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Abstract The existence of non-collinear libration points
and their stability (in linear sense) are examined in the cir-
cular restricted three body problem, in which we have con-
sidered the smaller primary as an oblate spheroid and big-
ger one a point mass including the effect of dissipative force
specially Stokes drag. Two non-collinear libration points are
found but they are unstable for the given range of dissi-
pative constant k and oblateness factor A (i.e. 0 < k < 1
and 0 < A < 1 respectively). Stability of non-collinear li-
bration points are discussed using a different analytical ap-
proach. We have also shown analytically the non-existence
of collinear libration points due to effect of Stokes drag.

Keywords Restricted three body problem · Libration
points · Oblateness · Linear stability · Dissipative forces ·
Stokes drag

1 Introduction

The restricted problem of three bodies is a well known
problem studied by many mathematicians. The main aim
of this problem is to study the behavior of the infinitesimal
mass moving in the plane of motion of the primaries under
the various effects such as gravitational effect, radiation ef-
fect, oblateness effect, solar wind effect, Stokes drag effect,
Poynting Robertson drag effect etc. In classical case, grav-
itational effect of the primaries on the infinitesimal mass is
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taken into account and there exist three collinear and two
non-collinear libration points. The collinear libration points
are unstable in interval 0 ≤ μ ≤ 1/2 while non-collinear li-
bration points are stable for a critical value of mass param-
eter μ ≤ μc = 0.03852 . . . (Szebehely 1967). In contrast to
the classical case, by including Stokes drag the collinear li-
bration points does not exist but the non-collinear libration
points do exist and are unstable for all values of μ.

Many authors have been studied this problem by tak-
ing one or both the primaries as an oblate body includ-
ing radiation pressure. Subbarao and Sharma (1975) has in-
vestigated the non-collinear libration points in circular re-
stricted three body problem considering bigger primary as
an oblate spheroid and found that the non-collinear libra-
tion points forming nearly equilateral triangles with the pri-
maries. Murray (1994) has discussed the dynamical effect
of general drag in the planar circular restricted three body
problem and found that L4 and L5 are asymptotically stable
with this kind of dissipation. Sharma et al. (2001) have per-
formed an analysis on the existence of libration points when
both the primaries are triaxial rigid bodies. They have shown
that there exist five libration points, two triangular and three
collinear. Shu et al. (2004) have discussed the linear stabil-
ity of the equilibrium points in the Robes problem under the
perturbation of a drag force. They have derived the linearly
stable region of the equilibrium point in the perturbed Robes
problem with the drag given by Hallan et al., and improved
as well the results obtained by Giordano et al. Raheem and
Singh (2006) have studied the existence of the stability of
libration points under the effects of perturbation in corio-
lis and centrifugal forces, oblateness and radiation pressure.
They have found that the collinear points remain unstable
while the triangular points are stable for 0 ≤ μ < μc and
unstable for μc ≤ μ ≤ 1/2, where μc is the critical mass pa-
rameter depends upon the coriolis force, centrifugal force,
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oblateness and radiation pressure of the primaries. Aggar-
wal et al. (2006) have investigated the non-linear stability of
the triangular libration point L4 of the restricted three body
problem under the presence of the third and fourth order res-
onances, when the bigger primary is an oblate body and the
smaller a triaxial body and both are source of radiation. It
has found that L4 is always unstable in the third resonance
case and stable or unstable in the fourth order resonance
case depending upon the values of the different parameters.
Kushvah et al. (2007) have discussed the non-linear stability
in the generalized restricted three body problem with Poynt-
ing Robertson drag considering smaller primary as an oblate
body and bigger one as radiating. They have proved that the
triangular points are stable in non-linear sense. Abouelmagd
(2013) has studied the existence of triangular points and
their linear stability when the primaries are oblate spheroid
and sources of radiation considering the effect of oblateness
up to 10−6 of main terms in the restricted three body prob-
lem. He also proved that the triangular points are stable for
0 ≤ μ ≤ μc and unstable for μc ≤ μ ≤ 1/2, where μc is
the critical mass value depending on terms which involve
parameters that characterize the oblateness and radiation re-
pulsive forces.

Furthermore, Aggarwal and Kaur (2014) have analyzed
the equilibrium solutions and the linear stability of m3 and
m4 by taking one of the primaries as an oblate spheroid.
They have found that the two collinear libration points are
unstable and also found that in this particular case there
are no non-collinear equilibrium solutions of the system.
Lhotka and Celletti (2015) have investigated the stability of
the Lagrangian equilibrium points L4 and L5 in the frame-
work of the spatial elliptical restricted three body prob-
lem subject to the radial component of Poynting Robertson
drag. They have used averaging theory (i.e. average over the
mean anomaly of the perturbing planet) to discuss the tem-
porary stability of particles displaying tadpole motion. Pal
and Kushvah (2015) have determined the effect of radiation
pressure, Poynting Robertson drag and solar wind drag on
the sun- (earth-moon) restricted three body problem con-
sidering sun as a larger primary and the earth + moon as
a smaller primary and found that the collinear points devi-
ate from the axis joining the primaries, but the triangular
points remain unchanged. They have also found that trian-
gular points are unstable because of the drag forces. Jain
and Aggarwal (2015) have performed an analysis in the re-
stricted three body problem with Stokes drag effect. By tak-
ing both primaries m1, m2 as the point masses, we found two
non-collinear stationary solutions which are linearly unsta-
ble.

