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Abstract We provide a set of exact spherically symmetric
solutions describing the interior of a relativistic star under
f (T ) modified gravity. To tackle the problem with lucidity
we also assume the existence of a conformal Killing vec-
tor field within this f (T ) gravity. We study several cases of
interest to explore physically valid features of the solutions.

Keywords General Relativity · f (T ) gravity · Conformal
motion · Stellar model

1 Introduction

To search and understand deeply physical aspects of the as-
trophysical and cosmological phenomena there still remain
several challenging and intrigued problems for the theoret-
ical physicists. Einstein’s theory of gravitation, though has
been always a very fruitful tool for uncovering hidden mys-
teries of Nature, does not meet all the criteria to explain the
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current paradigm of astrophysics and cosmology. As a re-
sult, several alternative theories of gravity have been pro-
posed time to time. Recently, two generalized functional
theories, namely, f (R) gravity and f (T ) gravity, received
more attention as an alternative theories of Einsteinian grav-
itational theory.

However, f (T ) theory of gravity is more controllable
than f (R) theory because the field equations in the for-
mer one are restricted to the second order differential equa-
tions whereas the later case is relatively difficult to handle
as those are of fourth order differential equations (Böhmer
et al. 2011). Obviously one can take help from the Pala-
tini approach to make f (R) theory a second order sys-
tem of differential equations (Durrer and Maartens 2010;
De Felice and Tsujikawa 2010; Sotiriou and Faraoni 2010).
Another general feature of f (T ) gravity is that its construc-
tion is associated with a generalized Lagrangian (Bengochea
and Ferraro 2009; Linder 2010).

In connection to application of f (T ) gravity we note that
most research have been oriented to cosmology—theoretical
presentation as well as observational verification (Wu and
Yu 2010a, 2010b, 2011; Tsyba et al. 2011; Dent et al. 2011;
Chen et al. 2011; Bengochea 2011; Yang 2011; Zhang
et al. 2011; Li et al. 2011; Bamba et al. 2011). How-
ever, later on astrophysical applications also can be ob-
served in the following works (Böhmer et al. 2011; Delidu-
man and Yapiskan 2011; Wang 2011; Daouda et al. 2011;
Abbas et al. 2015). Among these works we are specially in-
terested to the works of Böhmer et al. (2011) and Delidu-
man and Yapiskan (2011). Deliduman and Yapiskan (2011)
claimed that relativistic stars in f (T ) theory of gravity do
not exist whereas Böhmer et al. (2011) proved that they do
exist. In the present work we shall follow the result of Böh-
mer et al. (2011) by considering the problem in f (T ) gravity
along with conformal Killing vector field. There are some
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other standard works on f (T ) gravity which one may con-
sult for further studies with various physical aspects (De An-
drade et al. 2000; Ferraro and Fiorini 2011; Tamanini 2012;
Tamanini and Böhmer 2012; Aldrovandi and Pereira 2013;
Aftergood and DeBenedictis 2014).

The conformal Killing vectors (CKV) provide inheri-
tance symmetry which conveniently makes a natural rela-
tionship between geometry and matter through the Einstein
field equations. In favor of the prescription of this mathe-
matical technique CKV, Rahaman et al. (2015a) mention the
following features: (1) it provides a deeper insight into the
spacetime geometry and facilitates the generation of exact
solutions to the Einstein field equations in a more compre-
hensive forms, (2) the study of this particular symmetry in
spacetime is physically very important as it plays a crucial
role of discovering conservation laws and to devise space-
time classification schemes, and (3) because of the highly
non-linearity of the Einstein field equations one can reduce
easily the partial differential equations to ordinary differen-
tial equations by using CKV.

Therefore, several works have been performed by use of
the technique of conformal motion as can be seen available
in the literature. A few interesting applications of confor-
mal motion to astrophysical field can be found in Ray et al.
(2008), Rahaman et al. (2010a, 2010b, 2014, 2015b, 2015c),
Usmani et al. (2011) and Bhar (2014). In this line of in-
vestigations some special mention are of the very recent
works of Rahaman et al. (2015a) and Bhar et al. (2015).
Search for a new wormhole solution inspired by noncom-
mutative geometry with the additional condition of allowing
conformal Killing vectors was performed by Rahaman et al.
(2015a) whereas Bhar et al. (2015) have shown that a new
class of interior solutions for anisotropic stars are possible
by admitting conformal motion in higher-dimensional non-
commutative spacetime. Interior solutions admitting con-
formal motions also have been studied extensively in the
past by Herrera and his co-workers (Herrera et al. 1984;
Herrera and Ponce de Leon 1985a, 1985b, 1985c).

