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Abstract Compact stars serve as a logical regimen for
the implementation of theoretical models that are difficult
to understand from an experimental setup. In our present
work, we discuss the stability of self-gravitating compact
objects by using the concept of cracking in the linear regime.
We investigate the effect of density perturbation and local
anisotropy on the stability regions of the following compact
objects, neutron star PSR J1614-2230, the millisecond pul-
sar PSR J1903+327 and X-ray pulsars Vela X-1, SMC X-1,
Cen X-3. We find that SMC X-1 is the stable compact object
and all other exhibit cracking.

Keywords Self-gravitating compact stars · Cracking ·
Density perturbation

1 Introduction

Self-gravitation is the most important phenomenon in the
study of general relativity and astrophysics. Without it, stars
and clusters of galaxies will dissipate through continuous
expansion of matter. In self-gravitating compact objects
(CO) disruption of physical parameters, like density, mass,

B M. Azam
azammath@gmail.com

S.A. Mardan
syedalimardanazmi@yahoo.com

M.A. Rehman
aziz3037@yahoo.com

1 Division of Science and Technology, University of Education,
Township Campus, Lahore 54590, Pakistan

2 Department of Mathematics, University of the Management and
Technology, C-II, Johar Town, Lahore 54590, Pakistan

pressure can cause expansion or collapse of relativistic ob-
jects and hence it is important to discuss such issues care-
fully. The study of compact stars is a hot topic not only in
general relativity but also in modified theories such as f (T )

(Abbas et al. 2015) and f (R) (Zubair and Abbas 2014).
The neutron stars PSR J1614-2230 (Demorest et al.

2010) and PSR J1930+327 (Freire et al. 2011) are millisec-
ond pulsars lies in the categories of stars whose masses have
been found accurately. The composition of these stars con-
sists of the densest material exist in this universe. The radii
of these stars depend upon the equation of state (EoS) i.e.,
how physical variables are related to each other. This rela-
tionship may be linear, quadratic, cubic etc., depends upon
the model under consideration. Further, it is observed that
X-ray pulsars Vela X-1, SMC X-1 and Cen X-3 with stellar
companions also lies in the class of self-gravitating com-
pact stars (Rawls et al. 2011). An X-ray pulsar composed
of a neutron star in a magnetic field. This magnetic field is
measured to be 108 Tesla that give rise to gravitation force
and attract the material from its neighboring atmosphere. All
this scenario gives rise to the continuous change in physical
variables like density, tangential and radial pressure.

The systems of above mention neutron stars and X-ray
pulsars needs to be analyze for their stability. Models of
compact stars are inadequate if they are unstable against
perturbation in physical variables, which can leads toward
the collapse of CO. It is necessary to investigate the sta-
bility of the models for their physically validity and the
important technique to do this, is cracking/overturning of
CO. The initial contribution toward the stability of gravitat-
ing sphere through the criterion of adiabatic was provided
by Bondi (1964). Chandrasekhar (1964) evolved the idea
of Bondi and developed the formalism in this context. The
idea of cracking was introduced by Herrera (1992). He dis-
cussed the concept of cracking/overturning in the study of
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self-gravitating objects when equilibrium state is disturbed
due to change in sign of radial forces. The cracking is trig-
ger due to change in local anisotropy of fluid or incoherent
emission. Di Prisco et al. (1994) developed necessary con-
dition for the cracking phenomenon. After few years, Her-
rera and Varela (1997) present the criterion of overturning
for non-spherical systems. He and his coworkers presents a
more recent approach by taking account anisotropic fluids
with two barotropic EoS, i.e., pr = pr(ρ) and pt = pt(ρ)

(Di Prisco et al. 1994). They emphasis on the effect of con-
stant density perturbation and introduce the terms of radial
and tangential sound speeds. These terms have drastic ef-
fect towards change in sign on radial forces and hence on
the stability of CO (Di Prisco et al. 1997). Sharif and Azam
(2012, 2013) have discussed the stability of stars in spherical
and cylindrical symmetries.

