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Abstract In this paper we have studied the behavior of
static spherically symmetric relativistic objects with locally
anisotropic matter distribution considering the Tolman VII
form for the gravitational potential grr in curvature coordi-
nates together with the linear relation between the energy
density and the radial pressure. The interior spacetime has
been matched continuously to the exterior Schwarzschild
geometry. We have investigated and analyzed different phys-
ical properties of the stellar model and presented graphi-
cally.

Keywords General relativity · Relativistic astrophysics ·
Exact solution · Anisotropic fluid sphere · Compact stars ·
Relativistic stars · Equation of state

1 Introduction

Ever since the formulation of Einstein’s field equations re-
searchers have been venturing in the search of exact solu-
tions with certain viable geometrical and physical condi-
tions. Such findings are astrophysically significant because
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they enable us to find the distribution of matter in the inte-
rior of stellar objects in terms of simple algebraic relations.
Due to the strong nonlinearity of Einstein’s field equations
and the lack of a comprehensive algorithm to generate all
solutions, it becomes difficult to obtain new exact solutions.
A good number of exact solutions of Einstein’s field equa-
tions are known till date but not all of them are physically
relevant in the description of relativistic structure of com-
pact stellar objects. There exist a number of comprehensive
collections (Delgaty and Lake 1998; Stephani et al. 2003) of
static, spherically symmetric solutions which provide use-
ful guide to the literature. Oppenheimer and Volkoff (1939)
are the pioneers in this field who analyzed and determined
the maximum mass of very compact astrophysical objects.
There are several astrophysical objects such as neutron star
(bound by gravity) or self-bound strange quark star (bound
by the strong interaction) where one needs to reconsider the
equation of state (EOS) of matter involving energy densities
of the order of 1015 g cm−3 or higher, exceeding the normal
nuclear matter density.

Recent observations show that the estimated mass and ra-
dius of several compact objects such as X-ray pulsar Her
X-1, X-ray burster 4U 1820-30, millisecond pulsar SAX
J 1808.4-3658, X-ray sources 4U 1728-34, PSR 0943+10
and RX J185635-3754 are not compatible with the standard
neutron star models (Dey et al. 1998; Li et al. 1999; We-
ber 2005). In the formalism of such super dense stars, local
isotropy is a common assumption. But the theoretical inves-
tigations made in the last few decades strongly suggest that
at a density of the order of 1015 g cm−3, nuclear matter may
be anisotropic when its interactions are relativistic (Ruder-
man 1972) and it is also important to include the pressure
anisotropy in the fluid approximation to describe the matter
distribution inside such astrophysical objects.
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No astrophysical object in the real universe may nec-
essarily be entirely composed of perfect fluid (principle
stresses equal). The first extensive study on the effect of
pressure anisotropy on the structure of such massive objects
in the framework of general relativity was made by Bow-
ers and Liang (1974). The importance and physical reasons
of inclusion of anisotropic pressure in the solution may be
found in the following works (Herrera and Santos 1997;
Ivanov 2002). Dev and Gleiser (2002) demonstrated that
pressure anisotropy affects the physical properties, stabil-
ity and structure of stellar matter. The stability of stellar
bodies is improved for positive measure of anisotropy when
compared to configurations of isotropic stellar objects. It has
also been showed in their successive works (Dev and Gleiser
2003; Gleiser and Dev 2004) that the presence of anisotropic
pressures enhances the stability of the configuration under
radial adiabatic perturbations as compared to isotropic mat-
ter.

Electrically neutral/charged anisotropic stellar models of
strange quark stars within the framework of linear equation
of state (EOS) based on MIT bag model together with a par-
ticular choice of metric potentials/mass function have been
taken into consideration in the following works (Mak et al.
2002; Mak and Harko 2004; Sharma and Maharaj 2007; Es-
culpi and Alomá 2010; Komathiraj and Maharaj 2011; Tak-
isa and Maharaj 2013a, 2013b; Maharaj and Takisa 2012;
Rahaman et al. 2012; Kalam et al. 2013; Thirukkanesh and
Ragel 2013, 2014; Sharma et al. 2006; Deb et al. 2012;
Sharma and Ratanpal 2013; Maharaj et al. 2014; Sunzu et
al. 2014a, 2014b).

