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Abstract Soliton formation in plasma is addressed. Nonlin-
ear acoustic waves in plasma where the combined effects of
bounded spherical geometry and the transverse perturbation
are dealt with, in two-temperature electron plasma are stud-
ied. Using the perturbation method, a spherical Kadomtsev-
Petviashvili equation (SKP) that describes the ion acoustic
waves is derived. The plasma is modeled by a kappa distri-
bution function for both electrons components as found in
Saturn’s magnetosphere. It is found that parameters taken
into account have significant effects on the properties of
nonlinear waves. The model is applied to Saturn’s magne-
tosphere, where two temperature superthermal electrons are
present. Hence, ion acoustic waves are deduced for three
regions, namely, the inner, the intermediate and the outer
Saturn’s magnetosphere. We point out, that this work has
been motivated by recent observations of Saturn’s magneto-
sphere.

Keywords Space plasma · Kappa distribution · Nonlinear
waves in plasma · Perturbation method

1 Introduction

Most of space and astrophysical plasmas environments are
observed to have quasi-Maxwellian particle distribution
function with non-Maxwellian suprathermal tails (Pierrard
et al. 1996; Hellberg and Mace 2002; Shahmansouri 2012).
The distribution of superthermal particles is characterized
by the spectral index κ , so called kappa-distribution func-
tion. The spectral index is a measure of energy spectrum

B K. Annou
kannou@cdta.dz

1 Centre de développement des technologies avancées, BP 17, Baba
Hassen, 16303, Algiers, Algeria

slope of suprathermal particles forming the tail of veloc-
ity distribution function. Its smaller value indicates more
suprathermal particles in the tail of distribution function, i.e.,
in the harder side (higher side) of energy spectrum. Kappa
distribution approaches the Maxwellian as κ → ∞ (Hell-
berg and Mace 2002). The general form of the kappa dis-
tribution was first suggested by Vasyliunas (1968) to model
space plasma. Rightly, this was sustained by observations
made by The Voyager PLS (Sittler et al. 1983; Barbosa and
Kurth 1993) and the Cassini CAPS (Cassini Plasma Spec-
trometer) (Young et al. 2005). In view of those observations,
the electron distribution in Saturn’s magnetosphere is sup-
posed to be the sum of two kappa distribution.

Very recently, CAPS/ELS and MIMI/LEMMS data was
analyses (Schippers et al. 2008) from the Cassini space-
craft orbiting Saturn over a range of 5.4 Rs (where Rs =
60300 km is the Saturn’s radius), it was shown that both cool
and hot electrons population are κ-distributed, with indepen-
dent values of κ . Indeed, the hot “suprathermal” component
has much lower density than the bulk “thermal” component.
These bi-kappa fits have been observed over a wide range of
the magnetosphere from 5.4 to 18 Rs Saturn radii.

Afterward, these investigations have attracted the atten-
tion of many researchers to study the nonlinear wave struc-
tures in plasmas with superthermal tails (Moslem and El-
Taibany 2005; Choi et al. 2011; Saini et al. 2014, and refer-
ences therein) and even to investigate the characteristics of
solitary structures in different plasma systems.

For example, Baluku and Hellberg (2012) studied the
existence domains and characteristic behaviors of the ion
acoustic soliton to exist in an unmagnetized plasma with
two temperature kappa-distributed electrons. Lately, Shah-
mansouri and Alinejad (2013a, 2013b) studied the linear
and nonlinear excitations of arbitrary amplitude ion acous-
tic solitary waves in a magnetized plasma comprising two
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temperature electrons and cold ions. It was observed that
a small value of the hot electrons population shift the al-
lowed interval of Mach numbers to a lower value. Both com-
pressive and rarefactive solitary structures have been ob-
served in two temperature electron plasmas. Lastly, Panwar
et al. (2014) studied the oblique propagation of ion acous-
tic cnoidal waves in magnetized plasma consisting of cold
ions and two temperature superthermal electrons modeled
by kappa-type distributions. They found that the density ra-
tio of hot electrons to ions significantly modifies compres-
sive/refractive wave structures.