We have extended the study of Jain and Aggarwal (2015)
to the restricted three body problem when one of the pri-
maries is an oblate spheroid. In this paper we are consider-
ing the smaller primary as an oblate spheroid and the big-
ger one as a point mass. In the present paper, our aim is to

Fig. 1 Configuration of the restricted three body problem with Stokes
Drag �S

study the combined effect of stokes drag and oblateness on
the stability of non-collinear libration points L4 and L5 lin-
early. There are five sections in this paper. In Sect. 2, the
equations of motion of the infinitesimal mass m3 have been
determined. In Sect. 3, location of the non-collinear libration
points have been investigated. In Sect. 4, we have checked
the stability of the non-collinear libration points. In the last
Sect. 5, the conclusion is drawn.

2 Equations of motion

Suppose m1 and m2 are the primaries revolving with angular
velocity n in circular orbits about their center of mass O , an
infinitesimal mass m3 is moving in the plane of motion of
m1 and m2. The line joining m1 and m2 is taken as X-axis
and ‘O’ their center of mass as origin and the line passing
through O and perpendicular to OX and lying in the plane
of motion of m1 and m2 is the Y -axis. We consider a synodic
system of coordinates O (xyz); initially coincident with the
inertial system O (XYZ), rotating with the angular velocity n
about Z-axis; (the z-axis is coincident with Z-axis) (Fig. 1).

The equations of motion of the infinitesimal mass m3 in
the synodic coordinate system and dimensionless variables
when bigger primary is a point mass and smaller one is an
oblate spheroid are

ẍ − 2nẏ = �x − k
(
ẋ − y + αS′

y

)
, (1)

and

ÿ + 2nẋ = �y − k
(
ẏ + x − αS′

x

)
. (2)

where

�x = n2x − (1 − μ)
(x − μ)

r3
1

− μ
(x + 1 − μ)

r3
2

(
1 + 3A

2r2
2

)
,
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�y = n2y − (1 − μ)

r3
1

y − μ

r3
2

y

(
1 + 3A

2r2
2

)
,

n = 1 + 3

4
A is the mean motion of the primaries,

A = a2 − c2

5
is the oblateness factor,

r2
1 = (x − μ)2 + y2, (3)

r2
2 = (x + 1 − μ)2 + y2, (4)

μ = m2

m1 + m2
≤ 1

2
⇒ m1 = 1 − μ;m2 = μ,

�S = Stokes drags Force acting on m3 due to m1 along

m1 m3.

The components of Stokes drag along the synodic axes
(x, y) are Sx = k(ẋ − y) + αS′

y and Sy = k(ẏ + x) − αS′
x ,

where k ∈ (0,1) is the dissipative constant, depending on
several physical parameters like the viscosity of the gas, the
radius and mass of the particle.

S′ = S′(r) = r
−3
2 , is the keplerian angular velocity at dis-

tance r = √
x2 + y2 from the origin of the synodic frame

and α ∈ (0,1) is the ratio between the gas and keplerian ve-
locities.

�r = OP = xi + yj,

�ω = nK = Angular velocity of the axes O(xy) = constant.

The Stokes drag effect is of the order of k = 10−5, α = 0.05
(generally k ∈ (0,1) and α ∈ (0,1) as stated above).

3 Non-collinear libration points

The non-collinear libration points are the solution of the
equations

n2x − (1 − μ)
(x − μ)

r3
1

− μ
(x + 1 − μ)

r3
2

(
1 + 3A

2r2
2

)

+ k

(
y + 3

2
α
(
x2 + y2)−7

4 y

)
= 0, (5)

and

n2y − (1 − μ)

r3
1

y − μ

r3
2

y

(
1 + 3A

2r2
2

)

− k

(
x − 3

2
α
(
x2 + y2)−7

4 x

)
= 0. (6)

In the above equations, if we put k = 0, the obtained results
are agreed with Khanna and Bhatnagar (1999) i.e.

n2x − (1 − μ)
(x − μ)

r3
1

− μ
(x + 1 − μ)

r3
2

(
1 + 3A

2r2
2

)
= 0,

and

n2y − (1 − μ)

r3
1

y − μ

r3
2

y

(
1 + 3A

2r2
2

)
= 0.

