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Abstract The spatially homogeneous and anisotropic
Bianchi type-V universe filled with interacting Dark mat-
ter and Holographic dark energy has been studied. The ex-
act solutions of Einstein’s field equations are obtained by
(i) applying the special law of variation of Hubble parame-
ter that yields constant values of the deceleration parameter
and (ii) using a special form of deceleration parameter. It has
been observed that for suitable choice of interaction between
dark matter and holographic dark energy there is no coinci-
dence problem (unlike ΛCDM). Also, in all the resulting
models the anisotropy of expansion dies out very quickly
and attains isotropy after some finite time. The physical and
geometrical aspects of the models are also discussed.

Keywords Bianchi types-V space-time · Dark matter ·
Holographic dark energy · Constant deceleration
parameter · Special form of deceleration parameter ·
Coincidence parameter

1 Introduction

One of the biggest cosmological mysteries is the accel-
erating cosmic expansion which was discovered by the
observations of Type Ia supernovae (SNIa) starting from
more than 10 years ago. The cosmological observations of
Type Ia supernovae (SNeIa) (Riess et al. 1998; Perlmut-
ter et al. 1999) and Bennett et al. (2003) indicate that the
universe is currently accelerating. When these results com-
bined with the observations of cosmic microwave back-
ground (CMB) (Bennett et al. 2003; Spergel et al. 2003) and
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large scale structure (LSS) (Tegmark et al. 2004a, 2004b),
strongly suggest that the universe is spatially flat and dom-
inated by an exotic component with large negative pressure
called as dark energy (DE) (Weinberg 1989; Carroll 2001;
Peebles and Ratra 2003; Padmanabhan 2003). Wilkinson
Microwave Anisotropy Probe (WMAP) shows that Dark en-
ergy occupies 73 % of the energy of our universe. Dark mat-
ter occupies 23 % and rest 4 % energy is baryonic matter
(ordinary matter) in the universe.

An approach to the problem of DE arises from holo-
graphic principle that states that the number of degrees of
freedom related directly to entropy scales with the enclos-
ing area of the system. The holographic DE models are
originated from some considerable features of the quantum
theory of gravity. The holographic principle was first put
forward by ’t Hooft (2009) in the context of black- hole
physics. According to this principle, the entropy of a sys-
tem scales not with its volume, but also with its surface area
(Li 2004). A special class of models in which holographic
DE is allowed to interact with DM have been studied by
several researchers are Carvalho and Saa (2004), Pavón and
Zimdahl (2005), Wang et al. (2005, 2006), Perivolaropou-
los (2005), Gong and Zhang (2005), Guberina et al. (2005,
2006), Guo et al. (2005, 2007a), Hu and Ling (2006), No-
jiri and Odintsov (2006), Li et al. (2006), Kim et al. (2006),
Banerjee and Pavón (2007), Zimdahl and Pavón (2007),
Setare (2007a, 2007b, 2007c, 2007d) studied the correspon-
dence between the holographic dark energy and each one of
tachyon, phantom, Chaplygin gas and generalized Chaply-
gin gas in FRW universe.

Fischler and Susskind (1998) have proposed a new ver-
sion of the holographic principle, viz. at any time during
cosmological evolution, the gravitational entropy within a
closed surface should not be always larger than the particle
entropy that passes through the past light-cone of that sur-
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face. Recently, Bamba et al. (2012) have studied modified
theory like f (R) gravity, f (R,T ) gravity, f (T ) gravity,
scalar field theory Holographic dark energy, Coupled dark
energy and ΛCDM cosmological models representing the
accelerating expansion with the quintessence/phantom na-
ture in details along with cosmography tests.