Being inspired by the aforementioned recent works we
intend to develop some new analytical relativistic aniso-
tropic stellar models by using Tolman VII type metric func-
tion within the framework of linear equation of state based
on MIT bag model. Our analysis depends on several math-
ematical key assumptions. The form of metric potential en-
sures that the metric function is nonsingular, continuous, and
well behaved in the interior of the star. This is one of the
desirable features for the model on physical grounds. The
solutions obtained in this work are expected to provide sim-
plified but easy to mathematically analyzed stellar models
with nonzero super-high surface density which could rea-
sonably model the stellar core of an bare strange quark star
by satisfying applicable physical boundary conditions.

The paper is organized as follows. In Sect. 2 we have
presented the Einstein’s field equations (EFE’s). Section 3
provides the solution of EFE’s for a particular choice of one
of the metric potential together with the linear equation of
state. In Sect. 4 we have matched our interior solution to the
exterior Schwarzschild spacetime. Some physical properties
are discussed in Sects. 5–8 and finally Sect. 9 concludes the
work.

2 Einstein field equations

To describe the interior of a static spherically symmetric
distribution of matter the line element can be taken in the
standard form as (Tolman 1939; Oppenheimer and Volkoff
1939),1

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (2.1)

where λ and ν are the functions of radial coordinate r only.
Let us further assume that the matter distribution inside

the compact star is locally anisotropic in nature whose en-
ergy momentum tensor given by the following:

T μ
ν =

⎛

⎜⎜
⎝

ρ 0 0 0
0 −Pr 0 0
0 0 −Pt 0
0 0 0 −Pt

⎞

⎟⎟
⎠ (2.2)

where ρ is the matter density, Pr and Pt are respectively the
radial and the tangential pressure of the fluid distribution.

Taking G = 1 = c, Einstein field equations can be written
as,

κρ = 1

r2

[
r
(
1 − e−λ

)]′
, (2.3)

κPr = − 1

r2

(
1 − e−λ

) + ν′

r
e−λ, (2.4)

κPt = e−λ

4

(
2ν′′ + ν′2 + 2ν′

r
− ν′λ′ − 2λ′

r

)
, (2.5)

where κ = 8π and ′ denotes the derivative with respect to
the radial coordinate r .

By defining a quantity, m(r), which represents the grav-
itational mass contained in a sphere of radius r , by the fol-
lowing expression,

e−λ = 1 − 2m(r)

r
, (2.6)

one can integrate Eq. (2.3) which yields,

m(r) = κ

2

∫ r

0
ρ(ω)ω2dω. (2.7)

For the regularity at the center, we require limr→0 m(r) = 0.
And using Eqs. (2.4) and (2.5), one can arrive at the follow-
ing equations,

ν′ = (κrPr + 2m/r2)

(1 − 2m/r)
, (2.8)

dPr

dr
= − (Pr + ρ)

2
ν′ + 2(Pt − Pr)

r
. (2.9)

1Throughout the work we will use c = G = 1, except in figures.
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Finally combining (2.8) and (2.9), one gets the anisotropic
generalization of well-known Tolman-Oppenheimer-Volkoff
(TOV) equation of hydrostatic equilibrium for stellar config-
uration (Oppenheimer and Volkoff 1939; Bowers and Liang
1974),

dPr

dr
= − (Pr + ρ)

2

(κrPr + 2m/r2)

(1 − 2m/r)
+ 2(Pt − Pr)

r
(2.10)

It is to be noted that the presence of an additional term,
2(Pt − Pr)/r , represents additional “force” due to the pres-
sure anisotropy, which is directed outward when Pt > Pr

and inward when Pt < Pr . The existence of repulsive force,
Pt > Pr , allows the construction of more compact distribu-
tion when using anisotropic fluid than when using isotropic
perfect fluid, Pt = Pr (León 1987; Gokhroo and Mehra
1994).