Due to the presence of the Stokes drag force, it is clear from
Eqs. (5) and (6) that collinear libration solution does not ex-
ist, so we restrict our analysis to these points. The location
of the non-collinear libration points when smaller primary
is an oblate spheroid are given by (Khanna and Bhatnagar
1999)

x0 = μ − 1

2
(1 − A),

y0 = ±
√

3

2

(
1 − A

3

)
.

Now, we suppose that the solution of the Eqs. (5) and (6)
when k �= 0and y �= 0 are given by

x̄ = x0 + π1, ȳ = y0 + π2, π1,π2 << 1

On substituting the values of (x̄, ȳ) in Eqs. (5) and (6), and
applying Taylor’s series and considering only linear terms in
π1 and π2, we get

π1

[
1 + (1 − μ)

3(x0 − μ)2

{(r1)2} 5
2

− 1

{(r1)2} 3
2

+ μ
3(x0 + 1 − μ)2

{(r2)2} 5
2

− 1

{(r2)2} 3
2

]

+ π2

[
(1 − μ)

3(x0 − μ)y0

{(r1)2} 5
2

+ μ
3(x0 + 1 − μ)y0

{(r2)2} 5
2

]

+ A

(
3y0(x0 + 1 − μ)μ

{(r2)2} 7
2

π2 + 9

2

(x0 + 1 − μ)2μ

{(r2)2} 7
2

π1

+ 3μ(x0 + 1 − μ)2

{(r2)2} 7
2

π1 + 3

2
π1 + 9

2

μy0(x0 + 1 − μ)

{(r2)2} 7
2

π2

− 3

2

μ(x0 + 1 − μ)

{(r2)2} 7
2

− 3μ

2{(r2)2} 5
2

π1

)

+ k

[
y0 + 3

2
α
(
x2

0 + y2
0

)−7
4 y0

]
= 0 (7)

and

π2

[
1 + (1 − μ)

3y2
0

{(r1)2} 5
2

− 1

{(r1)2} 3
2

+ μ
3y2

0

{(r2)2} 5
2

− 1

{(r2)2} 3
2

]
+ π1

[
(1 − μ)

3(x0 − μ)y0

{(r1)2} 5
2

+ μ
3(x0 + 1 − μ)y0

{(r2)2} 5
2

]
+ A

(
3y0(x0 + 1 − μ)μ

{(r2)2} 7
2

π1
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+ 9

2

y0(x0 + 1 − μ)2μ

{(r2)2} 7
2

π1 + 3μy2
0

{(r2)2} 7
2

π2 + 3

2
π2

+ 9

2

μy2
0

{(r2)2} 7
2

π2 − 3

2

μ

{(r2)2} 5
2

π2 − 3y0μ

2{(r2)2} 7
2

)

− k

[
x0 + 3

2
α
(
x2

0 + y2
0

)−7
4 x0

]
= 0. (8)

where

r2
1 = (x0 − μ)2 + y2

0 ,

r2
2 = (x0 + 1 − μ)2 + y2

0 ,

Since x0 = μ − 1
2 (1 − A) and y0 = ±

√
3

2 (1 − A
3 ), therefore

on solving Eqs. (7) and (8), we have

π1 = − 1

2
√

3A
k −

√
3kα

2A
,

π2 = k

6A
+ αk

2A
+ μk

6A
.

Hence, the location of the non-collinear libration points
L4 and L5 are given by

x̄ = μ − 1

2
(1 − A) − k

2
√

3A
+ 3

√
3α

4A2
+

√
3

4A2
,

ȳ = ±
√

3

2

(
1 − A

3

)
+ 1

6A
μk + αk

2A
+ k

6A
.

(9)

4 Stability of L4,5

The variational equations can be written by substituting
x = x̄ + ξ and y = ȳ + η in the equations of motion (1) and
(2), where (x̄, ȳ) are the coordinates of the non-collinear li-
bration points.

Therefore, expanding f (x̄, ȳ) and g(x̄, ȳ) by Taylors
Theorem, we get

ξ̈ − 2η̇ = �x(x̄, ȳ) + ξ

[
n2 − (1 − μ)

(r̄1)3
+ 3(1 − μ)(x̄ − μ)2

(r̄1)5

+ 3μ(x̄ + 1 − μ)2

(r̄2)5

(
1 + 3A

2r̄2
2

)
− μ

(r̄2)3

(
1 + 3A

2r̄2
2

)

+ 3μA(x̄ + 1 − μ)2

(r̄2)7 − k − 21x̄ȳα

4

(
x̄2 + ȳ2)−11

4 k

]

+ η

[
3ȳμ(x̄ + 1 − μ)

(r̄2)5

(
1 + 3A

2r̄2
2

)

+ 3ȳ(1 − μ)(x̄ − μ)

(r̄1)5
+ 3ȳμ(x̄ + 1 − μ)A

(r̄2)7 + k

+ 3

2
α
(
x̄2 + ȳ2)−7

4 k − 21

4
ȳ2α

(
x̄2 + ȳ2)−11

4 k

]
,

(10)

