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Abstract In this paper, we have formulated the new exact
model of quintessence anisotropic star in f (R) theory of
gravity. The dynamical equations in f (R) theory with the
anisotropic fluid and quintessence field have been solved
by using Krori-Barua solution. In this case, we have used
the Starobinsky model of f (R) gravity. We have deter-
mined that all the obtained solutions are free from central
singularity and potentially stable. The observed values of
mass and radius of the different strange stars PSR J 1614-
2230, SAXJ1808.4-3658(SS1), 4U1820-30, PSR J 1614-
2230 have been used to calculate the values of unknown
constants in Krori and Barua metric. The physical param-
eters like anisotropy, stability and redshift of the stars have
been investigated in detail.

Keywords f (R) theory of gravity · Quintessence field ·
Krori-Barua metric

1 Introduction

The discovery of cosmic acceleration is one the major
advancements in modern cosmology. The observation of
type Ia supernovae (SNe Ia) combined with observational
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probes of numerous mounting astronomical evidences like
the cosmic microwave background (CMB), large scale struc-
ture surveys (LSS) and Wilkinson Microwave Anisotropy
Probe (WMAP) (Perlmutter et al. 1999; Spergel et al. 2007;
Hawkins et al. 2003; Eisentein et al. 2005) reveal that the
cosmos at present is dominated by exotic energy component
named as dark energy (DE). The investigation of current
cosmic expansion and nature of DE has been widespread
among the scientists. For this purpose, numerous efforts
have been made based upon different strategies. These ef-
forts can be grouped in two categories: introducing new
ingredients of DE to the entire cosmic energy and modi-
fication of Einstein-Hilbert action to obtain modified the-
ories of gravity such as f (R) (Nojiri and Odintsov 2011)
f (T ) (Ferraro and Fiorini 2007) where T being the torsion,
f (R,T ) (Harko et al. 2011) where R and T represent the
scalar curvature and trace of the energy-momentum tensor,
f (R,T ,RμνTμν) (Haghani et al. 2013) and Gauss-Bonnet
gravities (Cognola et al. 2006).

It has been the subject of great interest to study the mod-
els of anisotropic stars solutions during the last decades
(Herrera and Santos 1997). Egeland (2007) investigated that
the cosmological constant would exist due to density of the
vacuum, this is consequence of modeling the mass and ra-
dius of the Neutron star. In order to prove this fact Ege-
land used the relativistic equation of hydrostatic equilib-
rium with fermion equation of state (EoS). As f (R) model
with constant R gives cosmological constant, therefore mo-
tivated by this fact, we study the structure of strange stars
and concluded that f (R) gravity with model f (R) = R +
λR2 (where λ is constant) can describes the class of some
anisotropic compact strange stars for example X-ray burster
4U1820-30, X-ray pulsar Her X-1, Millisecond pulsar SAX
J 1808-3658 etc. in a very scientific way. During the recent
years, Dey et al. (1998), Usov (2004), Ruderman (1972),
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Mak and Harko (2002, 2003) have studied the physical prop-
erties of strange stars by using different approaches. Also,
Herrera et al. (2008) have examined all static spherically
symmetric solution of Einstein field equations and discussed
the physical implication of these solutions.

The exact solutions have many applications in astronomy
and astrophysics. For examples these can explain the prop-
erties and compositions of astrophysical objects. Mak and
Harko (2004) presented a class of exact solutions of Ein-
stein field equations with anisotropic source. The physical
properties of these solutions imply that matter density as
well as tangential and radial pressure are regular inside the
compact star. Chaisi and Maharaj (2005) established a math-
ematical algorithm which explain the solution of the field
equations for the anisotropic source. Rahaman et al. (2012)
apply the Krori and Barua (1975) solution to the charged
strange compact stars. Recently, Kalam et al. (2012, 2013)
have studied the models of the compact objects using the
Krori-Barua metric assumption. Hossein et al. (2012) dis-
cussed the anisotropic star model in the presence of varying
cosmological constant. Bhar et al. (2015) investigated the
higher dimensional compact star. This work has been ex-
tended by Maurya et al. (2014) for the charged anisotropic
compact stars.

