the escaping chaotic orbits. The blank
trajectories are the orbits colliding with the Moon. Of par-
ticular note is that, because of the large scale of the eccen-
tricities (from 0 to 1000) of the escaping chaotic orbits, we
just show their enlarged views (from 0 to 2) in Fig. 3.

3.2 Long-term lunar capture

In last subsection, we introduced how to obtain the Poincare
section and extract the long-term capture solutions using the
numerical method. We find that the Poincare sections are in-
fluenced by three parameters in our calculation, including
the Jacobi constant C and the angles im and Ωm. In this sub-
section, we will discuss the influences of C and im in detail
to investigate the long-term behavior of the spatial orbits in
the vicinity of the Moon.

We still use the numerical methodology to analyze the
influences of the parameters. The first one is the Jacobi con-
stant C. In our numerical calculation, we obtain 400 tra-
jectories for each case. Figure 4 shows the Poincare sec-
tions for different C when im = 30◦ and Ωm = 0◦. Since
im < 90◦, the directions of motion of the initial points are
the prograde motion. The colored points denote the section
points of the long-term capture trajectories. The black points
denote the section points of the escaping chaotic trajecto-
ries. When C = 3.21, the lunar region is completely discon-
nected with the Earth region. In this case, the section points
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Fig. 4 Poincare sections of the
prograde motion for different C

Table 1 Amount of long-term capture trajectories of Fig. 4

C 3.21 3.20 3.18416 3.17

Amount 330 331 33 0

can only exist in the vicinity of the Moon and there are nu-
merous long-term capture trajectories on the section surface.
When C = 3.20, the region around L1 opens up, permitting
the spacecraft to move between the regions around the Moon
and the Earth, but L2 is still located in the forbidden region.
In this case, we find that the section points of the 400 trajec-
tories do not flow to the Earth region through the gateway
at L1, and there are still abundant long-term capture trajec-
tories on the section surface. When C = 3.18416 ≈ C2, the
gateway at L2 is opening. In this case, many section points
flow to the Earth region through the gateway at L1. The
long-term capture trajectories disappear rapidly in the lunar
region and few long-term capture solutions are retained on
the image surface. When C = 3.17, the regions around L1

and L2 have opened up. The section points become more
spread out and overflow through the gateways at L1 and L2

in abundance. Almost all of the long-term capture solutions
of 400 trajectories around the Moon cease to exist.

The quantitative results can prove the observation about
the 3-dimensional cloud of the section points. The amounts
of long-term capture trajectories of Fig. 4 are illustrated in
Table 1.

Figure 5 shows the osculating eccentricity and the incli-
nation of the section points based on the results of Fig. 4.
As mentioned before, because of the large scale of the ec-
centricity (from 0 to 1000) of the escaping chaotic orbits,
we show their enlarged views in Fig. 5 to facilitate analysis.
As we can see from the figures, when C = 3.20 and 3.21,
all feasible orbits of 400 trajectories are long-term capture

trajectories. The eccentricities are smaller than 1. The in-
clinations are stable and concentrated. When C = 3.18416,
most of the feasible orbits are escaping chaotic trajectories.
Their maximum eccentricities are larger than 1 and the dis-
tribution of the inclinations is chaotic. Only the long-term
capture trajectories possess the regular orbital elements. Ac-
tually, before escaping from the sphere of lunar influence,
many escaping chaotic orbits have revolved round the Moon
for a long time. Therefore, most of the eccentricities of them
are densely clustered within the region less than 1 in the
figures. When C = 3.17, all the feasible orbits of 400 tra-
jectories escape from the Moon. The distributions of the
eccentricity and inclination are disorderly and unsystem-
atic.