In the context of the DE problem, though the holographic
principle proposes a relation between the holographic DE
density ρDE and the Hubble parameter H as ρDE = H 2,
this is does not contribute to the present accelerated expan-
sion of the universe. Granda and Oliveros (2008) proposed
a holographic density of the form ρDE ≈ (α1H

2 + β1Ḣ )

where H is the Hubble parameter and α1, β1 are con-
stants which must satisfy the restrictions imposed by the
current observational data. They have been showed that
this new model of DE represents the accelerated expan-
sion of the universe and is consistent with the current ob-
servational data. Granda and Oliveros (2009) also studied
the quintessence, tachyon, k-essence and dilaton DE mod-
els with this holographic DE model in the flat FRW uni-
verse. Karami and Fehri (2010) have reconstructed models
of holographic quintessence, holographic tachyon and new
holographic quintessence, tachyon, k-essence scalar field of
DE. Ma et al. (2010) have considered the interaction be-
tween dark matter and dark energy in the framework of holo-
graphic dark energy, and proposed a natural and physically
plausible form of interaction, in which the interacting term
is proportional to the product of the powers of the dark mat-
ter and dark energy densities. Sarkar (2014a, 2014b, 2014c),
Debnath (2014), Borah and Ansari (2014) have been studied
the Bianchi type space-times in the context of holographic
dark energy. Sadeghi and Farahani (2014) have studied dark
energy and tachyon field in Bianchi type-V universe and
they have obtained results for non-interacting models with
three different kinds of matters such as pressureless matter,
barotropic matter and modified Chaplygin gas. Adhav et al.
(2014) have studied interacting dark matter and holographic
dark energy in an anisotropic universe. Som and Sil (2014)
have discussed general approach of interacting holographic
dark energy models.

Motivated by the above investigations, in this paper, we
have studied spatially homogeneous and anisotropic Bianchi
type-V universe filled with interacting Dark matter and
Holographic dark energy. The exact solutions of Einstein’s
field equations have been obtained by (i) applying the spe-
cial law of variation of Hubble parameter that yields con-
stant values of the deceleration parameter and (ii) using
a special form of deceleration parameter. It has been ob-
served that for suitable choice of interaction between dark
matter and holographic dark energy there is no coincidence
problem (unlike ΛCDM). In all the resulting models the
anisotropy of expansion dies out after some finite time and
subsequently the models approach to isotropy. The physical
and geometrical aspects of the models are also discussed.

2 Metric and field equations

The Bianchi type-V line element can be written as

ds2 = dt2 − a2
1(t)dx2 − a2

2(t)e−2αxdy2 − a2
3(t)e−2αxdz2,

(2.1)

where a1(t), a2(t) and a3(t) are the cosmic scale factors and
α �= 0 is an arbitrary constant.

The Einstein’s field equations, in natural limits (8πG = 1
and c = 1) are

Rij − 1

2
gijR = −(DMTij + DETij

)
, (2.2)

where
DMTij = ρDMuiuj and
DETij = (ρDE + pDE)uiuj − gijpDE

(2.3)

are energy-momentum tensors for dark matter (pressureless
i.e. wDM = 0) and holographic dark energy respectively.
Here ρDM is the energy density of dark matter ρDE and pDE

are the energy density and pressure of holographic dark en-
ergy.

In comoving coordinate systems, the Einstein’s field
Eqs. (2.2) for the metric (2.1) with the help of Eq. (2.3) can
be written as
ȧ1ȧ2

a1a2
+ ȧ2ȧ3

a2a3
+ ȧ3ȧ1

a3a1
− 3α2

a2
1

= ρDM + ρDE, (2.4)

ä2

a2
+ ä3

a3
+ ȧ2ȧ3

a2a3
− α2

a2
1

= −pDE, (2.5)

ä1

a1
+ ä3

a3
+ ȧ1ȧ3

a1a3
− α2

a2
1

= −pDE, (2.6)

ä1

a1
+ ä2

a2
+ ȧ1ȧ2

a1a2
− α2

a2
1

= −pDE, (2.7)

ȧ2

a2
+ ȧ3

a3
= 2

ȧ1

a1
, (2.8)

where an overhead dot (.) represents derivative with respect
to time t .

Integration on Eq. (2.8), we get

a2
1 = λa2a3, (2.9)

where λ is an integration constants. Without loss of general-
ity we can take λ = 1.