From Eqs. (2.4) and (2.5) one gets,

e−λ

4

(
2ν′′ + ν′2 + 2ν′

r
− ν′λ′ − 2λ′

r

)

+ 1

r2

(
1 − e−λ

) − ν′

r
e−λ = κ(Pt − Pr). (2.11)

Introducing the transformations

x = r2, Z(x) = e−λ(r), and y(x) = eν(r) (2.12)

Eqs. (2.3)–(2.5), and (2.7) take the following form,

κρ = 1 − Z

x
− 2Ż, (2.13)

κPr = 2Z
ẏ

y
− 1 − Z

x
, (2.14)

κPt = Z

[(
2ÿ

y
− ẏ2

y2

)
x + 2ẏ

y

]
+ Ż

(
1 + x

ẏ

y

)
, (2.15)

m(x) = κ

4

∫ x

0

√
ωρ(ω)dω, (2.16)

where ˙ denotes the derivative with respect to x.
Introducing 
 = Pt − Pr , the anisotropic factor, which

measures the pressure anisotropy within the star and com-
bining Eqs. (2.14) and (2.15) one obtains,

κ
 = Z

(
2ÿ

y
− ẏ2

y2

)
x + Ż

(
1 + x

ẏ

y

)
+ 1 − Z

x
. (2.17)

Equation (2.17) is first order linear in Z. An algorithm pre-
sented by Herrera et al. (2008) shows that all static spher-
ically symmetric anisotropic solutions of Einstein’s field
equations may be generated from Eq. (2.11) by two gen-
erating functions Π and y(x).

dZ

dx
+ P(x)Z = Q(x),

with the solution,

Z = e− ∫
P(x) dx

[∫ (
e
∫

P(x)dxQ(x)
)
dx + K

]
,

where, K is a constant of integration and

P(x) =
(

2xÿ
y

− x
ẏ2

y2 − 1
x
)

(1 + x
ẏ
y
)

,

Q(x) = Π − 1
x

(1 + x
ẏ
y
)
,

Π = κ
.

Once the metric potential Z is obtained, the other physical
variables may be expressed in terms of the generating func-
tions Π and y and the equation of state may be extracted,
parametrically, from Eqs. (2.13) and (2.14).

In this work we rather interested in specifying the equa-
tion of state first and one of the metric function Z, obtain-
ing the generating function y, and then the other generating
function, Π , from Eq. (2.17) . To accomplish this we assume
that the radial pressure, Pr , and the matter density ρ are re-
lated by a linear equation of state of the following form,

Pr = αρ − β, (2.18)

where α and β are constants.
Using Eq. (2.18) together with Eqs. (2.13) and (2.14) we

obtain

ẏ

y
= (1 + α)

1 − Z

2xZ
− α

Ż

Z
− κβ

2Z
. (2.19)

3 Solution of the Einstein field equations

To solve the system of Eqs. (2.13)–(2.16) let us take Tolman
VII potential given by

e−λ = 1 − x

R2
+ 4

A4
x2, (3.1)

therefore,

Z = 1 − ax + bx2, (3.2)

where, a = 1/R2 and b = 4/A4.
After feeding Z from Eq. (3.2) into Eq. (2.19) we obtain,

ẏ

y
= C1 + C2x

2(1 − ax + bx2)
, (3.3)

and integrating, we get,
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lny = 1√
4b − a2

(
C1 + aC2

2b

)
arctan

[
2bx − a√
4b − a2

]