The study of compact stars such as relativistic massive
objects have been the subject of interest in GR as well
as in modified theories of gravity (Camenzind 2007; Ab-
bas et al. 2014, 2015a, 2015b, 2015c; Abbas and Zubair
2015; Sharif and Abbas 2013a, 2013b; Sharif and Zubair
2013a, 2013b). Being highly dense these are small in size
and posses the extremely massive structure, and produce a
strong gravitational field. Recently, there has been growing
interest to study the compact stars in modified theories of
gravity like f (R) and f (G). Particularly, Astashenok et al.
(2013), presented neutron stars solutions for viable models
of f (G) gravity. Motivated by this work, we study the com-
pact stars solutions and their dynamical stability for a vi-
able model of f (R) gravity. We shall find the exact solu-
tions for quintessence compact stars which are comparable
with observational data. Our plan in this work is as follows:
In Sect. 2, we present basic equations of motion for f (R)

gravity. The analytic solution for the viable f (G) model is
presented in Sect. 3. Section 4 deals with the physical anal-
ysis of the given system. The last section summaries the re-
sults of the paper.

2 Model of anisotropic quintessence star in f (R)
gravity

We assume that the manifold possesses a stationary and
spherical symmetry for which the metric can be written as

ds2 = −eμ(r)dt2 + eν(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

where ν = Ar2, μ = Br2 +C (Krori and Barua 1975), A, B

and C are arbitrary constant to be evaluated by using some
physical conditions.

f (R) gravity is defined by the action

I =
∫

dx4√−g
(
f (R) +L(matter)

)
, (2)

where κ2 = 1, f (R) is generic function of scalar curvature
and L(matter) determines the role of matter contents. Varia-
tion of action (1) with respect to gμν yields the field equa-
tions

Gμν = T (curv)
μν + Tμν, (3)

where Tμν = T matter
μν + Qμν , which contains of ordinary

matter contribution and quintessence filed defined by the pa-
rameter −1 < ωq < −1/3 (Bhar et al. 2015). Tμν is scaled

by a factor of 1
fR(R)

and T
(curv)
μν denotes the contribution

that arises from the curvature to the effective stress-energy
tensor given by

T (curv)
μν = 1

fR(R)

[
1

2
gμν

(
f (R) − RfR(R)

)

+ fR(R);αβ(gμαgνβ − gμνgαβ)

]
, (4)

where fR(R), denotes derivative with respect to the Ricci
scalar R.

The components of Qμ
ν are defined as (Bhar et al. 2015)

Qt
t = Qr

r = −ρq and Qθ
θ = Qφ

φ = 1
2 (3ωq + 1)ρq . To ob-

tain some particular strange star models, we assume the
anisotropic fluid in the interior of compact object and it is
defined by

T m
αβ = (ρ + pt )uαuβ − ptgαβ + (pr − pt)vαvβ, (5)

where uα = e
μ
2 δ0

α , vα = e
ν
2 δ0

α , ρ, pr and pt correspond to
energy density, radial and transverse pressures, respectively.
The modified field equations corresponding to spacetime (4)
lead to

ρ + ρq = −e−νfRRR + e−ν

(
ν′

2
− 2

r

)
fRR

+ e−ν

r2

(
μ′′r2

2
+ μ′2r2

4
− μ′ν′r2

4
+ μ′r

)
fR

− 1

2
f, (6)

pr + ρq = e−ν

(
μ′

2
+ 2

r

)
fRR

− e−ν

r2

(
μ′′r2

2
+ μ′2r2

4
− μ′ν′r2

4
− ν′r

)
fR

+ 1

2
f, (7)



Anisotropic strange quintessence stars in f (R) gravity Page 3 of 11 26

pt + 1

2
(3ωq + 1)ρq

= −e−νfRRR + e−ν

(
μ′

2
− ν′

2
+ 1

r

)
fRR

− e−ν

r2

(
μ′r
2

− ν′r
2

− eν + 1

)
fR + 1

2
f. (8)

Herein, we choose the Starobinsky model of the form

f (R) = R + λR2, (9)

where λ is an arbitrary constant. One can set λ = 0 to find
the results in GR. Herein, we set λ = 2 km2.