Figure 6 shows the Poincare sections for different C

when im = 150◦ and Ωm = 0◦. Since im > 90◦, the direc-
tions of motion of the initial points are the retrograde mo-
tion. When C = 3.17, the regions around L1 and L2 have
opened up. However, the section points of 400 trajectories
are compact and focus on the Moon rather than spread out
like the prograde motion. There exist abundant long-term
capture solutions around the Moon. When C = 3.12, the
structure of the section points expands outward and few sec-
tion points overflow from the lunar region. But there are still
abundant long-term capture solutions in the section surface.
When C = 3.07, the section points become more spread out.
The compact structures of the long-term capture trajectories
are gradually eroded. When C = 3.02, we find that long-
term capture solutions have been destroyed heavily, espe-
cially those near the Moon. The long-term capture trajecto-
ries are sparsely distributed.

The amounts of long-term capture trajectories of Fig. 6
are illustrated in Table 2. Figure 7 shows the osculating ec-
centricity and inclination of the section points using the re-
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Fig. 5 Eccentricity and inclination of the section points for different C

Fig. 6 Poincare sections of the
retrograde motion for
different C

Table 2 Amount of long-term capture trajectories of Fig. 6

C 3.17 3.12 3.07 3.02

Amount 305 346 288 74

sults of Fig. 6. When C = 3.17, all feasible orbits for 400
trajectories are long-term capture trajectories. The eccen-
tricities are smaller than 1. The inclinations are stable and
concentrated. When C = 3.12, most of the feasible orbits
for 400 trajectories are long-term capture solutions. Few es-
caping chaotic orbits exist. When C = 3.07 and 3.02, the
amount of the escaping chaotic orbits increase gradually.

Synthesizing above analysis, we find that both for the
prograde motion and retrograde motion, the structures of
the long-term capture solutions in the vicinity of the Moon
are gradually destroyed with the decrease of the Jacobi con-
stant C. This trend is not difficult to understand, because
for the given im and Ωm, the smaller C the larger veloc-
ity is, which means the spacecraft is easier to escape from
the lunar region. Therefore, we conclude that in the vicin-
ity of the Moon, the spatial orbit with smaller C is more
likely to escape from the lunar region after long-term prop-
agation, both for prograde and retrograde motion. That is to
say, the long-term behavior of the spatial lunar orbit with
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Fig. 7 Eccentricity and inclination of the section points for different C

Fig. 8 Poincare sections of the
prograde motion for different im

smaller C is more instable and inscrutable in the vicinity of
the Moon. In addition, we discover that when C is small,
the long-term capture trajectories can be maintained in the
retrograde motion but disappear rapidly in the prograde mo-
tion. This phenomenon is similar to the result in the planar
case discovered by Qi and Xu (2014). We think that it is also
due to the rotation of the Earth-Moon system.

Next we discuss the influence of the angle im. Since the
planar problem has been discussed by Davis and Howell
(2010), we just analyze the out-of-plane (0◦ < im < 180◦)

problem. Figure 8 shows the Poincare sections for differ-
ent im (the prograde motion) when C = 3.21 and Ωm = 0◦.
As we can see from the figure, when im increases from 10◦
to 60◦, the distribution of the section points of 400 trajec-
tories extends along the vertical direction, but the structures
of long-term capture trajectories are still compact and exist
around the Moon in abundance. However, when im = 90◦,
the section points and the long-term capture trajectories of
400 trajectories disappear heavily. Since the lunar region
is isolated by the forbidden region, the section points can
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Fig. 9 Eccentricity and
inclination of the section points
for different im

Fig. 10 Poincare sections of
the retrograde motion for
different im

Table 3 Amount of long-term capture trajectories of Fig. 8

im 10◦ 30◦ 60◦ 90◦

Amount 321 330 321 1

only exist in the lunar region. Therefore, the disappearing
points belong to the trajectories impacting with the Moon.
Also note that because only a finite number of initial points
are considered in the numerical methodology, the number
of the long-term capture trajectories displayed in the fig-
ure is less than the actual fact. Hence, in fact, there is more
than one long-term capture trajectory when im = 90◦. But
the trend of the long-term capture solutions shown in Fig. 8
is true.