+ C2

4b
ln

(
1 − ax + bx2) + C, (3.4)

where, C1 = a(1 + 3α) − κβ , C2 = −b(1 + 5α), and C is a
constant of integration to be determined by using an appro-
priate physical boundary condition. Therefore Eqs. (2.13)–
(2.16), with the help of Eqs. (3.2) and (3.4) become,

κρ = 3a − 5bx, (3.5)

κPr = (3aα − κβ) − 5bαx, (3.6)

κPt = κPr + κ
, (3.7)

m(x) = 1

2
x3/2(a − bx), (3.8)

where

κ
 = x

4(1 − ax + bx2)

[(
2aC1 + C2

1 + 4b + 4C2
)

− (4ab + 2aC2 − 4bC1 − 2C1C2)x

+ (
4b2 + C2

2

)
x2].

4 Physical acceptability conditions

For the well behaved nature of the solution, the following
conditions should be satisfied (Abreu et al. 2007):

(i) The metric potentials should be free from singularities
inside the radius of the star moreover the fluid sphere
should satisfy eν(0) = constant, and e−λ(0) = 1.

(ii) The density ρ and pressures Pr, Pt should be positive
inside the fluid configuration.

(iii) The radial pressure Pr must be vanishing but the
tangential pressure Pt may not necessarily vanish at
the boundary r = rΣ . However, the radial pressure is
equal to the tangential pressure at the center of the
fluid sphere, i.e., pressure anisotropy vanishes at the
center, 
(0) = 0 (Bowers and Liang 1974, Ivanov
2002) and 
(r = rΣ) = κ

C
Pt (rΣ) > 0 (Böhmer and

Harko 2006).
(iv) At the center, r = 0, dPr/dr = 0 and d2Pr/dr2 < 0

so the radial pressure gradient dPr/dr ≤ 0 for 0 ≤
r ≤ rΣ .

(v) At the center, r = 0, dρ/dr = 0 and d2ρ/dr2 < 0 so
the density gradient dρ/dr ≤ 0 for 0 ≤ r ≤ rΣ .

(vi) A physically acceptable fluid sphere must satisfy the
causality conditions, the radial and tangential adi-
abatic speeds of sound should less than the speed
of light. In the unit c = 1 the causality conditions
take the form 0 < v2

sr = dPr/dρ ≤ 1 and 0 < v2
st =

dPt/dρ ≤ 1.

(vii) The interior solution should satisfy either

• strong energy condition (SEC) ρ − Pr − 2Pt ≥
0, ρ − Pr ≥ 0, ρ − Pt ≥ 0 or

• dominant energy condition (DEC) ρ ≥ Pr and
ρ ≥ Pt .

(viii) The interior solution should continuously match with
the exterior Schwarzschild solution.

Conditions (iv) and (v) imply that pressure and density
should be maximum at the center and monotonically de-
creasing towards the surface.

5 Physical boundary conditions

5.1 Mass to radius ratio

The interior solution should match continuously with an ex-
terior Schwarzschild solution,

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

− r2(dθ2 + sin2 θdφ2); r ≥ rΣ . (5.1.1)

This requires the continuity of eν and eλ across the boundary
r = rΣ ,

eν(rΣ ) = e−λ(rΣ ) =
(

1 − 2M

rΣ

)
, (5.1.2)

which sets the compactness parameter,

2M

rΣ
= arΣ − br2

Σ. (5.1.3)

5.2 Determination of the constant of integration C

From Eq. (5.1.2), we get,

C = ln

(
1 − 2M

rΣ

)
− 1√

4b − a2

(
C1 + aC2

2b

)

× arctan

[
2br2

Σ − a√
4b − a2

]
− C2

4b
ln

(
1 − ar2

Σ + br4
Σ

)
.