In our present work we refine the idea of density per-
turbation by considering it effects locally i.e., non-constant
density perturbation. We applied this technique to compact
relativistic bodies with linear barotropic EoS (Takisa and
Maharaj 2013). The radial pressure and energy density are
associated with a linear relationship. The model selected
here was presented by Takisa et al. (2014), that is compatible
with observational values presented by Gangopadhyay et al.
(2013). We use this model to study the stability of newly dis-
covered CO PSR J1614-2230, PSR J1903+327, Vela X-1,
SMC X-1, Cen X-3 (Gangopadhyay et al. 2013).

This paper is arranged as follows: In Sect. 2, Einstein
field equations and hydrostatic EoS for the model is pre-
sented. Section 3 is devoted to local density perturbations
to all physical variables and in Sect. 4 stability of stars is
discussed. In the last section, we conclude our results.

2 The field equations and conventions

The line element for the static spherically symmetric space
time is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (1)

The energy-momentum tensor for an anisotropic sphere is
defined by

T ab = diag(−ρ,pr,pt ,pt ), (2)

where 0 ≤ θ ≤ π, 0 ≤ φ < 2π , ρ represents energy density,
pr is the radial pressure and pt is the tangential pressure
of the fluid. The matter distribution of star should satisfy a
barotropic EoS to grantee physically realistic star and linear
EoS is given by (Takisa and Maharaj 2013)

pr = αρ − β, (3)

where β = αρε . The constant α is constrained by sound
speed condition and ρε gives the density at the surface r = ε

(Takisa et al. 2014). For static anisotropic matter with line
element (1), we have the following Einstein field equations
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where “′” denotes the derivative with respect to r . Here, we
assume that the system under consideration is in equilib-
rium. Equations (4)–(6) yields

dpr

dr
= 2(pt − pr)

r
− (ρ + pr)ν

′. (7)

Using the relation e−2λ(r) = 1 − 2m/r in the above equa-
tion (Mehra 1966), we obtain the main hydrostatic equilib-
rium equation for anisotropic fluid, which is used to explore
cracking of CO given by

R = −dpr

dr
+ 2(pt − pr)

r
− (ρ + pr)

m + 4πr3pr

r2 − 2mr
, (8)

where the mass function is defined as

m = 4π

∫ r

0
ρ(x)x2dx. (9)

3 Localized density disruption

In this section, we will see the effects of density pertur-
bations δρ with two barotropic EoS pr = pr(ρ) and pt =
pt(ρ). It can be noted from Eq. (8) that cracking take place
in the inner part of the sphere when equilibrium is disturbed
due to change in sign of disruption force i.e., δR < 0 →
δR > 0 and viceversa. The density disruption causes pertur-
bation in all variables and their derivatives and consequently
the hydrostatic equilibrium is disturbed. We perturb all the
physical variables through density perturbation is given by

pr(ρ + δρ) = pr(ρ) + dpr

dρ
δρ, (10)
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(ρ) +

[
d
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+ dpr

dρ

d2ρ

dr2

1
dρ
dr

]
δρ,

(11)

pt(ρ + δρ) = pt(ρ) + dpt

dρ
δρ, (12)

m(ρ + δρ) = m(ρ) + dm

dρ
δρ. (13)

We define the radial sound speed v2
r and tangential sound

speed v2
t as
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v2
r = dpr

dρ
, (14)

v2
t = dpt

dρ
. (15)

The perturb form of Eq. (8) is given by

R = R0
(
ρ,pr, p′

r , pt , m
) + δR, (16)

where
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(17)

Using density perturbation to the above equation, we have
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The derivatives involve in (18) are given by
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= 2
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, (22)

∂R

∂p′
r

= −1. (23)

It is mentioned here that Eq. (18) serve as the main equation
for local density perturbation.