Elsewhere, the waves observed in laboratory and space
plasmas are certainly not bounded in unbounded planar ge-
ometry. Recent theoretical studies indicate that the proper-
ties of solitary waves in bounded nonplanar spherical ge-
ometry differ from that in unbounded planar geometry (Xue
2003; Annou and Annou 2012b). It is now well known
that the transverse perturbation (which always exists in
the higher dimensional system) may not only introduce
anisotropy into the system but also modify the structure and
stability of the solution (Xie et al. 1998). The combined ef-
fects of both nonplanar geometry and transverse perturba-
tion on the DAWs have been considered by several authors
(Annou and Annou 2011, 2012a).

Up to now, however, there are only a few investigations
about the effect of superthermal particles on the character-
istics of solitary waves of nonplanar solitary waves in non-
Maxwellian plasmas. Therefore, motivated by all previous
work, in this paper, we will study the combined effect of
bounded spherical geometry and the transverse perturbation
in two-temperature electron plasma. The formation of ion
acoustic waves generated in the plasma is studied for differ-
ent parameters. For this purpose, electrons are modeled by
bi-kappa distribution. The model is applied to Saturn’s mag-
netosphere, where electrons are well fitted by such a double-
kappa distribution.

The manuscript is arranged in the following fashion.
A details description of the kappa distribution is presented
in Sect. 2. In Sect. 3 we present the relevant equation gov-
erning the dynamics of nonlinear ion acoustic waves. This
is followed in Sect. 4 by the use of the reductive perturba-
tion method to derive the spherical Kadomtsev-Petviashvili
equation. Afterward, the solitary wave solution is presented
in Sect. 5. Results are discussed in Sect. 6. Application to
Saturn’s magnetosphere is presented in Sect. 7. The con-
cluding remarks are summarized in the concluding Sect. 7.

2 Basic equations

A three-dimensional isotopic Kappa distribution is given by
Baluku and Hellberg (2008, 2012)

fκ(v) = ne0

πv2
θ κ

3/2

Γ (κ)

Γ (κ − 1/2)

(
1 + v2

κv2
ϑ

)−(κ+1)

, (1)

where ϑ is the most probable speed (effective thermal
speed), related to the usual thermal velocity Vt =
(kBT /m)1/2 by ϑ = [(2κ − 3)/κ]Vt , T being the character-
istic kinetic temperature, i.e. the temperature of the equiva-
lent Maxwellian with the same average kinetic energy (Hell-
berg and Mace 2002), ne0 the electron equilibrium density
and kB is the Boltzmann constant. Parameter κ is the spec-
tral index, a measure of the slope of the energy spectrum of
the suprathermal particles forming the tail of the distribution
function. The Gamma function arises from the normaliza-
tion of fκ(v) such that∫

fκ(v)d3v = ne0. (2)

Integrating the Kappa distribution over velocity space, the
number density for electrons can be obtained as (Panwar
et al. 2014)

ne(φ) = ne0

(
1 − eφ

(κ − 3/2)kBT

)−(κ−1/2)

. (3)

φ is the local electrostatic potential.

3 Ion motion modeling

We consider collisionless, unmagnetized plasma consisting
three components, namely fluid ions and two types of elec-
trons with different temperature Tc (lower) and Th (higher).
We assume that charge neutrality at equilibrium requires
that ni0 = nec0 + neh0 where ni0, nec0 (neh0) are the unper-
turbed number density of ions, and cold (hot) temperature
electrons, respectively. The nonlinear dynamics of the ion
acoustic solitary waves (IASWs) in such a plasma system
is described in spherical geometry by the following set of
equations:
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= nc + nh − n, (7)

where r , θ are the radial and angle coordinates u and v, are
the ion fluid velocity in r and θ directions, respectively, n

and Φ represent the ion density and the electrostatic poten-
tial. The variables t , r , n, u, v and Φ are normalized to the
plasma frequency ω−1

pi = (mi/4πni0e
2)1/2 the Debye radius

λD = √
Tc/4πe2, the unperturbed number density of ions

ni0, the ion fluid velocity Ci = (kBTc/mi)
1/2 and kTc/e, re-

spectively.
Elsewhere, the densities of κ-distribution cold and hot

electrons from Eq. (3) can be read as
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nc = (1 − μ)

(
1 − Φ

κc − 3
2

)−(kc−1/2)

, (8)

nh = μ

(
1 − σΦ

κh − 3
2

)−(kh−1/2)

, (9)

where kc and kh are the spectral index of cold and hot elec-
trons components, respectively.