The amounts of long-term capture trajectories of Fig. 8
are illustrated in Table 3. Figure 9 shows the osculating ec-
centricity and inclination of the section points based on re-
sults of Fig. 8. When im = 10◦, 30◦ and 60◦, all of the fea-
sible orbits of 400 trajectories can achieve long-term lunar
capture. The distribution of the eccentricities and inclina-
tions are concentrated and stable. When im = 90◦, most of
the orbits impact the Moon. Only a long-term capture trajec-
tory exists for 400 trajectories.

Figure 10 displays the Poincare sections for different im
(the retrograde motion) when C = 3.12 and Ωm = 0◦. From
the figure, abundant section points overflow from the vicin-
ity of the Moon when im = 90◦. The long-term capture tra-
jectories are all destroyed for 400 trajectories. When im in-
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Fig. 11 Eccentricity and
inclination of the section points
for different im

Table 4 Amount of long-term capture trajectories of Fig. 10

im 90◦ 120◦ 150◦ 170◦

Amount 0 102 346 362

creases to 120◦, a large number of section points focus on
the Moon, and many long-term capture solutions exist on
the section surface. When im increases from 120◦ to 170◦,
the structure of the section points is compressed along the z

axis. Abundant long-term capture trajectories are distributed
around the Moon in more closely form.

The amounts of long-term capture trajectories of Fig. 10
are illustrated in Table 4. Figure 11 shows the osculating
eccentricity and inclination of the section points based on
results of Fig. 10. When im = 90◦, all of the 400 trajectories
cannot achieve long-term lunar capture. When im increases
from 120◦ to 170◦, the amount of the escaping chaotic or-
bits decrease dramatically. Most of the feasible orbits for
400 trajectories are the long-term capture trajectories. The
distribution of the eccentricities and inclinations are stable
and concentrated.

According to the above results, we find that for the given
C and Ωm, generally, more long-term capture trajectories
exist in the vicinity of the Moon if im is closer to 0◦ or 180◦,
but the long-term capture solutions are destroyed heavily
if im is closer to 90◦. Therefore, we conclude that in the
vicinity of the Moon, if the orbit plane of the spacecraft
is closer to the Earth-Moon orbital plane, the spatial lunar
orbit is more likely to be captured and retained in the lu-
nar region for long term period, but if the orbit plane of the
spacecraft is more perpendicular to the Earth-Moon orbital
plane, the spatial lunar orbits is more likely to impact the
Moon or escape from the lunar region after long-term prop-
agation.

4 Quasi-periodic and periodic orbits around the
Moon

The quasi-periodic and periodic orbits are two sorts of im-
portant orbits in the study of the long-term behavior of the
spatial lunar orbits. In this section, we will investigate the
spatial quasi-periodic and periodic orbits.

4.1 Spatial quasi-periodic and periodic orbits

In the Sect. 3.2, we located the long-term capture solutions
using the section points. As mentioned before, those long-
term capture trajectories include the regular orbits (quasi-
periodic and periodic orbits) and some long-term capture
chaotic orbits. Because of the regular structures of the quasi-
periodic orbits, we think that the orbital elements of quasi-
periodic orbits possess more stable and concentrated distri-
bution than the long-term capture chaotic orbits. Based on
this fact, we can choose the quasi-periodic orbits from the
long-term capture solutions. Of particular note is that, if we
want to obtain the quasi-periodic orbit, the information of
the point on the section surface is insufficient. The section
points just represent the position of the 3-dimensional posi-
tion phase, but the velocity direction is unavailable. To solve
this problem, we need to store the velocity direction of the
section point in the numerical integration, even though this
information is not displayed on the Poincare section. Fig-
ure 12 shows the quasi-periodic orbits based on the section
points and the corresponding velocity direction. The black
points are the section points in the quasi-periodic orbits.