η̈ + 2ξ̇ = �y(x̄, ȳ) + ξ

[
3ȳμ(x̄ + 1 − μ)

(r̄2)5

(
1 + 3A

2r̄2
2

)

+ 3ȳ(1 − μ)(x̄ − μ)

(r̄1)5
+ 3ȳμ(x̄ + 1 − μ)A

(r̄2)7 − k

− 3

2
α
(
x̄2 + ȳ2)−7

4 k + 21

4
x̄2α

(
x̄2 + ȳ2)−11

4 k

]

+ η

[
n2 − (1 − μ)

(r̄1)3
− μ

(r̄2)3

(
1 + 3A

2r̄2
2

)

+ ȳ2
{

3(1 − μ)

(r̄1)5
+ 3μ

(r̄2)5

(
1 + 3A

2r̄2
2

)
+ 3μA

r̄7
2

}

− k + 21x̄ȳα

4

(
x̄2 + ȳ2)−11

4 k

]
. (11)

Suppose the trial solution of Eqs. (10) and (11) is

ξ = ξ0e
λt , η = η0e

λt

where ξ0 and η0 are constants and λ is a complex constant.
Then we have

λ2ξ0e
λt − 2λη0e

λt

= ξ0e
λt

[
n2 − (1 − μ)

(r̄1)3
+ 3(1 − μ)(x̄ − μ)2

(r̄1)5

+ 3μ(x̄ + 1 − μ)2

(r̄2)5

(
1 + 3A

2r̄2
2

)
− μ

(r̄2)3

(
1 + 3A

2r̄2
2

)

+ 3μA(x̄ + 1 − μ)2

(r̄2)7 + λk − 21x̄ȳα

4

(
x̄2 + ȳ2)−11

4 k

]

+ η0e
λt

[
3ȳμ(x̄ + 1 − μ)

(r̄2)5

(
1 + 3A

2r̄2
2

)

+ 3ȳ(1 − μ)(x̄ − μ)

(r̄1)5
+ 3ȳμ(x̄ + 1 − μ)A

(r̄2)7 + λk

+ 3

2
α
(
x̄2 + ȳ2)−7

4 k − 21

4
ȳ2α

(
x̄2 + ȳ2)−11

4 k

]
, (12)

λ2η0e
λt + 2λξ0e

λt

= ξ0e
λt

[
3ȳμ(x̄ + 1 − μ)

(r̄2)5

(
1 + 3A

2r̄2
2

)

+ 3ȳ(1 − μ)(x̄ − μ)

(r̄1)5
+ 3ȳμ(x̄ + 1 − μ)A

(r̄2)7 − λk

− 3

2
α
(
x̄2 + ȳ2)−7

4 k + 21

4
x̄2α

(
x̄2 + ȳ2)−11

4 k

]

+ η0e
λt

[
n2 − (1 − μ)

(r̄1)3
− μ

(r̄2)3

(
1 + 3A

2r̄2
2

)
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+ ȳ2
{

3(1 − μ)

(r̄1)5
+ 3μ

(r̄2)5

(
1 + 3A

2r̄2
2

)
+ 3μA

r̄7
2

}
− λk

+ 21x̄ȳα

4

(
x̄2 + ȳ2)−11

4 k

]
. (13)

Now, from Eqs. (12) and (13), the following simultaneous
linear equations can be derived

ξ

{
λ2 + 1 − μ

(r̄1)3

(
1 − 3(x̄ − μ)2

(r̄1)2

)

+ μ

(r̄2)3

(
1 − 3(x̄ + 1 − μ)2

(r̄2)2

)

+ 3μ

r̄5
2

A

(
1

2
− 3(x̄ + 1 − μ)2

2(r̄2)2
− (x̄ + 1 − μ)2

(r̄2)2

)
− n2

− λk + 21x̄ȳα

4

(
x̄2 + ȳ2)−11

4 k

}

+ η

{
−2λ − 3ȳμ(x̄ + 1 − μ)

(r̄2)5
− 3ȳ(1 − μ)(x̄ − μ)

(r̄1)5

− 3μȳ

r̄3
2

A

(
3(x̄ + 1 − μ)

2(r̄2)4
+ (x̄ + 1 − μ)

(r̄2)4

)
− λk

− 3

2
α
(
x̄2 + ȳ2)−7

4 k − 21

4
ȳ2α

(
x̄2 + ȳ2)−11

4 k

}
= 0 (14)

and

ξ

{
2λ − 3ȳμ(x̄ + 1 − μ)

(r̄2)5
− 3ȳ(1 − μ)(x̄ − μ)

(r̄1)5

− 3μȳ

r̄3
2

A

(
3(x̄ + 1 − μ)

2(r̄2)4
+ (x̄ + 1 − μ)