Here we have denoted, σ = Tc/Th as the temperature ra-
tio of cold to hot electrons and μ = nh0/ni0 as the density
ratio of hot electrons to ions.

4 Derivation of SKP equation

Since we are dealing with weak nonlinearities, we may lin-
earize our equations using the so-called reductive perturba-
tion method (Washimi and Taniuti 1966), whereby, we ex-
pand the variables n, u and φ around the unperturbed states
in power series of ε (ε is a small parameter measuring the
weakness of dispersion) that is,

n = 1 + εn1 + ε2n2 + · · · (10)

u = 1 + εu1 + ε2u2 + · · · (11)

φ = εφ1 + ε2φ2 + · · · (12)

We can rewrite Eqs. (4)–(7) taking into account Eqs. (8)–
(9) and Eqs. (10)–(12) and the stretched coordinates ξ =
ε1/2(r − V0t), η = ε−1/2θτ = ε3/2t to get different powers
of ε. Solving for n1, u1 and φ1, to the lowest order in ε we
acquire the following set of relations:

n1 = 1

V 2
0

φ1, (13)

u1 = − 1

V0
φ1, (14)

V0 = 1√
α

(15)

with α = (1−μ)
(2kc−1)
(2kc−3)

+σμ
(2κ2−1)
(2kh−3)

, where V0, is the wave
phase speed.

To the next higher order of ε, we obtain the following set
of equations:
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with = (1 − μ)
(4k2

c −1)

2(2kc−3)2 + σ 2μ
(4κ2−1)

2(2kh−3)2 .

Using Eqs. (10)–(18) we finally derived the following
equation,

∂
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∂φ1
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+ B
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+ 1

τ
φ1
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[
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∂η2
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]
= 0, (20)

where A = 2β/γ , B = V 3
0
2 , C = 1

2V0τ
2 and γ = 2(α3/2 +

α2).

Analyze of the SKP equation:

(a) Equation (20) is the spherical Kadomtsev-Petviashvili
equation describing the nonlinear propagation of the ion
acoustic solitary waves in plasma with bi-kappa dis-
tributed electrons.

(b) In this equation, A is the coefficient of nonlinearity, and
B is the coefficient of dispersion. It is worth stressing
that the most important nonlinear effect (represented by
the coefficient A) is that the higher amplitude parts of a
wave travel faster than the lower amplitude parts, lead-
ing to a steepening of the wave front. Further, dispersive
wave (represented by the coefficient B) boils down to
the fact that the waves travel at different speeds, which
causes the wave to be stretched over time. Accordingly,
soliton arise as a result of the balance between the non-
linear steepening and dispersive stretch of the wave.

(c) We note from Eq. (20), that as the value of τ de-
creases, the effect of spherical geometry (or from the
term “ 1

τ
φ1”) becomes stronger in comparison with the

typical one-dimensional KdV case.
(d) We can notice that the amplitude and wave velocity of

the solitary wave described by Eq. (20) are exclusively
determined by the parameters of the system and are only
depending on the initial conditions. Moreover, the soli-
tary solution of SKP equation indicates that the phase
velocity of the solitary wave is angle dependent in the
phase. This means that the spherical wave described by
the SKP will slightly deform as time goes on.

(e) Lastly, we point out, that if the wave propagates without
the transverse perturbation, the last term in the left side
of Eq. (20) disappears and the SKP equation reduces to
the ordinary spherical KdV equation.