The volume scale factor V and average scale factor a are
given by

V = a3 = a1a2a3. (2.10)

The mean Hubble parameter H is defined as

H = ȧ

a
= 1

3
(Hx + Hy + Hz), (2.11)

where Hx = ȧ1
a1

, Hy = ȧ2
a2

, Hz = ȧ3
a3

are the directional Hub-
ble parameters in the directions of x, y and z axes respec-
tively.
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The deceleration parameter q(t) is defined by

q = −aä

ȧ2
. (2.12)

The mean anisotropy parameter of expansion (�) is defined
by

� = 1

3

3∑

i=1

(
Hi − H

H

)2

. (2.13)

Subtracting Eq. (2.5) from Eq. (2.6), Eq. (2.6) from Eq. (2.7),
Eq. (2.5) from Eq. (2.7) and using Eq. (2.10), we get

d

dt

(
ȧ1

a1
− ȧ2

a2

)
+

(
ȧ1

a1
− ȧ2

a2

)
V̇

V
= 0, (2.14a)

d

dt

(
ȧ2

a2
− ȧ3

a3

)
+

(
ȧ2

a2
− ȧ3

a3

)
V̇

V
= 0, (2.14b)

d

dt

(
ȧ1

a1
− ȧ3

a3

)
+

(
ȧ1

a1
− ȧ3

a3

)
V̇

V
= 0. (2.14c)

On integrating Eqs. (2.14a)–(2.14c) and using Eqs. (2.9)
and (2.10), the scale factors a1(t), a2(t) and a3(t) can be
written explicitly as

a1(t) = V
1
3 , (2.15a)

a2(t) = DV
1
3 exp

(
X

∫
dt

V

)
, (2.15b)

a3(t) = D−1V
1
3 exp

(
−X

∫
dt

V

)
, (2.15c)

where X and D are constants of integration. The holo-
graphic dark energy density is given by

ρDE = 3
(
α1H

2 + β1Ḣ
)
, (2.16)

i.e. ρDE = 3(α1H
2 + β1Ḣ ) with M−2

p = 8πG = 1 (Granda
and Oliveros 2008).

For the universe, where dark energy and dark matter are
interacting to each other the total energy density (ρ = ρDM +
ρDE) satisfies the equation of continuity as

ρ̇DM + ρ̇DE + 3H(ρDM + ρDE + pDE) = 0. (2.17)

Assuming that the dark matter component is interacting with
the dark energy component through an interaction term Q,
the continuity equation of matter and dark energy can be
obtained as

ρ̇DM +
(

V̇

V

)
ρDM = Q, (2.18)

ρ̇DE +
(

V̇

V

)
(1 + ωDE)ρDE = −Q, (2.19)

where ωDE = pDE
ρDE

is the equation of state parameter for
holographic dark energy and Q > 0 measures the strength
of the interaction. A vanishing Q implies that dark matter
and dark energy are separately conserved. In view of con-
tinuity equations, the interaction between dark energy and

dark matter must be a function of the energy density mul-
tiplied by a quantity with units of inverse of time, which
can be chosen as the Hubble parameter H . There is free-
dom to choose the form of the energy density, which can be
any combination of dark energy and dark matter. Thus, the
interaction between dark energy and dark matter could be
expressed phenomenologically in the forms as (Guo et al.
2007a, 2007b; Amendola et al. 2007)

Q = 3b2HρDM = b2 V̇

V
ρDM, (2.20)

where b2 is coupling constant.
Cai and Wang (2005) have taken same relation for in-

teracting dark matter and phantom dark energy in order to
avoid the coincidence problem.

Using Eqs. (2.18) and (2.20), we get the energy density
of dark matter as

ρDM = ρ0V
(b2−1), (2.21)

where ρ0 > 0 is real constant of integration.
Using Eqs. (2.20) and (2.21), we get the interacting term

Q as

Q = 3ρ0b
2HV (b2−1). (2.22)

3 Cosmological solutions for constant deceleration
parameter

In order to obtain the solutions of Eqs. (2.4)–(2.8), we as-
sume the special law of variation for the Hubble parameter
which yields the constant value of deceleration parameter
(Berman 1983). According to this law the variation of the
mean Hubble parameter is given by

H = ka−n, (3.1)

where k > 0 and n ≥ 0.
Here we obtain two cosmological models (i) Model for

n = 0 and (ii) Model for n �= 0.