(r̄2)4

)
+ λk

+ 3

2
α
(
x̄2 + ȳ2)−7

4 k − 21

4
x̄2α

(
x̄2 + ȳ2)−11

4 k

}

+ η

{
λ2 + 1 − μ

(r̄1)3

(
1 − 3ȳ2

(r̄1)2

)
+ μ

(r̄2)3

(
1 − 3ȳ2

(r̄2)2

)

+ 3μ

r̄5
2

A

(
1

2
− 3ȳ2

2(r̄2)2
− ȳ2

(r̄2)2

)
− n2

− λk − 21x̄ȳα

4

(
x̄2 + ȳ2)−11

4 k

}
= 0. (15)

The linear equations (14) and (15) can be written as

ξ
(
λ2 + e − h + i − n2 − λkx̄, ˙̄x − kx̄,x̄

)

+ η(−2λ − g + j − λkx̄, ˙̄y − kx̄,ȳ ) = 0 (16)

ξ(2λ − g + j − λkȳ, ˙̄x + kȳ,x̄ )

+ η
(
λ2 + e − f + l − n2 − λkȳ, ˙̄y − kȳ,ȳ

) = 0 (17)

where

e = 1 − μ

(r̄1)3
+ μ

(r̄2)3
, (18)

f = 3

[
1 − μ

(r̄1)5
+ μ

(r̄2)5

]
ȳ2, (19)

g = 3

[
(1 − μ)(x̄ − μ)

(r̄1)5
+ μ(x̄ + 1 − μ)

(r̄2)5

]
ȳ, (20)

h = 3

[
(1 − μ)(x̄ − μ)2

(r̄1)5
+ μ(x̄ + 1 − μ)2

(r̄2)5

]
, (21)

i = 3A

[
μ

2(r̄2)5
− 3μ(x̄ + 1 − μ)2

2(r̄2)7 − (x̄ + 1 − μ)2

(r̄2)7

]
, (22)

j = 3A

[
3μ(x̄ + 1 − μ)

2(r̄2)7 + μ(x̄ + 1 − μ)

(r̄2)7

]
ȳ, (23)

l = 3A

[
μ

2(r̄2)5
− 3μȳ2

2(r̄2)7 − μȳ2

(r̄2)7

]
. (24)

and

kx̄,x̄ =
(

∂Sx

∂x

)

−
= 21

4
α
(
x̄2 + ȳ2)−11

4 x̄ȳk,

kx̄, ˙̄x =
(

Sx

∂ẋ

)

−
= k,

kx̄,ȳ =
(

∂Sx

∂y

)

−
= −k + 21

4
ȳ2α

(
x̄2 + ȳ2)−11

4 k,

kx̄, ˙̄y =
(

∂Sx

∂ẏ

)

−
= 0,

kȳ,x̄ =
(

∂Sy

∂x

)

−
= k + 21

4
x̄2α

(
x̄2 + ȳ2)−11

4 k,

kȳ, ˙̄x =
(

∂Sy

∂ẋ

)

−
= 0,

kȳ,ȳ =
(

∂Sy

∂y

)

−
= 21

4
α
(
x̄2 + ȳ2)−11

4 x̄ȳk,

kȳ, ˙̄y =
(

∂Sy

∂ẏ

)

−
= k.

(25)

Neglecting terms of O(k2), the condition for the determi-
nant of the linear equations defined by Eqs. (16) and (17) to
be zero is

λ4 − (kx̄, ˙̄x + kȳ, ˙̄y)λ
3 + [

2
(
e − n2) − f − h − kx̄,x̄

+ 2(kx̄, ˙̄y − kȳ, ˙̄x) − kȳ,ȳ + l + i + 4 − (kx̄, ˙̄ykȳ, ˙̄x

+ kx̄, ˙̄xkȳ, ˙̄y)
]
λ2 + [(

n2 − e + f
)
kx̄, ˙̄x + (i − e + h)kȳ, ˙̄y

+ 2(kx̄,ȳ − kȳ,x̄ ) + n2kȳ, ˙̄y − g(kx̄, ˙̄y + kȳ, ˙̄x)

+ j (kx̄, ˙̄y + kȳ, ˙̄x) − lkx̄, ˙̄x + (kx̄, ˙̄xkȳ,ȳ + kx̄,x̄kȳ, ˙̄y)
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− (kx̄, ˙̄ykȳ,x̄ + kȳ, ˙̄xkx̄,ȳ )
]
λ + [(

e − h − n2)(e − f − n2)

− g2 + (
n2 − e + f

)
kx̄,x̄ + (

n2 − e + h
)
kȳ,ȳ

− g(kx̄,ȳ + kȳ,x̄ ) + l
(
e − h + i − n2) + i

(
e − f − n2)

+ j (kx̄,ȳ + kȳ,x̄ ) − lkx̄,x̄ − ikȳ,ȳ + (kx̄,x̄kȳ,ȳ − kx̄,ȳkȳ,x̄ )

+ 2gj − j2] = 0 (26)