In the planar case, the orbits in the KAM tori are the
quasi-periodic orbits, and there is a periodic orbit with the
same Jacobi constant in the center of KAM tori. Therefore,
the section point of the KAM torus can be regarded as the
initial point. Then using the differential correction, we can
obtain the section point of the periodic orbit in the center of
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Fig. 12 Quasi-periodic orbits
and corresponding section
points

Fig. 13 Planar quasi-periodic
orbit and corresponding periodic
orbit

the KAM torus. Figure 13(a) shows the section points of a
KAM torus and the corresponding quasi-periodic orbit. Via
the differential correction, the corresponding periodic orbit
and its section points can be obtained, denoted by the blue
line and the red points in the Fig. 13(b), respectively.

The example of the planar case inspires us to find the
spatial periodic orbits using the differential correction and
the section points. However, the complex distribution of the
section points in spatial is a challenge to determine the ini-
tial point. Our solution is choosing the points of the quasi-
periodic orbit where z = 0 and ż > 0 as the initial points of
the differential correction. The distribution of the intersec-
tion points of the quasi-periodic orbit with the x-y plane is
a regular pattern due to the regular structure of the quasi-
periodic orbit in phase space. Figure 14(a) displays a pro-
grade quasi-periodic orbit with C = C2. As we can see, the
intersection points of the quasi-periodic orbit where z = 0
and ż > 0, denoted by the black points, present a well-
regulated distribution.

Using the intersection points of the quasi-periodic orbit
where z = 0 and ż > 0 as the initial points, we can perform

the differential correction to obtain the intersection point of
the periodic orbit with the x-y plane. Then the corresponding
periodic orbit can be located. The detailed numerical method
is shown as follows.

(1) The variables of the differential correction: The inter-
section point of the quasi-periodic orbit where z = 0
and ż > 0 is chosen as the initial point p0, including
six Cartesian states in the Earth-Moon rotating frame:
x0, y0, z0, ẋ0, ẏ0, ż0, where z0 = 0 and ż0 > 0. We de-
mand the k-th iteration point pk (k = 1,2, . . .) stay
on the x-y plane, i.e. zk = 0. Besides, we assume that
the Jacobi constant C is invariable in each iteration.
Then, żk can be represented by C and other states: żk =√

−C + 2Ū(xk, yk,0) − ẋ2
k − ẏ2

k . Hence, the pending
states in the correction process are actually only four
variables: x, y, ẋ, ẏ. Besides, the period of the periodic
orbit T also need to be corrected. In summary, the re-
duced variables in the differential correction can be de-
noted by X = (x, y, ẋ, ẏ, T ).
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Fig. 14 Quasi-periodic orbit (a)
and corresponding periodic
orbit (b)

(2) The initial guess and the constraint: Take Fig. 14(a)
for example, there exist some groups of the intersec-
tion points based on the relative distance. We choose
one of them as the target set, where the arrival times of
the intersection points are different. Choose one point in
the target set arbitrarily as the initial guess of the states
pi : xi, yi,0, ẋi , ẏi , żi . The minimum time interval be-
tween the initial point and other points in the target set
is designated as the initial guess of period Ti . Then we
can obtain the full initial guess of the correction process:
Xi = (xi, yi, ẋi , ẏi , Ti). The constraint of the differen-
tial correction is obviously to enforce the periodicity of
the orbit, i.e., the orbit starting from the initial point at
moment 0 can return back the initial point at the mo-
ment T .

(3) Perform the differential correction process and modify
the initial point step by step until the periodicity of the
orbit is satisfied.

Figure 14(b) shows the periodic orbit we obtained. The
eigenvalues of the monodromy matrix reflect the stability
of the periodic orbit. We can calculate that there are six
eigenvalues of the monodromy matrix of the periodic orbit:
λ1,2 = 0.5441±0.8390i, λ3 = 1.0006, λ4 = 1/λ3 = 0.9994,
λ5 = λ6 = 1. According to the Floquet theory, if the modu-
lus of at least one eigenvalues are larger than 1, then the
periodic orbit is unstable (Koon et al. 2006). Therefore, the
periodic orbit we obtained is unstable due to λ3 > 1. The
eigenvector corresponding to λ3 is the unstable direction.
However, the numerical integration shows that the unstable
manifold can still remain near the periodic orbit after 10 pe-
riods (the period T is about 71.17 days) even though the or-
bit is unstable. Therefore, we need an index to quantify the
degree of the stability or instability. In this paper, we adopt
the stability index ν presented by Grebow et al. (2006) to
evaluate the stability of the periodic orbit.