Under this background, therefore, in the present work our
main aim or motivation is to construct a set of stellar solu-
tions under f (T ) theory of gravity by admitting conformal
motion of Killing Vectors. The outline of the investigation
is as follows: in Sect. 2 we provide the basic mathematical
formalism of f (T ) theory whereas in Sect. 3 the CKVs are
formulated. The Einstein field equations under f (T ) grav-
ity and CKVs have been provided along with their solutions
in Sect. 4. We have tested physical validity of the model
by using Tolman–Oppenheimer–Volkoff (TOV) equation in
Sect. 5. Lastly, in Sect. 6 we pass some concluding re-
marks.

2 The f (T ) theory: basic mathematical formalism

The action of f (T ) theory is taken as (for geometrical units
G = c = 1)

S
[
ei
μ,φA

] =
∫

d4x

[
1

16π
f (T ) + Lmatter(φA)

]
. (1)

Here, φA indicates matter fields and f (T ) is an arbitrary
analytic function of the torsion scalar T . The torsion scalar
is constructed from torsion and cotorsion as follows:

T = Sμν
σ T σ

μν, (2)

where

T σ
μν = Γ σ

μν − Γ σ
νμ = eσ

i

(
∂μei

ν − ∂νe
i
μ

)
, (3)

Kμν
σ = −1

2

(
T μν

σ − T νμ
σ − T μν

σ

)
, (4)

are torsion and cotorsion respectively with newly defined
tensor components

Sμν
σ = 1

2

(
Kμν

σ + δμ
σ T βν

β − δν
σ T βμ

β

)
. (5)

Here, ei
μ are the tetrad by which it is possible to define

any metric as gμν = ηij e
i
μe

j
ν , where ηij = diag(−1,1,1,1)

and e
μ
i ei

ν = δ
μ
ν , e = √−g = det(ei

μ).
If one varies the action (1) with respect to the tetrad, one

can get the field equations of f (T ) gravity which can be
given by

S
μν
i fT T ∂μT + e−1∂μ

(
eS

μν
i

)
fT − T σ

μiS
νμ
σ fT + 1

4
eν
i f

= 4πΥ ν
i , (6)

where

S
μν
i = eσ

i Sμν
σ , fT = ∂f

∂T
and fT T = ∂2f

∂T 2

and Υ ν
i denotes the energy stress tensor of the anisotropic

fluid as

Υ μ
ν = (ρ + pr)u

μuν − prg
μ
ν + (pt − pr)η

μην,

with

uμuμ = −ημημ = 1.

3 Conformal Killing vector

To search for a natural relationship between geometry and
matter Einstein’s general relativity provides a rich arena
to use symmetries. Various symmetries that arising either
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from geometrical point of view or physical relevant quanti-
ties are known as collineations. The greatest advantageous
collineations is the conformal Killing vectors (CKV) which
provide a deeper insight into the spacetime geometry. In
mathematical point of view, conformal motions or confor-
mal Killing vectors (CKV) are motions along which the met-
ric tensor of a spacetime remains invariant up to a scale fac-
tor. Another advantage to use the CKV is that it facilitates
generation of exact solutions to the field equations. This is
achieved by reducing the highly nonlinear partial differen-
tial equations of Einstein’s gravity to ordinary differential
equations through the technique of CKV.

The CKV can be defined as

Lξgij = ξi;j + ξj ;i = ψgij , (7)

where L is the Lie derivative operator of the metric ten-
sor and ψ is the conformal factor. It is supposed that the
vector ξ generates the conformal symmetry and the met-
ric g is conformally mapped onto itself along ξ . However,
it is to note that neither ξ nor ψ need to be static even
though one considers a static metric (Böhmer et al. 2007,
2008). Further, one should note that (i) if ψ = 0 then Eq. (7)
gives the Killing vector, (ii) if ψ = constant it gives homo-
thetic vector, and (iii) if ψ = ψ(x, t) then it yields confor-
mal vectors. Moreover, for ψ = 0 the underlying spacetime
becomes asymptotically flat which further implies that the
Weyl tensor will also vanish. Therefore, CKV has an intrin-
sic property to provide a deeper insight of the underlying
spacetime geometry. Basically the Lie derivative operator L

describes the interior gravitational field of a stellar configu-
ration with respect to the vector field ξ .