This quadratic equation (26) has the general form

λ4 + σ3λ
3 + (σ20 + σ2)λ

2 + σ1λ + (σ00 + σ0) = 0 (27)

where

σ0 = (
n2 − e + f

)
kx̄,x̄ + (

n2 − e + h
)
kȳ,ȳ − g(kx̄,ȳ + kȳ,x̄ )

+ l
(
e − h + i − n2) + i

(
e − f − n2) + j (kx̄,ȳ + kȳ,x̄ )

− lkx̄,x̄ − ikȳ,ȳ + (kx̄,x̄kȳ,ȳ − kx̄,ȳkȳ,x̄ ) + 2gj − j2),

σ1 = (
n2 − e + f

)
kx̄, ˙̄x + (i − e + h)kȳ, ˙̄y + 2(kx̄,ȳ − kȳ,x̄ )

+ n2kȳ, ˙̄y − g(kx̄, ˙̄y + kȳ, ˙̄x) + j (kx̄, ˙̄y + kȳ, ˙̄x)

− lkx̄, ˙̄x + (kx̄, ˙̄xkȳ,ȳ + kx̄,x̄kȳ, ˙̄y) − (kx̄, ˙̄ykȳ,x̄ + kȳ, ˙̄xkx̄,ȳ ),

σ2 = −kȳ,ȳ − kx̄,x̄ + 2(kx̄, ˙̄y − kȳ, ˙̄x) + l + i + 4 − (kx̄, ˙̄ykȳ, ˙̄x
+ kx̄, ˙̄xkȳ, ˙̄y),

σ3 = −kx̄, ˙̄x − kȳ, ˙̄y,

σ20 = 2
(
e − n2) − f − h,

σ00 = (
e − h − n2)(e − f − n2) − g2.

The values of σ00, σ20 and σi (i = 0,1,2,3) can be obtained
by evaluating e, f, g and hdefined earlier. The value of the
coefficient in the zero drag case is denoted by adding addi-
tional subscript 0.

σ00 = 27

4
μ + 9

2
A − 9μA + 3

√
3

4
k,

σ20 = −3 −
√

3

A
k + 2√

3
k,

σ0 = 27

16
A + 9

4
μA + 3

√
3

8
k,

σ1 = 2k − 3

2
Ak + 33

8
μAk,

σ2 = 4 − 3

4
A − 15

4
μA,

σ3 = −2k.

(28)

By assuming σi to be small, we investigate the stability of
the non zero drag case. We can use the classical solutions of

the zero drag case (i.e. when k = 0). Equation (27) reduces
to

λ4 + σ20λ
2 + σ00 = 0. (29)

The four classical solutions for L4 and L5 to O(μ)are
given by the pair of values

L4,5: λ1,2 = ±
√

−1 + 27

4
μ

λ3,4 = ±
√

−27

4
μ

(30)

The four roots of the classical characteristic equation can be
written as

λn = ±Ti (n = 1, . . . ,4) (31)

where

T =

√√
√√σ20±

√
σ 2

20 − 4σ00

2
(32)

is a real quantity for L4 and L5. Using the values of σ00 and
σ20 given in Eqs. (28), we have

T2 = 1 − 27

4
μ and T2 = 27

4
μ (33)

In the case of drag, we assume a solution of the form

λ = λn(1 + ρ + υi)

= [∓υ ± (1 + ρ)i
]
T (34)

where ρ and υ are small real quantities. To lowest order we
have

λ2 = [−(1 + 2ρ) − 2υi)
]
T2 (35)

λ3 = [±3υ ∓ (1 + 3ρ)i)
]
T3 (36)

λ4 = [
(1 + 4ρ) + 4υi)

]
T4 (37)

Substituting these in equation (27), and neglecting products
of ρ or υ with σi , and solving the real and imaginary parts
of the resulting simultaneous equations for ρ or υ we get

υ = ±σ3T2 ∓ σ1

2T(2T2 − σ20)
, (38)

ρ = (σ00 + σ0) − (σ20 + σ2)T2 + T4

2T2(σ20 − 2T2)
. (39)

(i) The stability of L4

For L4, we have

υ = σ3T2 − σ1

2T(2T2 − σ20)
, (40)
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ρ = (σ00 + σ0) − (σ20 + σ2)T2 + T4

2T2(σ20 − 2T2)
. (41)

On putting the values of σi , in Eqs. (40) and (41) from
Eq. (28) and also taking, T2 = 27

4 μ, we have

υ = k(−16 − 108μ)

36
√

3μ(2 + 9μ)
+ k(12 + 33μ)A

36
√

3μ(2 + 9μ)
,

ρ =
(−11

√
3 − 162μ

72(2 + 9μ)
+ (−11 + 3μ − 45μ2)A

36μ(2 + 9μ)2

)

+
(−18

√
3 − 33μ − 9

√
3μ + 162

√
3μ2

162(2 + 9μ)2
k

+ (−22
√

3 + 6
√

3μ − 90
√

3μ2)A

162(2 + 9μ)2
k

)
.