ν = 1

2

(
λmax + 1

λmax

)
(9)

where λmax is the maximum magnitude eigenvalue of the
monodromy matrix. A stability index of one indicates a lin-

ear stable orbit, whereas stability indices with magnitude
greater than one reflect instability. Of course, a larger sta-
bility index indicates a more divergent mode that departs
from the vicinity of the orbit very quickly. We can com-
pute the stability index of the periodic orbit in Fig. 14
ν = 1.0000001799, very close to 1.

4.2 Spatial periodic orbit family

In the differential correction process, we assume the Jacobi
constant C invariable. Therefore, C can be regard as the
family parameter of the periodic orbit family. Based on the
Jacobi constant C, we can employ the continuation scheme
to obtain the complete periodic orbit family from a periodic
orbit. The idea of the continuation scheme is shown as fol-
lows.

(1) Assuming that a spatial periodic orbit with the Jacobi
constant C̄ has been obtained, we regard it as the ini-
tial normal orbit. The initial point is chosen as the in-
tersection point of the initial normal orbit where z = 0
and ż > 0, and the period of the initial normal orbit is
the initial guess of the period in the continuation pro-
cess.

(2) Let the Jacobi constant increases to C = C̄ + �C. Us-
ing the differential correction mentioned in Sect. 4.2,
we can obtain the periodic orbit with the Jacobi con-
stant C.

(3) The Jacobi constant C can continue to change by �C,
then a new periodic orbit is obtained using steps (1)
and (2). At last, we can obtain a family of the peri-
odic orbits from the initial normal orbit by the change
of C.

Note that �C can be either a positive value or a negative
value, but the absolute value of it cannot be large in order to
guarantee the convergence in the continuation scheme.

Six periodic orbits extracted from a prograde periodic or-
bit family are shown in Fig. 15. The Jacobi constants C of
the six periodic orbits from (a) to (f ) are 3.20893, 3.206,
3.20, 3.18, 3.16 and 3.14, respectively. From Fig. 15, we
find that with the decrease of the Jacobi constant C, the pla-
nar periodic orbit is gradually lifted up until it becomes the
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Fig. 15 Six periodic orbits of a
prograde periodic orbit family

Fig. 16 Six periodic orbits of a
retrograde periodic orbit family

Fig. 17 ν and inclination of
prograde periodic orbits with
different C

vertical orbit. The inclination of the periodic orbit increases
from 0◦ to approximately 90◦.

Figure 16 shows six periodic orbits of a retrograde peri-
odic orbit family. The Jacobi constants C of the six periodic
orbits from (a) to (f ) are 3.1064, 3.11, 3.119, 3.14, 3.15
and 3.17, respectively. From the figure, we find that with the
increase of the Jacobi constant C, the planar periodic orbit
is gradually lifted up until it becomes the vertical orbit. The
inclinations of the periodic orbits decrease from 180◦ to ap-
proximately 90◦.

The stability indices ν of the prograde periodic orbit

family with different Jacobi constants C are displayed in

Fig. 17(a). As we can see from the figure, when C is larger

than 3.18, ν remains one, so the corresponding periodic or-

bit is linear stable; when C is smaller than 3.18, ν is larger

than one and ν increases with the decrease of C, so the corre-

sponding periodic orbit has smaller stability. Although some

periodic orbits are unstable, we find that the stability indices

ν are quite small, less than 4.
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Fig. 18 ν and inclination of the
retrograde periodic orbits
versus C

Fig. 19 T versus C for the
prograde and retrograde
periodic orbit families

Since the periodic orbits are obtained in the CRTBP
rather than the two-body model, the inclination of the pe-
riodic orbit is time-depended. Hence, there exist a maxi-
mum and a minimum of the inclination during a period.
Figure 17(b) shows the plot of the maxima and minima of
the inclinations of the prograde periodic orbit family ver-
sus the Jacobi constant C. In this figure, the upper and the
lower triangles denote the minima and maxima of the in-
clinations during a period, respectively. According to this
figure, both of the maximum and minimum of the inclina-
tion gradually increase from 0◦ to approximately 90◦ with
the decrease of C. Comparing the analysis about Fig. 17(a),
we conclude that for the prograde periodic orbit family, the
larger inclination the smaller stability of the periodic orbit.