For this model Eqs. (6)–(8) become

ρ + ρq = e−2ν

8r4

{
r4λμ′4 − 2r3λμ′3(−4 + rν′)

+ r2λμ′2(16 + 8rν′ − 11r2ν′2 + 4r2μ′′ + 8r2ν′′)

+ 4r2λμ′(−16rν′2 + 3r2ν′3 + ν′(−4 + 9r2μ′′

− 7r2ν′′) + 2r
(−2μ′′ + 6ν′′ − 2rμ′′′ + rν′′′))

+ 4
(−2eνr2 + 2e2νr2 − 20λ + 24eνλ − 4e2νλ

+ 12r3λν′3 − 3r4λμ′′2 − r2λν′2(12 + 11r2μ′′)

+ 8r2λν′′ + 8r4λμ′′μ′′ − 16r3λμ′′′

+ 2rν′(eνr2 − 8λ + 16r2λμ′′ − 14r2λν′′

+ 6r3λμ′′′) + 8r3λν′′′ − 4r4λμ(iv)
)}

, (10)

pr − ρq = e−2ν

8r4

{−r4λμ′4 − 2r4λμ′3ν′

+ r3λμ′2(−24ν′ + 3rν′2 + 4r
(
μ′′ − ν′′))

− 4(−2eνr2 + 2e2νr2 + 28λ − 24eνλ − 4e2νλ

− 12r2λν′2 − 16r2λμ′′ + 8r3λν′μ′′ + r4λμ′′2

+ 16r2λν′′ − 8r3λμ′′′ + 8rμ′(eνr2 − 8λ

+ 3r2λν′2 + 6r2λμ′′ − rλν′(8 + r2μ′′)

− 4r2λν′′ + r3λμ′′′)}, (11)

pt + 1

2
(3ωq + 1)ρq

= e−ν

8r4

{
r4λμ′4 + 2r3λμ′3(2 − 3rν′)

+ r2μ′2(−32rλν′ + 17r2λν′2

+ 2
(
eνr2 − 8λ + 6r2λμ′′ − 6r2λν′′))

− 2rμ′(−38r2λν′2 + 6r3λν′3

+ rν′(eνr2 − 24λ + 28r2λμ′′ − 14r2λν′′)

− 2
(
eνr2 − 4λ + 12enuλ + 10r2λμ′′

− 14r2λν′′ + 6r3λμ′′′ − 2r3λν′′′))

− 4
(
12r3λν′3 − 11r4λμ′′ν′2 − 5r4λμ′′2

+ μ′′(−eνr4 + 8r2λ + 8r4λν′′)

+ rν
(
eνr2 − 28λ + 12eνλ

+ 28r2λμ′′ − 28r2λν′′ + 12r3λμ′′′)

+ 4λ
(−7 + 6eν + e2ν

− 3r3μ′′′ + 2r3ν′′′ − r4μ(iv)
))}

. (12)

Using the relations of μ and ν, we find the following re-
lations

ρ + ρq = 1

r4
e−2Ar2{

e2Ar2(
r2 − 2λ

) + 2
(−5 − 3B2r4

+ 6B3r6 + B4r8 + 12A3r6(2 + Br2)

− A2r4(40 + 68Br2 + 11B2r4)

+ A
(−4r2 + 48Br4 + 26B2r6 − 2B3r8))λ

+ eAr2(−r2 + 2Ar4 + 12λ
)}

, (13)

pr − ρq = 1

r4
e−2Ar2{−e(2Ar2)

(
r2 − 2λ

)

+ 2
(−7 + 11B2r4 + 2B3r6

− B4r8 + 3A2r4(2 + Br2)2

− 2Ar2(4 + 16Br2 + 9B2r4 + B3r6))λ

+ eAr2(
r2 + 2Br4 + 12λ

)}
, (14)

pt + 1

2
(3ωq + 1)

= 1

r4
e−2Ar2{−2

(−7 + 6eAr2 + e2Ar2)
λ

+ 16B3r6λ + 2B4r8λ − 24A3r6(2 + Br2)λ

+ 2A2r4(28 + 74Br2 + 17B2r4)λ

+ B2r4(eAr2
r2 + 22λ

)

+ 2Br2(−6λ + eAr2(
r2 + 6λ

))

− Ar2(4
(−7 + 19Br2 + 25B2r4 + 3B3r6)λ

+ eAr2(
r2 + Br4 + 12λ

))}
. (15)

We have four unknown functions ρ,pr,pt , ρq , and three
Eqs. (13)–(15). To find the explicit relations of these pa-
rameters, we assume a relation between radial pressure and
energy density of the form
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pr = αρ, 0 < α < 1, (16)

where α plays the role of equation of state parameter. This
relation is the particular form of equation of state, the gen-
eral form of this equation has been presented by Herrera and
Barreto (2013).