5 Solitonic solution

We can find an exact solitary wave solution for the SKP
equation (20) by using a suitable variable transformation so
the two terms with variable coefficients, can be canceled if
we assume, ζ = ξ − v0

2 η2τ , φ1 = Φ(ζ, τ ) and by impos-
ing the appropriate boundary conditions, namely, Φ → 0,
dΦ1/dξ → 0, d2Φ1/dξ2 → 0 as ξ → ±∞.
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We adopt the following notation Φ1 ≡ Φ , then the SKP
is reduced to the standard KdV equation,

∂Φ

∂τ
+ AΦ

∂Φ

∂ζ
+ B

∂3Φ

∂ζ 3
= 0 (21)

whose solution is of the form:

Φ = Φm sech2
[
(ζ − U0τ)

�

]
, (22)

U0 is a constant. As a result we get an exact solitary wave
solution of SKP

Φ(ζ) = Φm sech2
[
(ξ − (U0 + v0

2 η2)τ )

�

]
. (23)

Φm = 3U0
A

2
is the maximum amplitude (potential pertur-

bation), and � = √
4B/U0 measures the spatial extension

(width) of localized wave.
The maximum amplitude of the wave gives us a very sim-

ple criterion for analyzing the range of different parameters,
for which a compressive or rarefactive solitary wave can ex-
ist. It is worthwhile to mention that the nature of solitary
wave can be determined by the sign of parameter “A”. Thus,
if A < 0 the system can support rarefactive solitary struc-
tures (corresponding to negative potential), and if A > 0, the
system can support compressive solitary structures. In our
case, as A can be either positive or negative, our system can
support compressive as well as rarefactive structures (corre-
sponding to positive or negative potential well), depending
on the plasma parameters.

6 Results and discussion

Now, to investigate the nature and behavior of the solitary
waves (represented by Eq. (22)) we have graphically an-
alyzed the potential amplitude and examined how the su-
perthermality and the plasma parameters change the profile
of the maximum potential perturbation. The results are dis-
played in Figs. 1–6 where the effects of different plasma pa-
rameters such as spectral index of each of the electron com-
ponent, temperature ratio of the two electron components,
and density ratio of the hot electrons species are varied.

6.1 Effect of electron spectral indices κ

In Fig. 1 we show the effect of varying the cool electron
spectral index κc on the wave behavior for fixed value of
κh = 2, density ratio μ = 0.2 and temperature ratio σ =
0.01. We have illustrated these finding for specific values,
namely (κc = 2, κc = 10 and κc = 20). It is clearly seen
that as the superthermal concentration of cold electrons in-
creases (κc decrease), the spatial extension (width) of the
ion-acoustic wave’s increases, while it has no effect on the
rarefactive waves (figure not shown here). Conversely, vary-
ing the hot electron spectral index κh have the opposite ef-
fect on the rarefactive waves (see Fig. 2).

Fig. 1 Variation of the solitary wave solution for different values of κc

for κh = 2, μ = 0.2 and σ = 0.01

Fig. 2 Variation of the solitary wave solution for different values of
κh for κc = 2, μ = 0.2 and σ = 0.01

6.2 Effect of temperature ratio σ

Figures 3 and 4 depict the effect of temperature ratio (σ =
Tc/Th) on compressive and rarefactive solitary waves with
fixed plasma parameters, κc = κh = 2, μ = 0.2 (for positive
potential) and μ = 2 (for negative potential). It is seen that
σ changes slightly the amplitude of the structures while it
has no real effect on their amplitude. By cons, the amplitude
and width of rarefactive waves increase significantly with σ .
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Fig. 3 Variation of the solitary wave solution for different values of σ

for κc = κh = 2 and μ = 0.2

Fig. 4 Variation of the solitary wave solution for different values of σ

for κc = 1, κh = 2 and μ = 2

6.3 Effect of electron density μ

Figure 5 shows how the amplitude varies with the density
ratio of hot electrons to ions (μ = nh0/ni0) when elec-
tron spectral index (κc = κh = 2) and temperature ratio
(σ = 0.01) are held constant. The cold electron population
leads to reduction of the compressive waves amplitude until
change its polarity. Thus, the density ratio of hot electron to
ions determines the regime of compressive and rarefactive
wave solutions as shown in Fig. 6.