The stability indices ν of the retrograde periodic orbit
family with different Jacobi constants C are displayed in
Fig. 18(a). Different from the prograde periodic orbit family,
we find that when C is larger than 3.1064, ν is larger than
one and ν increases with the increase of C, so the corre-
sponding periodic orbit possesses the smaller stability. Be-
sides, the stability indices ν are very small, less than 2.5.
Figure 18(b) shows the plot of the maxima and minima of
the inclinations of the retrograde periodic orbit family ver-
sus the Jacobi constant C. According to this figure, both of

the maximum and minimum of the inclination of the peri-
odic orbit gradually decrease from 180◦ to approximately
90◦ with the increase of C. Comparing the discussion of
Fig. 18(a), we conclude that for the retrograde periodic or-
bit family, the smaller inclination the smaller stability of the
periodic orbit.

Synthesizing above analysis, we find that, both for the
prograde and retrograde periodic orbit family, the periodic
orbit is more stable if the its orbit plane is closer to the
Earth-Moon orbital plane; whereas the periodic orbit has
smaller stability if its orbital plane is more perpendicular to
the Earth-Moon orbital plane. This quantitative conclusion
is analogous to the qualitative observation about the angle
im in Sect. 3.2.

Figure 19 displays the plots of the period T versus the Ja-
cobi constant C for the prograde and retrograde periodic or-
bit families. As we can see from the figures, if C is smaller,
T is larger, both for the prograde and retrograde periodic
orbit families.

5 Applications of the spatial periodic orbits

In this section, we introduce some applications of the spatial
periodic orbit around the Moon.
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5.1 Formation-flying around the Moon

As mentioned before, the stability index ν indicates the de-
gree of the stability of the periodic orbit. Generally, the
stability index is directly correlated to the station-keeping
costs and is inversely related to transfer costs (Grebow et al.
2006). Because the stability indices of the periodic orbit
families we obtained in Sect. 4.2 are quite small, those peri-

Fig. 20 Elevations with respect to the lunar north and south poles

odic orbits likely have the advantage in the station-keeping
costs. Therefore, those periodic orbits can be applied to the
long-term lunar exploration or communication. For exam-
ple, if we want to perform the all-time exploration for the
lunar north and south poles, it must guarantee that at least
one spacecraft is visible to each pole, i.e. its elevation with
respect to the north or south poles is larger than 0◦. As we
can see from Fig. 20, when the z-component of the space-
craft is less than the radius of the Moon Rm = 1738 km, it
will be invisible both for the north and south poles. There-
fore, two spacecraft are not enough for the all-time mission,
and the formation-flying needs at least three spacecraft.

We choose a prograde periodic orbit with C = 3.139
as the orbit of the lunar formation-flying. The calculation
shows that the stability index of orbit is about 3.97, very
small. The inclination of the periodic is 83.55◦ ∼ 90.50◦
and the period is about 26.84 days. Figure 21 displays the
architecture of the formation-flying we design for the all-
time lunar mission. In this architecture, three spacecraft are
arranged in the periodic orbit. Figure 22 displays the eleva-
tions of three spacecraft with respect to the north and south
poles in a period. In this figure, the black bold lines denote
the maximum of the elevations of three spacecraft at every
moment. The result shows that the range of maximum of
the elevations with respect to the north pole is from 24.67◦

Fig. 21 Architecture of the
formation-flying for the all-time
lunar mission
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Fig. 22 Elevations of three
spacecraft in a period

Fig. 23 Earth-Moon transfer in the rotating frame

to 89.83◦. The average maximum of the elevations with re-
spect to the north pole is 60.29◦, denoted by the bold dash
line. The range of maximum of the elevation with respect
to the south pole is from 24.34◦ to 89.70◦. The average
maximum of the elevation with respect to the south pole is
60.35◦, denoted by the bold dash line. Therefore, in each
moment, there exists at least one spacecraft visible to each
pole. Besides, according to Fig. 21(c), the period orbit does
not cross the Moon shadow, which can also guarantee the
all-time communication with the Earth.