After some manipulations and using Eq. (16), we get the
expressions of ρ,pr,pt , ρq in the following form

ρ = 1

1 + α

{
1

r4
e−2Ar2(

8
(−3 − 3Ar2 + (−7A2 + 4AB

+ 2B2)r4 + 2
(
3A3 − 7A2B + AB2 + B3)r6

+ A(A − B)B(3A + B)r8)λ

+ 2eAr2(
(A + B)r4 + 12λ

))}
, (17)

ρq = 1

r4(1 + α)
e−2Ar2{

e2Ar2
(1 + α)

(
r2 − 2λ

)

+ 2
(
7 − 5α + 12A3r6(2 + Br2)α

+ B2r4(−11 − 3α + Br2(−2 + 6α + Br2(1 + α)
))

− A2r4(12 + 40α + Br2(12 + 68α

+ Br2(3 + 11α)
)) + 2Ar2(4 − 2α + Br2(8(2 + 3α)

+ Br2(9 − Br2(−1 + α) + 13α
))))

λ

− eAr2(
r2(1 + α) + 2r4(B − Aα)

− 12(−1 + α)λ
)}

, (18)

pr = α

1 + α

{
1

r4
e−2Ar2(

8
(−3 − 3Ar2 + (−7A2 + 4AB

+ 2B2)r4 + 2
(
3A3 − 7A2B + AB2 + B3)r6

+ A(A − B)B(3A + B)r8)λ + 2eAr2(
(A + B)r4

+ 12λ
))}

, (19)

pt = 1

2r4(1 + α)
e−2Ar2{−e2Ar2

(1 + α)
(
λ(2 − 6ωq)

+ r2(1 + 3ωq)
) + eAr2(−2(A − B)Br6(1 + α)

+ r2(1 + α)
(
1 + 24(−A + B)λ + 3ωq

)

− 12λ
(
1 + 3α + 3(−1 + α)ωq

) − 2r4(A + Aα(2

+ 3ωq) − B(3 + 2α + 3ωq)
)) − 2λ(−7 − 19α

+ 12Br2(1 + α) + 3(7 − 5α)ωq

+ B4r8(1 + α)(−1 + 3ωq) + 2B3r6(−9 − 5α

+ (−3 + 9α)ωq

) − B2r4(33 + 25α + (33 + 9α)ωq

)

+ 12A3r6(2 + Br2)(2 + 3α(1 + ωq)
)

+ 2Ar2(−2
(
5 + 8α + 3(−2 + α)ωq

)

+ B3r6(7 + 5α − 3(−1 + α)ωq

)

+ 2Br2(27 + 31α + 12(2 + 3α)ωq

)

+ B2r4(59 + 63α + 3(9 + 13α)ωq

))

− A2r4(4
(
17 + 9ωq + 6α(4 + 5ωq)

)

+ B2r4(34 + α(45 + 33ωq)
) + Br2(r2(3 + 9ωq)

+ 4
(
40 + 54α + (9 + 51α)ωq

)))}
. (20)

The equation of state (EoS) parameters corresponding to ra-
dial and transverse directions can be obtained as

ωr = α, (21)

ωt = {−e2Ar2
(1 + α)

(
λ(2 − 6ωq) + r2(1 + 3ωq)

)

+ eAr2(−2(A − B)Br6(1 + α)

+ r2(1 + α)
(
1 + 24(−A + B)λ + 3ωq

)

− 12λ
(
1 + 3α + 3(−1 + α)ωq

)

− 2r4(A + Aα(2 + 3ωq) − B(3 + 2α + 3ωq)
))

− 2λ(−7 − 19α + 12Br2(1 + α) + 3(7 − 5α)ωq

+ B4r8(1 + α)(−1 + 3ωq)