(i) Model for n = 0 [Exponential Volumetric Expansion
Model]

For n = 0, Eq. (3.1) gives the volume scale factor as

V = c1e
3kt , (3.2)

where c1 > 0 is a constant of integration.
Using Eq. (3.2) in Eqs. (2.15a)–(2.15c), we obtain the

exact values of scale factors as

a1(t) = (c1)
1/3ekt , (3.3a)

a2(t) = D(c1)
1/3 exp

(
kt − X

3c1k
e−3kt

)
, (3.3b)

a3(t) = D−1(c1)
1/3 exp

(
kt + X

3c1k
e−3kt

)
. (3.3c)
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Using Eq. (3.2) in Eqs. (2.21) and (2.22), we get

ρDM = ρ0(c1)
b2−1e3k(b2−1)t , (3.4)

Q = 3kb2ρ0(c1)
b2−1e3k(b2−1)t . (3.5)

Using Eqs. (3.3a)–(3.3c) and (3.4) in Eq. (2.4), we obtain
the energy density of holographic dark energy as

ρDE = 3k2 −
(

X

c1

)2

e−6kt − 3α2

(c1)2/3e2kt

− ρ0(c1)
(b2−1)e3k(b2−1)t . (3.6)

Using Eqs. (3.2), (3.4) and (3.6) in Eqs. (2.4)–(2.8), we ob-
tain the pressure of holographic dark energy as

pDE = −3k2 −
(

X

c1

)2

e−6kt + α2

(c1)2/3e2kt
. (3.7)

The EoS parameter of holographic dark energy is given by

wDE = −(3k2 + ( X
c1

)2e−6kt − α2

(c1)2/3e2kt )

3k2 − ( X
c1

)2e−6kt − 3α2

(c1)2/3e2kt − ρ0(c1)(b
2−1)e3k(b2−1)t

.

(3.8)

Using Eqs. (3.3a)–(3.3c) in Eqs. (2.11), (2.12) and (2.13),
we get the mean Hubble parameter H , deceleration param-
eter q and mean anisotropy parameter of expansion � are
given by respectively

H = k, (3.9)

q = −1, (3.10)

� = 2X2

3c2
1k

2
e−6kt . (3.11)

The coincidence parameter r = ρDM/ρDE i.e. the ratio of
dark energy densities of dark matter and dark energy is given
by

r = ρ0(c1)
b2−1e3k(b2−1)t

3k2 − ( X
c1

)2e−6kt − 3α2

(c1)
2/3e2kt − ρ0(c1)(b

2−1)e3k(b2−1)t
.

(3.12)

(ii) Model for n �= 0 [Power-law Volumetric Expansion
Model]

For n �= 0, Eq. (3.1) gives the volume scale factor as

V = (nkt + c2)
3/n, (3.13)

where c2 is a arbitrary constant of integration.
Using Eq. (3.13) in Eqs. (2.15a)–(2.15c), we obtain the

exact solution of the scale factors as

a1(t) = (nkt + c2)
1/n, (3.14a)

a2(t) = D(nkt + c2)
1/n

× exp

(
X

k(n − 3)
(nkt + c2)

(n−3)/n

)
, (3.14b)

a3(t) = D−1(nkt + c2)
1/n

× exp

( −X

k(n − 3)
(nkt + c2)

(n−3)/n

)
. (3.14c)

Using Eq. (3.13) in Eqs. (2.21) and (2.22), we get

ρDM = ρ0(nkt + c2)
3(b2−1)

n , (3.15)

Q = 3kb2ρ0(nkt + c2)
3(b2−1)

n
−1. (3.16)

Using Eqs. (3.14a)–(3.14c) and (3.15) in Eq. (2.4), we obtain
the energy density of holographic dark energy as

ρDE = 3k2(nkt + c2)
−2 − X2(nkt + c2)

−6
n

− 3α2

(nkt + c2)2/n
− ρ0(nkt + c2)

3(b2−1)
n . (3.17)

Using Eqs. (3.13), (3.15) and (3.17) in the linear combi-
nation of Eqs. (2.4)–(2.7), we obtain the pressure of holo-
graphic dark energy as

pDE = −k2(nkt + c2)
−2 − X2(nkt + c2)

−6
n

+ α2

(nkt + c2)2/n
. (3.18)

The EoS parameter of holographic dark energy is given by

ωDE =
−k2(nkt + c2)

−2 − X2(nkt + c2)
−6
n + α2

(nkt+c2)
2/n

3k2(nkt + c2)−2 − X2(nkt + c2)
−6
n − 3α2

(nkt+c2)
2/n − ρ0(nkt + c2)