5.2 Earth-Moon transfer

On the other hand, the small stability index ν results in more
transfer costs between the Earth parking orbit and spatial
periodic orbit around the Moon.

For the Earth-Moon transfer in this paper, the initial point
is located in the low Earth orbit (LEO) of height 167 km, and
the end point of the transfer is a perilune of the spatial peri-
odic orbit around the Moon. Figure 23 displays the interior

transfer we design in the Earth-Moon rotating frame. The
target orbit of the transfer is a prograde lunar periodic orbit.
The inclination is 58.38◦ ∼ 63.99◦ and the period is about
25.71 days. Three tangential maneuvers are performed at
the initial point, the patch point (apogee) and the end point.
After the first maneuver, the spacecraft is inserted into the
Earth escape orbit (the red line in Fig. 23). After the sec-
ond the maneuver at the apogee, the spacecraft is inserted
into the L1 transit orbit (the blue line in Fig. 23) and flies to
the Moon. After the third maneuver, the spacecraft is cap-
tured by the Moon and inserted into the spatial periodic or-
bit (the green line in Fig. 23). The total transfer cost �V

required is 3847.8 m/s, including 3114.9 m/s, 701.09 m/s
and 31.85 m/s at three maneuver points, successively. The
time-of-flight from the initial point to the end point is ap-
proximately 43.83 days. Of particular note is that the design
of the Earth-Moon transfer is not the emphasis of this paper,
therefore, the transfer orbits we design are not the optimal
results. As for construction of the optimal transfer trajectory,
it will be our future work.

6 Conclusions

In this paper, the long-term behavior of the spatial or-
bits near the Moon was investigated in the Earth-Moon-
spacecraft CRTBP. Using the numerical methodology, we
obtained the Poincare section, where the section points are
defined as the lunar apsides. The distribution of the long-
term capture solutions and the orbital elements of the section
points illustrated the long-term behavior of the spatial orbits
near the Moon from the qualitative and quantitative angles,
respectively. We found that in the vicinity of the Moon, the
long-term behavior of the spatial lunar orbit with smaller Ja-
cobi constant C is more instable and inscrutable. Besides,
the spatial orbit near the Moon is more likely to retain in the
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vicinity of the Moon in long term if the orbit plane is closer
to the Earth-Moon orbital plane, but the spatial lunar orbit
is more likely to impact the Moon or escape from the lunar
region after long-term propagation if the orbit plane is more
perpendicular to the Earth-Moon orbital plane.

The spatial lunar quasi-periodic and periodic orbits were
also investigated. The section points in the long-term cap-
ture trajectories were applied to locate the quasi-periodic or-
bits. Then, using the differential correction and continuation
scheme, we obtained the spatial lunar periodic orbits and
periodic orbit families, respectively. The characters of the
periodic orbit families, such as the stability, inclination and
period, were discussed in detail. The analysis showed that
the stability indices ν of the periodic orbits obtained from
the quasi-periodic orbits were very small, but their stabilities
were influenced by their inclinations. Besides, the smaller
Jacobi constant the larger period is. At last, some applica-
tions of the spatial lunar periodic orbits were given. The lu-
nar formation-flying for the all-time lunar north and south
poles exploration was designed. The Earth-Moon transfer
was constructed in the CRTBP.

The method to investigate the long-term behavior of the
spatial orbits near the Moon by the section points and the
orbital elements we presented in this paper is simple and
direct. We can easily locate the lunar quasi-periodic orbit
and obtain the spatial lunar periodic orbit family.
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