Now, putting these values of ρ and υ in Eq. (37), and ne-
glecting the terms of O(kμ), we get the characteristic equa-
tion as

λ4 −
(

27μ(−24
√

3k + 216μ − 66
√

3μ − 44kμ − 12
√

3μk

+ 972μ2 − 297
√

3μ2 + 216
√

3μ2k
)/(

32(2 + 9μ)2)

−
(

9{μ(18 + 4
√

3k + 81μ)(11 − 3μ + 45μ2)}A
)

/(
16(2 + 9μ)2) = 0

whose roots are

λ1 = −
[
− 891μA

2(2 + 9μ)2
+ 7533μ2A

16(2 + 9μ)2
+ 729μ2

4(2 + 9μ)2

] 1
4

,

λ2 = −i

[
− 891μA

2(2 + 9μ)2
+ 7533μ2A

16(2 + 9μ)2
+ 729μ2

4(2 + 9μ)2

] 1
4

,

λ3 = i

[
− 891μA

2(2 + 9μ)2
+ 7533μ2A

16(2 + 9μ)2
+ 729μ2

4(2 + 9μ)2

] 1
4

,

λ4 =
[
− 891μA

2(2 + 9μ)2
+ 7533μ2A

16(2 + 9μ)2
+ 729μ2

4(2 + 9μ)2

] 1
4

.

Also on taking T 2 = 1 − 27
4 μ in Eqs. (40) and (41) from

Eq. (28), we get the characteristic equation as

λ4 +
(
(−4 + 27μ)(2400 − 440

√
3 − 30348μ − 6102

√
3μ

+ 61236μ2 + 13851
√

3μ2)
)/(

96(−10 + 27μ)2)

+
(
(−4 + 27μ)(1110 − 148

√
3k − 4287μ − 172

√
3μk

− 567μ2 − 540
√

3μ2k + 10935μ3)
)

/(
16(−10 + 27μ)2) + 8

5
ik − 3

5
Aik = 0.

whose roots are

λ1 = −
[
− (8 − 3A)ik

5
+

(
100

(10 − 27μ)2
− 55√

3(10 − 27μ)2

+ 555A

2(10 − 27μ)2
− 3879μ

2(10 − 27μ)2
− 261

√
3μ

2(10 − 27μ)2

− 23559Aμ

8(10 − 27μ)2

)] 1
4

,

λ2 = −
[
(8 − 3A)k

5
+

(
100

(10 − 27μ)2
− 55√

3(10 − 27μ)2

+ 555A

2(10 − 27μ)2
− 3879μ

2(10 − 27μ)2
− 261

√
3μ

2(10 − 27μ)2

− 23559Aμ

8(10 − 27μ)2

)
i

] 1
4

,

λ3 =
[
(8 − 3A)k

5
+

(
100

(10 − 27μ)2
− 55√

3(10 − 27μ)2

+ 555A

2(10 − 27μ)2
− 3879μ

2(10 − 27μ)2
− 261

√
3μ

2(10 − 27μ)2

− 23559Aμ

8(10 − 27μ)2

)
i

] 1
4

,

λ4 =
[
− (8 − 3A)ik

5
+

(
100

(10 − 27μ)2
− 55√

3(10 − 27μ)2

+ 555A

2(10 − 27μ)2
− 3879μ

2(10 − 27μ)2
− 261

√
3μ

2(10 − 27μ)2

− 23559Aμ

8(10 − 27μ)2

)] 1
4

.

If υ �= 0,

According to Murray (1994), the resulting motion of a
particle is asymptotically stable only when all the real parts
of λare negative and the condition for asymptotically stable
under the arbitrary drag force is given by

0 < σ1 < σ3 (42)

where σ1 and σ3 are defined in Eq. (26). But we see that
the linear stability of triangular equilibrium points does not
depend on the value of kx,x and ky,y . Therefore the condition
σ3 > 0 can only be satisfied when k is positive and the drag
force is a function of ẋ and ẏ.

But here in our case of Stokes drag σ1 = 2k, σ3 = −2k

and therefore σ1 > σ3 and hence L4 is not asymptotically
stable. Further one of the roots of λ i.e. λ4 has positive real
root. Therefore L4 is not stable. Thus we conclude that L4

is neither stable nor asymptotically stable and hence linearly
unstable.
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Similarly, we conclude that L5 is neither stable nor
asymptotically stable and hence linearly unstable.

5 Conclusion

In the present paper, we have considered the smaller primary
as an oblate spheroid and bigger one as a point mass. It is
observed that there exist two non-collinear libration points
L4,5(x̄, ȳ) (Eq. (9)).

Under the effect of Stokes drag, we have derived a set of
linear equations (Eqs. (16) and (17)), from which we derive
a characteristic equation having the general form (Eq. (27)).
Thereafter, we have derived the approximate expressions for
σ0, σ1, σ2, σ3, σ00 and σ20 occurring in the above character-
istic equation. These expressions are given in terms of the
partial derivatives of the Stokes drag, evaluated at the libra-
tion points.