3(b2−1)
n

. (3.19)

Using Eqs. (3.14a)–(3.14c) in Eqs. (2.11), (2.12) and (2.13),
we get the mean Hubble parameter H , deceleration param-
eter q and mean anisotropy parameter of expansion � are
given by respectively

H = k(nkt + c2)
−1, (3.20)

q = n − 1, (3.21)

� = 2X2

3k2
(nkt + c2)

2(n−3)
n . (3.22)

The coincidence parameter r i.e. the ratio of dark energy
densities of dark matter and dark energy is given by
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r = ρ0(nkt + c2)
3(b2−1)

n

3k2(nkt + c2)−2 − X2(nkt + c2)
−6
n − 3α2

(nkt+c2)
2/n − ρ0(nkt + c2)

3(b2−1)
n

. (3.23)

4 Cosmological solution for special form of
deceleration parameter

The exponential volumetric expansion and power-law volu-
metric expansion models are either accelerating (n = 0 and
0 < n < 1) or decelerating (n > 1). In order to obtain the
solutions of the field Eqs. (2.4)–(2.8), we assume a math-
ematical condition which is a special form of deceleration
parameter. Singha and Debnath (2009) have defined a spe-
cial form of deceleration parameter for FRW model as

q = − äa

ȧ2
= −1 + β

1 + aβ
, (4.1)

where β > 0 is a constant and a is mean scale factor of the
universe.

Solving Eq. (4.1), we obtain the mean Hubble parameter
H as

H = ȧ

a
= γ

(
1 + a−β

)
, (4.2)

where γ is constant of integration.
On integrating Eq. (4.2), we obtain the mean scale factor

as

a = V 1/3 = (
eγβt − 1

)1/β
. (4.3)

Using Eq. (4.3) for γ = 1 in Eqs. (2.15a) to (2.15c), we ob-
tain exact value of scale factor as

a1(t) = (
eβt − 1

)1/β
, (4.4a)

a2(t) = D
(
eβt − 1

)1/β exp

{
X

[
−1

3

(
eβt − 1

)3/β

× (
eβt − 1

)−3/β
2F1

(
3

β
,

3

β
; β + 3

β
; e−βt

)]}
,

(4.4b)

a3(t) = D−1(eβt − 1
)1/β exp

{
−X

[
−1

3

(
eβt − 1

)3/β

× (
eβt − 1

)−3/β
2F1

(
3

β
,

3

β
; β + 3

β
; e−βt

)]}
,

(4.4c)

where 2F1(l,m;n; t) is hypergeometric function.
Using Eq. (4.3) in Eqs. (2.21) and (2.22), we get

ρDM = ρ0
(
eβt − 1

) 3(b2−1)
β , (4.5)

Q = 3ρ0b
2eβt

(
eβt − 1

) 3(b2−1)
β

−1
. (4.6)

Using Eqs. (4.4a)–(4.4c) and (4.5) in Eq. (2.4), we obtain
the energy density of holographic dark energy as

ρDE = 3e2βt
(
eβt − 1

)−2 − X2(eβt − 1
)−6/β

− 3α2

(eβt − 1)1/2β
− ρ0

(
eβt − 1

) 3(b2−1)
β . (4.7)

Using Eqs. (4.3), (4.5) and (4.7) in Eqs. (2.4)–(2.7), we ob-
tain the pressure of holographic dark energy as

pDE = 3e2βt
(
eβt − 1

)−2 − X2(eβt − 1
)−6/β

+ α2

(eβt − 1)1/2β
− 2

[
βeβt

(eβt − 1)
+ (3 − β)eβt

(eβt − 1)2

]
.