+ 2B3r6(−9 − 5α + (−3 + 9α)ωq

)

− B2r4(33 + 25α + (33 + 9α)ωq

)

+ 12A3r6(2 + Br2)(2 + 3α(1 + ωq)
)

+ 2Ar2(−2
(
5 + 8α + 3(−2 + α)ωq

)

+ B3r6(7 + 5α − 3(−1 + α)ωq

)

+ 2Br2(27 + 31α + 12(2 + 3α)ωq

)

+ B2r4(59 + 63α + 3(9 + 13α)ωq

))

− A2r4(4
(
17 + 9ωq + 6α(4 + 5ωq)

)

+ B2r4(34 + α(45 + 33ωq)
) + Br2(r2(3 + 9ωq)

+ 4
(
40 + 54α + (9 + 51α)ωq

)))}
/
{
2
(
8
(−3 − 3Ar2

+ (−7A2 + 4AB + 2B2)r4 + 2
(
3A3 − 7A2B

+ AB2 + B3)r6 + A(A − B)B(3A + B)r8)λ

+ 2eAr2(
(A + B)r4 + 12λ

))}
. (22)

We show the evolution of energy density ρ, radial pressure
pr , tangential pressure pt and quintessence field ρq for the
strange star candidates Her X-1, SAX J 1808.4-3658 and 4U
1820-30 in Figs. 1, 2, 3 and 4.
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Fig. 1 Evolution of energy density ρ versus r (km) at the stellar interior of strange star candidates. Herein, we set λ = 2 km2, α = .01 and
ωq = 0.4

Fig. 2 Evolution of radial pressure pr versus r (km) at the stellar interior of strange star candidates

Fig. 3 Evolution of transverse pressure pt versus r (km) at the stellar interior of strange star candidates

Fig. 4 Evolution of transverse pressure pt versus r (km) at the stellar interior of strange star candidates
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3 Physical analysis

Here, we discuss some physical conditions which are nec-
essary for the interior solution. In the following, we present
the anisotropic behavior and stability conditions.

3.1 Anisotropic constraints

Taking derivatives of Eqs. (17) and (19) with respect to ra-
dial coordinate, we have

dρ

dr
= − 1

r5(1 + α)
4e−2Ar2{−24λ + 4r2(−9A − 6A2r2

− 2
(
10A3 − 11A2B − AB2 + B3)r4

+ 2A
(
6A3 − 17A2B + 4AB2 + 3B3)r6

+ 2A2(A − B)B(3A + B)r8)λ + eAr2(
A(A + B)r6

+ 12
(
2 + Ar2)λ

)}
, (23)

dpr

dr
= − 1

r5(1 + α)
4e−2Ar2

α
{−24λ + 4r2(−9A − 6A2r2

− 2
(
10A3 − 11A2B − AB2 + B3)r4 + 2A

(
6A3

− 17A2B + 4AB2 + 3B3)r6 + 2A2(A − B)

− B(3A + B)r8)λ + eAr2(
A(A + B)r6

+ 12
(
2 + Ar2)λ

)}
. (24)

Similarly, one can find the second derivatives of ρ and pr .
We present the evolution of dρ

dr
and dpr

dr
in Figs. 5 and 6

which show that dρ
dr

< 0 and dpr

dr
< 0.

One can explore the behavior of derivatives of ρ and pr

at center r = 0 of compact star and it can be seen that

dρ

dr
= 0,

dpr

dr
= 0,

d2ρ

dr2
< 0,

d2pr

dr2
< 0.

(25)

This indicate the maximality of central density and radial
pressure. Hence ρ and pr attain maximum values at r = 0
and functional values decreases with the increase in r as
shown in Figs. 1 and 2. From Eqs. (21) and (22), we have
ωr > 0 and ωt < 1 as shown in Fig. 7 for different strange
stars.