In the case of drag force, by using the terminology of
Murray, we assume a solution of the form (Eq. (34)). Where
υ and ρ are small real quantities and

λn = ±Ti (n = 1, . . . ,4)

is a real quantity for L4 and L5 in the classical case. The
values of υ and ρ (Eqs. (38), (39)) have been obtained by
substituting the values of λ, λ2, λ3 and λ4 in the character-
istic equation.

By using Murray terminology, to investigate the stability
of the shifted points, the resulting motion of a particle is
asymptotically stable only when all the real parts of λ are
negative and the condition for asymptotical stability under
the drag force is given by (Eq. (42)).

The condition σ3 > 0 can only be satisfied when k > 0.
In the case of Stokes drag σ1 = 2k and σ3 = −2k therefore
Eq. (42) is not satisfied. Therefore L4 and L5 are not asymp-
totically stable. Further we have seen that one of the roots of
λ i.e. λ4 has positive real root, thus L4 and L5 are not stable.
Hence due to Stokes drag, L4 and L5 are neither stable nor
asymptotically stable but unstable whereas in the classical
case L4 and L5 are stable for the mass ratio μ < 0.03852
(Szebehely 1967).

In the case of Stokes drag effect (both the primaries are
point masses), when k = 0 the results obtained are in con-
formity with the classical problem (Szebehely 1967). When

A = 0 (smaller primary is an oblate spheroid and bigger one
is a point mass), the results obtained are in conformity with
those of Jain and Aggarwal (2015).

References

Abouelmagd, E.I.: Stability of the triangular points under com-
bined effects of radiation and oblateness in the restricted
three-body problem. Earth Moon Planets (2013). doi:10.1007/
s11038-013-9415-5

Aggarwal, R., Taqvi, Z.A., Ahmad, I.: Non-linear stability of L4 in
the restricted three body problem for radiated axes symmetric pri-
maries with resonances. Bull. Astron. Soc. India 34(4), 327–356
(2006)

Aggarwal, R., Kaur, B.: Robe’s restricted problem of 2+2 bodies with
one of the primaries an oblate body. Astrophys. Space Sci. 352(2),
467–479 (2014)

Jain, M., Aggarwal, R.: Restricted three body problem with Stokes
drag effect. Int. J. Astron. Astrophys. 5, 95–105 (2015)

Khanna, M., Bhatnagar, K.B.: Existence and stability of libration
points in the restricted three body problem when the smaller pri-
mary is a triaxial rigid body and the bigger one an oblate spheroid.
Indian J. Pure Appl. Math. 30(7), 721–733 (1999)

Kushvah, B.S., Sharma, J.P., Ishwar, B.: Nonlinear stability in the
generalized photogravitational restricted three body problem with
Poynting–Robertson drag. Astrophys. Space Sci. 312, 279–293
(2007)

Lhotka, C., Celletti, A.: The effect of Poynting Robertson drag on the
triangular Lagrangian points. Astrophys. Space Sci. 250, 249–261
(2015)

Murray, C.D.: Dynamical effects of drag in the circular restricted three
body problems: 1. Location and stability of the Lagrangian equi-
librium points. Icarus 112, 465–484 (1994)

Pal, A.K., Kushvah, B.S: Geometry of halo and Lissajous orbits in the
circular restricted three body problem with drag forces. Mon. Not.
R. Astron. Soc. 446, 959–972 (2015)

Raheem, A.R., Singh, J.: Combined effects of perturbations, radiation
and oblateness on the stability of equilibrium points in the re-
stricted three-body problem. Astron. J. 131, 1880–1885 (2006)

Sharma, R.K., Taqvi, Z.A., Bhatnagar, K.B.: Existence of libration
points in the restricted three body problem when both the pri-
maries are triaxial rigid bodies. Indian J. Pure Appl. Math. 32(1),
125–141 (2001)

Shu, S., Lu, B., Cheng, W., Liu, F.: A criteria for the linear stability of
the equilibrium points in the perturbed restricted three body prob-
lem and its application in robes problem. Chin. Astron. Astrophys.
28(4), 432–440 (2004)

Subbarao, P.V., Sharma, R.K.: A note on the stability of the triangular
points of equilibrium in the restricted three body problem. Astron.
Astrophys. 43, 381–383 (1975)

Szebehely, V.: Theory of Orbits, the Restricted Problem of Three Bod-
ies. Academic Press, New York (1967)

http://dx.doi.org/10.1007/s11038-013-9415-5
http://dx.doi.org/10.1007/s11038-013-9415-5

	A study of non-collinear libration points in restricted three body problem with stokes drag effect when smaller primary is an oblate spheroid
	Abstract
	Introduction
	Equations of motion
	Non-collinear libration points
	Stability of L4,5
	Conclusion
	References