4 The model

We apply the concept of cracking by using Eq. (18) to model
given by Takisa et al. (2014). It is defined as
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, (24)
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For uncharged CO (s = 0) radial and tangential sound speed
velocities are evaluated from Eqs. (25)–(26) as
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where α1, α2 and α3 are defined as

α1 = a(t + n)
(
1 + (a − b)r2 − bn

)
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Fig. 1 Cracking of PSR J1614-2230 in linear regime

Fig. 2 Cracking of PSR J1903+327 in linear regime
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+ a2β2
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4π(1 + ar2)2
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.

The constants a, b have dimension of length (L−2) and
we choose

α = 0.33, a = 53.34

�2
, b = b1

�2
,

where � = 43.245 km and these values are compatible with
the observational values (Takisa et al. 2014).

Fig. 3 Cracking of Vela X-1 in linear regime

Fig. 4 Cracking of SMC X-1 in linear regime

In order to observe cracking of different objects, we plot
force distribution ∂R

∂ρ
against radius R for the objects which

are as follows: PSR J1614-2230, PSR J1903+327, Vela X-1,
SMC X-1 and Cen X-3. From the Figs. 1, 2, 3, 4 and 5, it
is clear that SMC X-1 is the stable CO against local density
perturbations. For CO under consideration the values of radii
Rc, where cracking take place are given in Table 1. Hence,
at Rc force distribution changes its sign under the influence
of local density perturbation. The above model obeys the
following physical viable conditions

• The energy density ρ of CO remain positive even after
perturbation.

• The radial pressure pr vanishes at the boundary of star.
• At r = 0, pr = pt =  = 0.
• v2

r = α > 0, is constant in the linear regime.
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Table 1 Cracking of uncharged
compact objects STAR α b1 R (km) Rc (km)

PSR J1614-2230 0.33 40.11 10.30 6.862

PSR J1903+327 0.33 36.48 9.82 7.720

Vela X-1 0.33 37.77 9.99 7.399

SMC X-1 0.33 31.68 9.13 Stable

Cen X-3 0.33 34.29 9.51 9.32

Fig. 5 Cracking of Cen X-3 in linear regime

5 Conclusions and observations

We have used the model of Takisa et al. (2014) to check
the cracking of CO in the linear regime. This model can
be used to describe the observed CO PSR J1614-2230, PSR
J1903+327, Vela X-1, SMC X-1 and Cen X-3. We have con-
cluded that

• v2
t changes its sign from positive to negative as we move

from center to the boundary of CO.
• v2

t > v2
r up to 1030 times.

• PSR J1614-2230, PSR J1903+327, Vela X-1 and Cen X-3
shows cracking at Rc when perturbed.

• SMC X-1 does not show any cracking and it is stable for
local density perturbation.

• The stability region for each stars exhibit cracking lies
between r = 0 to r = Rc .

The measurement of cracking radii Rc gives the strongest
constraint of stability regions. The systems PSR J1614-
2230, PSR J1903+327, Vela X-1 and Cen X-3 described by
the model (Takisa et al. 2014) become ‘Potentially’ unstable
due to variation in the physical variables. This stability anal-
ysis describes the sensitivity of radial forces towards local
density perturbation and local anisotropy which can result in
the collapse of star. In our model, the value of radial sound
speed v2

r is always positive so overturning appears when the
tangential sound speed v2

t counter it at Rc .

The concept of cracking was presented by Herrera (1992)
to narrate the behavior of fluid distribution just after depar-
ture from equilibrium. In this approach simultaneous and in-
dependent density disruptions may leads anisotropic matter
configurations to show cracking (Di Prisco et al. 1994). In
this pattern of density perturbation, constant density disrup-
tions effect physical quantities like mass, tangential and ra-
dial pressure but leave unchanged pressure gradient.

In this work global (constant) density perturbation ap-
proach is modified by local (non-constant) density pertur-
bations, which also effects pressure gradient and may leads
towards cracking of anisotropic matter configurations. The
presence of such phenomenon could badly effect the growth
or decay of the system. If cracking does not take place in
the system then it is potentially stable as in the case of SMC
X-1, but if cracking take place system may suffer from col-
lapse.
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