Let us therefore assume that our static spherically sym-
metric spacetime admits an one parameter group of confor-
mal motion, so that the metric

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (8)

is conformally mapped onto itself along ξ .
Here Eq. (7) implies that

Lξgik = ξi;k + ξk;i = ψgik, (9)

with ξi = gikξ
k .

From Eqs. (8) and (9), one can get the following expres-
sions (Herrera and Ponce de Leon 1985a, 1985b, 1985c;
Böhmer et al. 2011)

ξ1ν′ = ψ,

ξ4 = constant,

ξ1 = ψr

2
,

ξ1λ′ + 2ξ1
,1 = ψ,

where 1 and 4 stand for the spatial and temporal coordinates
r and t respectively.

The above set of equations imply

eν = C2
0r2, (10)

eλ =
[

C

ψ

]2

, (11)

ξ i = C1δ
i
4 +

[
ψr

2

]
δi

1, (12)

where C, C0 and C1 all are integration constants.

4 The field equations and their solutions

Let us define tetrad matrix for the metric (8) as follows:

ei
μ = diag

[√
C2

0r2, e
λ
2 , r, r sin θ

]
. (13)

Therefore, the torsion scalar can be determined as

T (r) = −6e−λ

r2
. (14)

Inserting this and the components of the tensors S
μν
i and

T
μν
i in Eq. (6) we obtain

4πρ = e−λ

r
T ′fT T −

[
T

2
+ 1

2r2
+ e−λ

2r

(
2

r
+ λ′

)]
fT

+ f

4
, (15)

4πpr =
[
T

2
+ 1

2r2

]
fT − f

4
, (16)

4πpt = −e−λ

r
T ′fT T + T

4
fT − e−λ

2

[
1

r2
− λ′

r

]
fT

− f

4
. (17)

Due to Böhmer et al. (2011), one of the possible way to
get back general relativistic result is fT T = 0, although its
general relativity form has no meaning in the present con-
text. Therefore, we are now seeking solutions using

f (T ) = T (18)

and

f (T ) = aT + b, (19)

which immediately follows from fT T = 0. Here a and b are
two purely constant quantities. For a fluid distribution con-
sisting of normal matter, we have

pr = ωρ, (20)

where ω is an equation of state parameter.
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4.1 CASE I: f (T ) = T

4.1.1 pr = pt = p

Now, using Eqs. (14)–(18), we obtain the following so-
lutions (Herrera et al. 1984; Herrera and Ponce de Leon
1985c):

e−λ(r) =
(

1

2
+ Fr2

)
, (21)

T (r) = −
[

3

r2
+ 6F

]
, (22)

4πρ(r) = − 1

4r2
+ 3

2
F, (23)

4πp = − 1

4r2
− 3

2
F, (24)

ψ = C

[
1

2
+ Fr2

] 1
2

, (25)

where F is an integration constant.
The sound velocity vs

2 can be found out as

dp

dρ
= 1. (26)

4.1.2 pr �= pt

Now, using Eqs. (14)–(18) and (20), we obtain the following
solutions (Herrera et al. 1984; Herrera and Ponce de Leon
1985c):

e−λ(r) =
[
ω + 1

ω + 3

]
+ Dr−[ ω+3

ω
], (27)

T (r) = −
[

6(ω + 1)

(ω + 3)

]
r−2 − 6Dr−[ 3(ω+1)

ω
], (28)

4πρ(r) = −
[

3D

2ω

]
r−[ 3(ω+1)

ω
] −

[
1

ω + 3

]
r−2, (29)

4πpr = −
[

3D

2

]
r−[ 3(ω+1)

ω
] −

[
ω

ω + 3

]
r−2, (30)

4πpt =
[

3D

2ω

]
r−[ 3(ω+1)

ω
] −

[
(ω + 1)

2(ω + 3)

]
r−2, (31)

ψ = C

[(
ω + 1

ω + 3

)
+ Dr−( ω+3

ω
)

] 1
2

, (32)

dpt

dρ
= − 9D(ω+1)

2ω2 r−( ω+3
ω

) + (ω+1
ω+3 )

9D(ω+1)

2ω2 r−( ω+3
ω

) + ( 2
ω+3 )

, (33)

where D is an integration constant.