6 Some features

6.1 Mass function

The mass function within the radius r can be obtained by
Eq. (3.8) or by,

m(r) = 1

2
r3(a − br2). (6.1)
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6.2 Mass radius relation

The ratio of mass to the radius of a compact star can not be
arbitrarily large. Buchdahl (1959) showed that for a (3 + 1)-
dimensional fluid sphere 2M/rΣ < 8/9. To see the ratio of
mass to the radius for our model we calculate the compact-
ness of the star given by,

u(r) = 2m(r)

r
= r2(a − br2). (6.2.1)

6.3 Surface redshift

The surface redshift zs of a star is given by

zs =
(

1 − 2M

rΣ

)− 1
2 − 1. (6.3.1)

7 Construction of physically realistic fluid spheres

7.1 Pressure and density gradients

A straightforward differentiation of the pressure and density
equations (3.5)–(3.7) with respect to the auxiliary variable x

one obtains the pressure and density gradients respectively,

κ
dρ

dx
= −5b < 0, (7.1.1)

κ
dPr

dx
= −5bα < 0 (7.1.2)

κ
dPt

dx
= κ

dPr

dx
+ κ

d


dx
, (7.1.3)

where

d


dx
= 1

4(1 − ax + bx2)2

[(
2aC1 + C2

1 + 4b + 4C2
)

+ (8bC1 + 4C1C2 − 8ab − 4aC2)x

+ (
4a2b + 2a2C2 − 6abC1 − 2aC1C2 − bC2

1

+ 8b2 − 4bC2 + 3C2
2

)
x2 − (

8ab2 + 2aC2
2

)
x3

+ (
4b3 + bC2

2

)
x4].

8 Relativistic adiabatic index and stability

The stability of a relativistic anisotropic sphere is related to
the adiabatic index Γ (the ratio of two specific heats) defined
by (Chan et al. 1993),

Γ = ρ + Pr

Pr

dPr

dρ
. (8.1)

It is well known that the collapsing condition for a New-
tonian isotropic sphere is Γ < 4/3 (Bondi 1964). For an
anisotropic general relativistic sphere the collapsing condi-
tion becomes

Γ <
4

3
+

[
4

3

(Pt0 − Pr0)

|P ′
r0|r

+ 1

2
κ

ρ0Pr0

|P ′
r0|

r

]

max
, (8.2)

where, Pr0, Pt0, and ρ0 are the initial radial, tangential, and
energy density in static equilibrium satisfying Eq. (2.10).
The first and last term inside the square brackets, the
anisotropic and relativistic corrections respectively, being
positive quantities, increase the unstable range of Γ (Her-
rera et al. 1979; Chan et al. 1993).

To study the stability of anisotropic stars under the ra-
dial perturbations Herrera (1992) introduced the concept of
“cracking”, breaking of self-gravitating spheres, which re-
sults from the appearance of total radial forces of different
signs in different regions of the sphere once the equilibrium
is perturbed. The occurrence of such a “cracking” may be
induced by the local anisotropy of the fluid.

By this concept of cracking Abreu et al. (2007) proved
that the region of the anisotropic fluid sphere where −1 ≤
v2
st − v2

sr ≤ 0 is potentially stable but the region where 0 <

v2
st − v2

sr ≤ 1 is potentially unstable.
The radial and tangential speeds of sound of the strange

star are obtained from Eqs. (3.5)–(3.7),

v2
sr = dPr

dρ
= α < 1, (8.3)

v2
st = dPt

dρ
= α + d


dρ
. (8.4)

To remain −1 ≤ v2
st − v2

sr ≤ 0 throughout the fluid distri-
bution we require d
/dρ ≤ 0. As we have dρ/dx < 0, we
further require that d
/dx ≥ 0 which will be satisfied as
long as 
 is an increasing function of x.

9 Physical analysis

As we require κρs ≥ 0 for 0 ≤ r ≤ rΣ , the radius of the
fluid distribution should satisfy rΣ ≤ √

3a/5b. To gener-
ate an anisotropic fluid sphere we set, a = 0.0248 (km−2)

and b = 0.000178 (km−4). These values correspond to
the surface density κρs = 0.06154840 km−2 (ρs = 3.29 ×
1015 g cm−3) and central density κρc = 0.0744 km−2 (ρc =
3.98 × 1015 g cm−3). We also set, α = 1/3 and β = ρs/3.
For these choices the maximum value of compactness pa-
rameter is obtained (2M/rΣ)max = 0.3209. The total grav-
itational mass and other physical quantities are calculated
as Mmax = 0.41M�, radius rΣ = 3.8 km, surface redshift
zs = 0.2135.