The measure of anisotropy parameter � = 2
r
(pt − pr) in

this case is given by

� = 1

r5(1 + α)
e−2Ar2{−e2Ar2

(1 + α)
(
λ(2 − 6ωq)

+ r2(1 + 3ωq)
) + eAr2(−2(A − B)Br6(1 + α)

Fig. 5 Evolution of dρ
dr

versus r (km) at the stellar interior of strange star candidates

Fig. 6 Evolution of pr

dr
versus r (km) at the stellar interior of strange star candidates
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Fig. 7 Evolution of EoS parameter ωt versus r (km) at the stellar interior of strange star candidates

Fig. 8 Variation of anisotropy measurement versus radial coordinate r (km) at the stellar interior of strange star candidates

+ r2(1 + α)
(
1 + 24(−A + B)λ + 3ωq

) − 12λ
(
1 + 7α

+ 3(−1 + α)ωq

) − 2r4(A − 3B(1 + ωq)

+ Aα(4 + 3ωq)
)) − 2λ(−7 − 43α + 12Br2(1 + α)

+ 3(7 − 5α)ωq − 3B2r4(11 + 3α)(1 + ωq)

+ B4r8(1 + α)(−1 + 3ωq)

+ 6B3r6(−3 + α + (−1 + 3α)ωq

)

+ 12A3r6(2 + Br2)(2 + α(5 + 3ωq)
)

+ 2Ar2(−2
(
5 + 14α + 3(−2 + α)ωq

)

+ B3r6(7 + α − 3(−1 + α)ωq

)

+ 6Br2(9 + 13α + 4(2 + 3α)ωq

)

+ B2r4(59 + 71α + 3(9 + 13α)ωq

))

− A2r4(4
(
17 + 38α + (9 + 30α)ωq

)

+ B2r4(34 + α(61 + 33ωq)
) + Br2(r2(3 + 9ωq)

+ 4
(
40 + 82α + (9 + 51α)ωq

)))}
. (26)

Figure 8 shows the evolution of � for the different strange
stars. It can be seen that � > 0, which implies that it is di-
rected outward and repulsive force exists for these strange
star models.

3.2 Matching conditions

Recently, Goswami et al. (2014), have proved that extra
matching conditions that arise in the modified gravity im-
poses strong constraints on the stellar structure and thermo-
dynamic properties. They showed that these constraints are
non-physical. According to these authors, Schwarzschild so-
lution is best choice in the exterior region for matching con-
ditions. It means there does not exist general vacuum solu-
tion in f (R) gravity as Schwarzschild solution in GR. Using
this philosophy a lot of work in f (R) gravity (Ganguly et al.
2014; Ifra and Zubair 2015; Ifra et al. 2015) has been done
by taking the exterior solution as Schwarzschild or Vaidya
metric.

Here, we match the interior metric (4) to the vacuum ex-
terior spherically symmetric metric given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dθ2

+ r2 sin2 θdϕ2. (27)

At the boundary surface r = R continuity of the metric func-
tions gtt , grr and ∂gtt

∂r
yield,

g−
t t = g+

t t , g−
rr = g+

rr ,
∂g−

t t

∂r
= ∂g+

t t

∂r
, (28)
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Table 1 Values of constants for
given Masses and Radii of Stars Strange Quark Star M R (km) M

R
A (km−2) B (km−2)

Her X-1 0.88M� 7.7 0.168 0.006906276428 0.004267364618

SAX J 1808.4-3658 1.435M� 7.07 0.299 0.01823156974 0.01488011569

4U 1820-30 2.25M� 10.0 0.332 0.01090644119 0.009880952381

where − and +, correspond to interior and exterior solu-
tions. From the interior and exterior metrics, we get

A = − 1

R2
ln

(
1 − 2M

R

)
, (29)

B = M

R3

(
1 − 2M

R

)−1

, (30)

C = ln

(
1 − 2M

R

)
− M

R

(
1 − 2M

R

)−1

. (31)

For the given values of M and R (Li et al. 1999; Lattimer
and Steiner 2014) of the compact stars, the constants A and
B are given in Table 1.

3.3 Energy conditions

Energy constraints have many useful applications in GR as
well as in modified gravity theories (discussion of various
cosmological geometries). These inequalities are firstly for-
mulated in the context of GR for the derivation of some
general results involving strong gravitational fields. In GR,
four types of energy constraints are formulated using a well-
known geometrical results refereed as Raychaudhuri equa-
tion (explaining the dynamics of matter bits). These con-
straints are labeled as WEC, DEC, NEC and SEC. For an
anisotropic fluid (5), these are defined as

NEC: ρ + pr ≥ 0, ρ + pt ≥ 0,

WEC: ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0,

SEC: ρ + pr ≥ 0, ρ + pt ≥ 0, ρ + pr + 2pt ≥ 0,

DEC: ρ > |pr |, ρ > |pt |.
We find that our model satisfies these conditions for specific
values of mass and radius which helps to find the unknown
parameters for different strange stars. Here, we present the
evolution of these conditions for strange star Her X-1 as
shown in Fig. 9. It can be seen that energy conditions are
satisfied for our model.