(4.8)

The EoS parameter of holographic dark energy is given by

ωDE =
3e2βt (eβt − 1)−2 − X2(eβt − 1)−6/β + α2

(eβt−1)1/2β − 2[ βeβt

(eβt−1)
+ (3−β)eβt

(eβt−1)2 ]

3e2βt (eβt − 1)−2 − X2(eβt − 1)−6/β − 3α2

(eβt−1)1/2β − ρ0(eβt − 1)
3(b2−1)

β

. (4.9)

The mean anisotropy parameter � is given by

� = 2

3
X2(eβt − 1

) 2(β−3)
β . (4.10)

The coincidence parameter r i.e. the ratio of dark energy
densities of dark matter and dark energy is given by

r = ρ0(e
βt − 1)

3(b2−1)
β

3e2βt (eβt − 1)−2 − X2(eβt − 1)−6/β − 3α2

(eβt−1)1/2β − ρ0(eβt − 1)
3(b2−1)

β

. (4.11)
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Fig. 1 The variation of q vs. time (t )

5 Discussion

The physical and geometrical behaviors of the cosmological
models are as follows:

(i) The deceleration parameter (q)

For the models presented in Sect. 3, from Eqs. (3.10), (3.21)
it is observed that the deceleration parameter q is negative
for n = 0 and 0 < n < 1. This indicates that the universe
is accelerating as shown in Fig. 1. For the model presented
in Sect. 4, the deceleration parameter q varies from +1 to
−1 as shown in Fig. 1. It shows that the value of q is posi-
tive at the early stage of the universe and becomes negative
at late time. For β = 3/2 the deceleration parameter q is
in the range −1 ≤ q ≤ 0.5 (shaded region in Fig. 1) which
is consistent with the observations made by Perlmutter et al.
(1998, 1999) and Riess et al. (1998) and the present day uni-
verse is undergoing accelerated expansion.

In other words, the sign of q indicates whether the models
inflates or not. A positive sign of q indicates decelerating
model whereas negative sign of q indicates inflation.

In our exponential volumetric expansion model [from
Eq. (3.10)], we can say that the model inflates. Further, this
value of deceleration parameter leads to dH/dt = 0 imply-
ing the greatest value of Hubble’s parameter and fastest rate
of expansion of universe.

Whereas, in the power-law volumetric expansion model
[from Eq. (3.21)], we can say that a positive sign of q [i.e.
for n > 1] correspond to the standard decelerating model
whereas the negative sign of q [i.e. 0 < n < 1] indicate in-
flation.

Thus our derived model is suitable to describe the late
time evolution of the universe.

(ii) The anisotropy parameter of expansion (�)

In Fig. 2, we plotted an anisotropy parameter of expansion
(�) for Eqs. (3.11), (3.22) and (4.11) against cosmic time t

Fig. 2 Evolution of anisotropy parameter of expansion (�) vs. time
(t ) for k = 1, X2 = 1, n = 0.5

Fig. 3 Evolution of EoS parameter (ωDE) vs. time (t ) for k = 1,
X2 = 1, n = 0.5, β = 1.5

for (i) exponential volumetric expansion model (ii) power-
law volumetric expansion model and (iii) model for spe-
cial form of deceleration parameter respectively. It is ob-
served that in these three models anisotropy decreases as
time increases and then becomes zero after some time and
remains zero after some finite time. Hence, the models are
approaches to isotropy after some finite time which matches
with the recent observation as the universe is isotropic at
large scale.

(iii) The equation of state parameter (ωDE)

Figure 3 shows the variation of EoS parameter (ωDE) with
cosmic time t for constant deceleration parameter models
and special form of deceleration parameter model.

For the models presented in Sect. 3, from Eqs. (3.8)
and (3.19), it is observed that the parameter ωDE starts
from phantom region (ωDE < −1) and attains the value
ωDE = −1 after some finite t i.e. the model approaches to
ΛCDM model after some finite t . Spergel et al. (2003),
Riess et al. (2004, 2007), Eisenstein et al. (2005), Astier
et al. (2006), Bamba et al. (2012) all indicate that the ΛCDM
model or the model that reduces to ΛCDM are served as
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Fig. 4 Coincidence parameter r vs. cosmic time (t )

an excellent models to describe the cosmological evolution.
From Eq. (4.9), we observed that for a special form of de-
celeration parameter model, the parameter ωDE starts from
quintessence (−1 < ωDE) for particular value of n(n �= 0)

and converges in the phantom region as model presented in
Sect. 3, It has been argued that the interacting holographic
dark energy model can accommodate the transition of the
dark energy equation of state (ωDE) from (ωDE > −1 and
ωDE < −1) (Wang et al. 2005, 2006).