4.2 CASE II: f (T ) = aT + b

4.2.1 pr = pt = p

Now, using Eqs. (14)–(17) and (19), we obtain the following
solutions (Herrera et al. 1984; Herrera and Ponce de Leon
1985c):

e−λ(r) =
(

1

2
+ Hr2

)
, (34)

T (r) = −
[

3

r2
+ 6H

]
, (35)

4πρ(r) = − a

4r2
+ 3

2
aH + b

4
, (36)

4πp = − a

4r2
− 3

2
aH − b

4
, (37)

ψ = C

[
1

2
+ Hr2

] 1
2

, (38)

where a and b are two purely constant quantities as men-
tioned earlier and H is an integration constant.

As before the sound velocity vs
2 can be given by

dp

dρ
= 1. (39)

4.2.2 pr �= pt

Now, using Eqs. (14)–(17), (19) and (20), we obtain the fol-
lowing solutions (Herrera et al. 1984; Herrera and Ponce de
Leon 1985c):

e−λ(r) =
[
ω + 1

ω + 3

]
+ Er−[ ω+3

ω
] − br2

6a
, (40)

T (r) = −
[

6(ω + 1)

(ω + 3)

]
r−2 − 6Er−[ 3(ω+1)

ω
] + b

a
, (41)

4πρ(r) = −
[

3aE

2ω

]
r−[ 3(ω+1)

ω
] −

[
a

ω + 3

]
r−2, (42)

4πpr = −
[

3aE

2

]
r−[ 3(ω+1)

ω
] −

[
aω

ω + 3

]
r−2, (43)

4πpt = −
[
a(ω + 1)

2(ω + 3)

]
r−2 +

[
3aE

2ω

]
r−[ 3(ω+1)

ω
], (44)

ψ = C

[(
ω + 1

ω + 3

)
+ Er−( ω+3

ω
) − br2

6a

] 1
2

, (45)

dpt

dρ
= − 9aE(ω+1)

2ω2 r−( ω+3
ω

) + (
a(ω+1)
ω+3 )

9aE(ω+1)

2ω2 r−( ω+3
ω

) + ( 2a
ω+3 )

, (46)

where E is an integration constant.
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Fig. 1 Variation of ρ + p (Top) and ρ + 3p (Bottom) are shown with
respect to radial coordinate for isotropic case

5 Physical features of the model

5.1 Energy conditions

Now, let us check whether all the energy conditions are sat-
isfied or not for the present model under f (T ) gravity. For
this purpose, we should consider the following inequalities:

(i) NEC : ρ + pr ≥ 0, ρ + pt ≥ 0,
(ii) WEC : ρ + pr ≥ 0, ρ ≥ 0, ρ + pt ≥ 0,

(iii) SEC : ρ + pr ≥ 0, ρ + pr + 2pt ≥ 0.

Among all the above CASES I and II of f (T ) gravity it
is revealed that only the solutions of sub-case with isotropic
condition (pr = pt = p) under CASE II i.e. f (T ) = aT + b

(4.2.1) are physically valid (see Fig. 3 for energy condi-
tions). The other cases are not physically interesting the en-
ergy conditions being violated there (Figs. 1, 2 and 4).

5.2 TOV equation

The Generalized Tolman–Oppenheimer–Volkoff (TOV)
equation can be written in the form

−MG(r)(ρ + pr)

r2
e

λ−ν
2 − dpr

dr
+ 2

r
(pt − pr) = 0, (47)

Fig. 2 Variation of ρ +pt (Top) and ρ +pr +2pt (Bottom) are shown
with respect to radial coordinate for anisotropic case

where MG(r) is the gravitational mass within the sphere of
radius r and is given by

MG(r) = 1

2
r2e

ν−λ
2 ν′. (48)

Substituting Eq. (48) into Eq. (47), we obtain

−ν′

2
(ρ + pr) − dpr

dr
+ 2

r
(pt − pr) = 0. (49)

The above TOV equation describe the equilibrium of the
stellar configuration under the joint action of the different
forces, viz. gravitational force (Fg), hydrostatic force (Fh)
and anisotropic force (Fa) so that eventually as an equilib-
rium condition one can write it in the following form:

Fg + Fh + Fa = 0, (50)

where

Fg = −ν′

2
(ρ + pr),
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Fig. 3 Variation of ρ (Top), p (Upper Middle), ρ + p (Lower Middle)
and ρ + 3p (Bottom) are shown with respect to radial coordinate for
isotropic case

Fig. 4 Variation of ρ +pt (Top) and ρ +pr +2pt (Bottom) are shown
with respect to radial coordinate for anisotropic case

Fh = −dpr

dr
,

Fa = 2

r
(pt − pr).