3.4 Stability analysis

In this section, we discuss the stability of quintessence star
models in f (R) theory. To analyze the stability of our model
we calculate the radial and transverse speeds as

v2
sr = α, (32)

Fig. 9 Evolution of energy constraints at the stellar interior of strange
star Her X-1

v2
st = {−e2Ar2

(1 + α)
(
4λ(1 − 3ωq) + r2(1 + 3ωq)

)

− eAr2(
2A(A − B)Br8(1 + α) + Ar4(1 + α)

(−1

+ 24(A − B)λ − 3ωq

) + 24λ
(
1 + 3α + 3(−1

+ α)ωq

) + 2r6(B2(1 + α) − AB(4 + 3α + 3ωq)

+ A2(1 + α(2 + 3ωq)
)) + r2((1 + α)(−1 − 3ωq)

+ 12λ
(−2B(1 + α) + A

(
3 + 5α + 3(−1 + α)ωq

))))

− 4λ(−7 − 19α + 6Br2(1 + α) + 3(7 − 5α)ωq

− B4r8(1 + α)(−1 + 3ωq) + B3r6(9 + 5α

+ (3 − 9α)ωq

) + 12A4r8(2 + Br2)(2 + 3α(1 + ωq)
)

+ Ar2(−17 + 12Br2(1 + α) + 33ωq

+ B4r8(1 + α)(−1 + 3ωq) − 7α(5 + 3ωq)

− 4B2r4(23 + 22α + 3(5 + 4α)ωq

) + 4B3r6(−8

− 5α + (−3 + 6α)ωq

)) + A2r4(−4
(
5 + 8α

+ 3(−2 + α)ωq

) + 2B3r6(7 + 5α

− 3(−1 + α)ωq

) + B2r4(19(8 + 9α)
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Fig. 10 Variation of v2
st at the stellar interior of strange star candidates

Fig. 11 Variation of v2
st − v2

sr at the stellar interior of strange star candidates

+ 3(18 + 37α)ωq

) + Br2(r2(3 + 9ωq)

+ 2
(
94 + 116α + 3(19 + 41α)ωq

))) − A3r6(4
(
23

+ 33α + (9 + 39α)ωq

) + B2r4(34 + α(45 + 33ωq)
)

+ Br2(r2(3 + 9ωq) + 4
(
46 + 63α + (9 + 60α)

× ωq

)))}
/
{
4
(−24λ + 4r2(−9A − 6A2r2

− 2
(
10A3 − 11A2B − AB2 + B3)r4

+ 2A
(
6A3 − 17A2B + 4AB2 + 3B3)r6

+ 2A2(A − B)B(3A + B)r8)λ

+ eAr2(
A(A + B)r6 + 12

(
2 + Ar2)λ

))}
. (33)

In the past, Herrera and his collaborators (Herrera 1992;
Chan et al. 1993; Di Prisco et al. 1997) have developed a new
technique to explore the potentially unstable matter config-
uration and introduced the concept of cracking. One can an-
alyze the potentially stable and unstable regions depending
on the difference of sound speeds, the region for which ra-
dial sound speed is greater than the transverse sound speed is
said to be potentially stable. We find that radial sound speed
is constant (Eq. (32)) and plot the transverse sound speed
in Fig. 10. It can be seen that v2

st satisfy the relation of sta-
ble matter configuration 0 ≤ v2

st ≤ 1. This variation is fur-
ther confirmed in Fig. 11, where difference of the two sound

speeds, i.e., v2
st − v2

sr retain similar sign within the specific
configuration and it satisfies the inequality |v2

st − v2
sr | ≤ 1.

Thus, our proposed strange star model is stable.