13 Page 6 of 9 P. Bhar et al.

Fig. 1 The metric functions eν and eλ. The solid (blue) line cor-
responds to eν and the dash-doted (red) line corresponds to eλ for
the anisotropic fluid sphere generated with a = 0.0248 km−2, b =
0.000178 km−4, and R = 3.8 km

Fig. 2 Behavior of energy density ρ (MeV fm−3) for the same stellar
configuration as in Fig. 1

The profiles of eν and eλ are plotted in Fig. 1. The pro-
files of ρ, Pr, Pt are shown in Figs. 2 and 3 respectively
which show the positivity of those quantities inside the
fluid sphere. The anisotropic factor 
 = Pt − Pr is shown
in Fig. 4. The figure indicates that 
 ≥ 0 for our model.
The strong and dominant energy conditions are presented
in Figs. 5 and 6. The profiles of vst and vsr are presented
in Fig. 7, from which it is clear that the speeds are not
superluminal for our model sphere and hence the causal-
ity conditions are satisfied. The profile of m(r) is given in
Fig. 8, which shows that the mass function is monotonically

Fig. 3 Behaviors of pressures in the unit of MeV fm−3 for the stellar
configuration as in Fig. 1. The solid (blue) line corresponds to radial
pressure, Pr , and the dashed (red) line corresponds to the tangential
pressure, Pt

Fig. 4 Behaviour of pressure anisotropy 
 in the unit of MeV fm−3

for the stellar configuration as in Fig. 1

increasing function of r and is positive inside the stellar
interior. The stability of the model anisotropic sphere has
been investigated by the relativistic adiabatic index Γ and
−1 ≤ v2

st − v2
sr ≤ 0 which is presented in Figs. 9 and 10 re-

spectively.

10 Concluding remarks

Under the ad hoc assumption on one of the metric poten-
tials (e−λ = 1 − ax + bx2) together with the linear equation
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Fig. 5 The strong energy condition for the stellar configuration as in
Fig. 1. The solid (blue) line corresponds to ρ − Pr , the dash-doted
(red) line corresponds to ρ − Pt , and the long dashed (black) line cor-
responds to ρ − Pr − 2Pt

Fig. 6 The dominant energy condition for the stellar configuration as
in Fig. 1. The solid (blue) line corresponds to ρ − Pr and the dash–
doted (red) line corresponds to ρ − Pt

of state Pr = (ρ − ρs)/3 we have solved EFE’s and pre-
sented a particular simple class of static spherically symmet-
ric anisotropic strange star models in Tolman VII spacetime.

In the construction of the stellar models we further as-
sumed Pt > Pr (
 > 0). The stability is examined by the
relativistic adiabatic index, and the adiabatic radial and tan-
gential sound speeds. Even though it is yet unclear to what
extent this metric can be applied to describe strange quark
stars but the stellar models obtained here with such physi-

Fig. 7 The adiabatic speeds of sound for the same stellar configuration
as in Fig. 1. The solid (blue) line corresponds to the radial velocity of
sound, vsr = √

dPr/dρ, and the dash-doted (red) line corresponds to
tangential velocity of sound, vst = √

dPt /dρ

Fig. 8 The mass function m(r) for the same stellar configuration as in
Fig. 1

cal features could play a significant role in the description
of internal structure of bare strange quark stars.
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Fig. 9 The relativistic adiabatic index Γ for the same stellar configu-
ration as in Fig. 1

Fig. 10 The difference v2
st − v2

sr for the same stellar configuration as
in Fig. 1
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