In case of pr = pt and f (T ) = aT + b the gravitational
and hydrostatic forces are given by

Fg = a

8πr3
(51)

and

Fh = − a

8πr3
. (52)

We have plotted the feature of TOV equation for sub-
case 4.2.1 in Fig. 5 (we don’t need to include TOV equa-
tion in sub-case 4.1.1 as the model does not exist the en-
ergy conditions being violated). In sub-case 4.2.1 we ob-
serve that static equilibrium has been attained by the forces
through balancing of the stresses between them. However, it
can be found out that anisotropic forces have no contribution
to equilibrium i.e. Fa = 0 as pr = pt .
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Fig. 5 The three different forces, viz. gravitational force (Fg), hydro-
static force (Fh) and anisotropic force (Fa) are plotted against r (km)
for sub-case 4.2.1

Fig. 6 Profile of sound velocity is shown which actually remains con-
stant

5.3 Stability issue

We shall now turn our attention to the stability issue of
model. According to the cracking technique proposed by
Herrera (1992) the squares of the sound speed should be
within the limit [0,1]. Fig. 6 satisfies Herrera’s criterion
i.e. vs

2 ≥ 0 within the matter distribution and therefore our
model maintains stability.

5.4 Nature of the star

We have drawn a plot to show radius of our stellar model. It
can be seen by the clear ‘cut’ on X-axis which is turned out
to be 1.445 km (Fig. 7). This is very small and indicates to-
wards a compact star with ultra-compactness. A tally of this
value with the already available data set immediately reveals
that the star is nothing but either a quark/strange star (see Ta-
ble 1 of Bhar et al. 2015) or a brown dwarf star of type F5

Fig. 7 Radius of the star is given where p cuts r axis

(see the Link: http://www.world-builders.org/lessons/less/
les1/StarTables.html).

This value of R = 1.445 km immediately provoke us to
figure out the surface density of the stellar system. As r

tends to zero, ρ goes to infinity and therefore, we are not
in position to comment on the central density. However, we
can estimate the surface density of the star by plugging G

and c in the expression of ρ which eventually yields the nu-
merical value as 4.847 × 1016 gm/cc. Therefore, this very
high density in the order 1016 gm/cc with a very small radius
R = 1.445 km really indicates that the model under f (T )

gravity represents an ultra-compact star (Ruderman 1972;
Glendenning 1997; Herjog and Roepke 2011).

6 Conclusions

We have studied in detail the f (T ) gravity for the two spe-
cific cases f (T ) = T and f (T ) = aT + b. It has specially
been observed that among all the CASES I and II of f (T )

gravity only the solutions of sub-case 4.2.1 with isotropic
condition (pr = pt = p) under CASE II, i.e. f (T ) = aT +b

are physically valid. In general, our observation is that under
f (T ) gravity anisotropy doesn’t exist as well as all the en-
ergy conditions become jeopardized. Obviously, in favor of
this conclusion further studies are needed to perform several
other aspect of the f (T ) theory of gravity.

In connection to features and hence validity of the model
we have studied several physical aspects based on the solu-
tions and all these being very interesting advocate in favor of
physically acceptance of the model. We would like to sum-
marize all these results as follows:

(i) Energy conditions
Our study reveals that only the solutions of sub-case 4.2.1

with isotropic condition under CASE II i.e. f (T ) = aT + b

are physically valid as in the other cases energy conditions
are seen to be violated.

http://www.world-builders.org/lessons/less/les1/StarTables.html
http://www.world-builders.org/lessons/less/les1/StarTables.html
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(ii) TOV equation
The plot for the generalized TOV equation shows that

static equilibrium has been attained by the different forces,
viz. gravitational force (Fg), hydrostatic force (Fh) and
anisotropic force (Fa). However, it is also observed that
anisotropic forces have no role for equilibrium of the sys-
tem.

(iii) Stability issue
By employing the cracking concept of Herrera (1992) we

have demonstrated through plot that the squares of the sound
speed remains within the limit [0,1] and hence shown our
model is a stable one.

(iv) Nature of the star
The model with very high density (4.847 × 1016 gm/cc)

and small radius (R = 1.445 km) suggests that the present
investigation under f (T ) theory of gravity is a representa-
tive of an ultra-compact star.

We note an interesting work on the f (T ) gravity in con-
nection to Krori and Barua (1975) metric parameters as done
by Abbas et al. (2015). The present work therefore may be
extended to that line of thinking in a future project.
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