3.5 Surface redshift

The compactness of the star is given by

u = M(R)

R

= 1

8(AR2)5/2(1 + α)
R2e−2AR2

π

× {−4
√

A
(
9B3R2λ + 48A4R4(2 + BR2)λ

− 4A3R2(10 + BR2(41 + 8BR2))λ

+ 2ABR2(4eAR2 + B
(
13 + 6BR2)λ

)

+ A2(−(
192 + BR2(59 + 8BR2(1 + 2BR2)))λ

+ 8eAR2(
R2 + 24λ

)))

− e2AR2√
πR

(
16A

(−A − B + 48A2λ
)

Erf[√AR]
− √

2
(
536A3 − 59A2B + 26AB2 + 9B3)

× λErf[√2
√

AR])}. (34)
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Fig. 12 Evolution of redshift of strange star Her X-1

The surface redshift (Zs ) corresponding to compactness (34)
is given by

1 + Zs = (1 − 2u)−1/2

=
{

1 − R2e−2AR2
π

4(AR2)5/2(1 + α)

× {−4
√

A
(
9B3R2λ + 48A4R4(2 + BR2)λ

− 4A3R2(10 + BR2(41 + 8BR2))λ

+ 2ABR2(4eAR2 + B
(
13 + 6BR2)λ

)

+ A2(−(
192 + BR2(59 + 8BR2(1 + 2BR2)))λ

+ 8eAR2(
R2 + 24λ

))) − e2AR2√
πR

(
16A

(−A

− B + 48A2λ
)

Erf[√AR] − √
2
(
536A3 − 59A2B

+ 26AB2 + 9B3)λErf[√2
√

AR])}
}−1/2

. (35)

In Fig. 12, we show the evolution of redshift for the strange
star Her X-1.

4 Conclusion

The current cosmological observations imply that there are
two phases of accelerated expansion in our present model of
universe: cosmic inflation in the past era of the universe and
acceleration in the present expansion of the universe. The in-
vestigation of current cosmic expansion and nature of dark
energy has been widely accepted among the huge commu-
nity of the scientists. For this purpose, several attempts have
been made for the different strategies to modify the General
Relativity. The f (R) gravity is one of the modifications of
General Relativity.

The current paper deals with the investigation of an-
alytical models of quintessence compact stars with the

anisotropic gravitating static source in the framework of
f (G) gravity. To this end, we have choosen the Starobin-
sky model of the form f (R) = R + λR2, further the stars
are assumed as anisotropic in their internal structure. The
analytic solution in f (R) gravity have found by matching
the interior spacetime with the well-known exterior vacuum
spacetime. This matching is suitable in this case as f (T )

and GR both involve second order derivative terms in the
equations of motion and we have continuity of metric coef-
ficients up to first order derivatives. The graphical behavior
of the results exhibit the some prominent properties of the
anisotropic quintessence compact stars in f (R) gravity.

We have evaluated the matter density, radial and trans-
verse pressures, quintessence energy density and anisotropic
parameter of the model. Using the observational data of
SAXJ1808.4-3658(SS1) (radius = 7.07 km), 4U1820-30
(radius = 10 km), Her X-1 (radius = 7.7 km), we have plot-
ted the energy density, pressure and quintessence density at
center r = 0 to the boundary of the corresponding star. All
this results have been shown in Figs. 1–4. The first and sec-
ond derivatives of density and pressures shown in Figs. 5
and 6, indicate that these quantities have maximum values
at the center and minimum values at boundary. The graphi-
cal behavior of quintessence density ρq does not change in
f (R) theory of gravity as compared to GR, but there oc-
cur a deviation in numerical values 4. The constraint on the
EoS parameter is given by 0 < ωt < 1 (as shown in Fig. 7)
which is in agreement with normal matter distribution in
f (R) gravity. We have investigated that for our model � > 0
(as shown in Fig. 8) and a repulsive force due to anisotropy
results to the formation of more massive stars. The proposed
model satisfy the energy conditions, as an example we have
shown in Fig. 9 that these conditions are satisfied for Her-X1
(radius = 7.7 km). We have shown that v2

st < 1 (see Fig. 10)
and v2

st > v2
sr (see Fig. 11), hence our model is potentially

stable. The range of surface redshift Zs for compact star can-
didate Her-X1 (radius = 7.7 km) is shown in Fig. 12.
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