(iv) Coincidence Parameter (r)

The recent observations demands that the ratio of two en-
ergy densities r = ρDM/ρDE i.e. the coincidence parame-
ter stays constant or varies very slowly, around the present
time, with respect to the universe expansion. But, the leading
candidate for dark energy, the popular ΛCDM model is not
consistent with this observation. This coincidence problem
has led numerous authors to consider alternatives to ΛCDM
which preserve its stunning successes (Type Ia SNe, CMB
anisotropies, large-scale structure) but avoid the above dif-
ficulty. To avoid the coincidence problem, matter and dark
energy must scale each other over a considerably long period
of time during the later stage of evolution of the universe. In
other words, the ratio of two energy densities r = ρDM/ρDE

remains constant in spite of their different rates of time evo-
lution. The variation of coincidence parameter r with respect
to cosmic time t is as shown in Fig. 4. From Eq. (3.12), we
observed that coincidence parameter r at very early stage of
evolution varies, but after some finite time t it converges to
a constant value and remains constant throughout the evo-
lution in exponential volumetric expansion models provided
that b2 = 1. From Eq. (3.23), it is observed that, r increases
linearly throughout the evolution of the universe in power-
law model. From Eq. (4.11), the coincidence parameter r

vanishes at very early stage of evolution. It is also observed
that parameter r increases as time increases but after some
finite time it decreases and converges to a constant value and
remains constant throughout the evolution in a special form
of deceleration parameter model. Thus, a suitable kind of

interaction between holographic dark energy and dark mat-
ter can make the ratio of their densities possible to attain a
stationary value during the course of evolution and conse-
quently can help alleviating the coincidence problem which
appears in the ΛCDM models.

6 Conclusion

We have studied the anisotropic and homogeneous Bianchi
type-V cosmological model filled with interacting Dark mat-
ter and Holographic dark energy. The solutions of the Ein-
stein’s field equations are obtained under the assumption of
constant value of deceleration parameter and special form of
deceleration parameter. We have noted that

(i) In our exponential volumetric expansion model [from
Eq. (3.10)], we can say that the model inflates. Further,
this value of deceleration parameter leads to dH/dt =
0 implying the greatest value of Hubble’s parameter
and fastest rate of expansion of universe.

Whereas, in the power-law volumetric expansion
model [from Eq. (3.21)], we can say that a positive
sign of q [i.e. for n > 1] correspond to the standard
decelerating model whereas the negative sign of q [i.e.
0 < n < 1] indicate inflation.

Thus our derived model is suitable to describe the
late time evolution of the universe.

(ii) From Eq. (2.20), it is observed that for suitable choice
of interaction between dark matter and holographic
dark energy with b2 = 1, there is no coincidence prob-
lem in case of exponential volumetric expansion model
and in the model with special form of deceleration pa-
rameter. This result matches with the present observa-
tions as we live in the stationary coincidence state of
the universe. Whereas, there is coincidence problem
in case of power-law volumetric expansion model [i.e.
model for n �= 0].

(iii) One should note that for b2 = 0 [in Eq. (2.20)], it rep-
resents the non-interacting Bianchi type-V model while
b2 = 1 yields complete transfer of energy from dark en-
ergy to dark matter. Recently, it has been reported that
such interaction is observed in the Abell cluster A586
showing a transition of dark energy into dark matter
and vice versa [Bertolami et al. 2007; Jamil and Rashid
2008].

(iv) In the power-law volumetric expansion model, we
have observed that at t = −c2/nk, the spatial volume
vanishes and other parameter H , pDE , ρDE diverges.
Therefore, the model has a big bang singularity at
t = −c2/nk, which can be shifted to t = 0 by choosing
c2 = 0. The singularity is point type as the directional
scale factors a1(t), a2(t) and a3(t) vanish at the initial
moment (Maccallum 1971).
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(v) For Q = 0 (non interacting case) the models with con-
stant deceleration parameter reduce to the particular
models of Samanta (2013), Sarkar (2014b) (with k = 0
their in) and Sadeghi and Farahani (2014).

(vi) For Q �= 0 (i.e. interacting case) and α = 0 the
model with constant deceleration parameter reduces to
Bianchi type-I model obtained by Adhav et al. (2014).

(vii) Also, in all three models the anisotropy of expansion
dies out very quickly and attains isotropy after some
finite time. In other words, we can say that the Bianchi
type-V model reduces to flat FRW soon after inflation.
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