Fig. 5 Variation of the solitary wave solution for different values of μ

for κc = κh = 2 and σ = 0.01

Fig. 6 Variation of the solitary wave solution for different values of μ

for κc = κh = 2 and σ = 0.01

6.4 Electric field

It should be emphasized that we can find the magnitude of
the electric field of our ion acoustic waves, by taking the
negative gradient of the solution in Eq. (22) which reads as

E = −4Φm

�
sech2

(
ζ − U0τ

�

)
tanh

(
ζ − U0τ

�

)
. (24)

The dependence of the electric field E on κc and μ is de-
picted in Figs. 8 and 9. It is seen that the electric field is
affected by the population of superthermal electrons, and in
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Fig. 7 Spherical soliton for
κc = 1, κh = 2, μ = 2 and
σ = 0.01

Fig. 8 Solitary wave electric field magnitude for different values of κc

for κh = 2, μ = 0.2 and σ = 0.01

fact becomes more localized with higher amplitude with in-
crease κc (decreased superthermality). Otherwise, as density
ratio decrease, the magnitude of the electric field decreases
too.

7 Application to Saturn’s magnetosphere

In this section we will give the characteristics of ion waves
for parameter values that are typical of the three regions of
Saturn’s magnetosphere, viz., the inner magnetosphere, in-
termediate magnetosphere and the outer magnetosphere as
given by Shippers et al. Table 1 list the parameter values,
extracted from papers of Schipper et al. and Baluku et al.,

Fig. 9 Solitary wave electric field magnitude for different values of μ

for κc = κh = 2 and σ = 0.01

where they mainly used data values obtained on the Cassini
outbound trajectory (Baluku et al. 2011).

We have illustrated the variation of the nonlinear ion
acoustic waves that propagate in the magnetosphere for each
region. As it was expected, the solitary waves that occur in
Saturn’s magnetosphere are strongly influenced by the oc-
currence’s region. Indeed, medium effect can be observed
on the amplitude and width of IASWs via change in R. It is
obvious from Figs. 10, 11 and 12 that as R increase (from in-
ner to outer magnetosphere) the amplitude and width of the
solitary waves decrease. Moreover, the electric filed is also
plotted in Fig. 13 for three chosen values corresponding to
the three region of Saturn’s magnetosphere (inner magne-
tosphere R = 5.4 RS , intermediate R = 12 RS and outer
magnetosphere R = 17.8 RS ). It is shown that the electric
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Table 1 Parameter values
derived from Shippers et al.
corresponding to Saturn’s
magnetosphere

R (Rs ) κc κh Tc (eV) Th (eV) nc (cm−3) nh (cm−3)

5.4 8.0 3 1.8 300 10.5 0.02

6.3 2.3 3.0 2.0 400 10.5 0.01

9.8 2.0 4.0 8.0 1100 2.5 0.07

12.0 2.0 3.5 6.0 1200 1.00 0.11

13.1 2.1 4.0 10.2 1000 0.21 0.18

14.0 2.1 6.0 30 900 0.15 0.10

15.2 2.0 4.0 70 900 0.25 0.10

17.8 1.9 3.8 28 1000 0.15 0.07

Fig. 10 Variation of the solitary wave solution in the inner Saturn’s
magnetosphere

Fig. 11 Variation of the solitary wave solution in the intermediate Sat-
urn’s magnetosphere

Fig. 12 Variation of the solitary wave solution in the outer Saturn’s
magnetosphere

Fig. 13 Solitary wave electric field magnitude in Saturn’s magneto-
sphere
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field is more localized with much sharper peaks in the inner
magnetosphere.

8 Summary

To conclude, let recall, that this work dealt with the inves-
tigation of ions acoustic wave propagation in plasma with
bi-kappa distributed electrons components, having differ-
ent temperatures. Using reductive perturbation theory, we
have derived a SKP equation, and its corresponding solitary
wave solution. We have analyzed and found that the plasma
system under consideration supports ions acoustic waves,
whose features, polarity, amplitude, width and electric field,
depend on the cool (hot) electron spectral index κc (κh), the
temperature ratio of cold to hot electrons (σ = Tc/Th) and
the density ratio of hot electrons to ions (μ = nh0/ni0). We
also described the wave behavior in each of the three regions
of Saturn’s magnetosphere.

The results which have been found from this study can
be pinpointed as follows.

(i) In the present investigation, the presence of the two
temperature electrons leads to the formation of oppo-
site polarity potential solitons. Indeed, both compres-
sive and rarefactive solitons can be supported by the
model for some plasma parameters, which is in good
agreement with earlier works of Saini et al. (2014),
Baluku et al. (2010).

(ii) Superthermality of hot and cold electrons (κh and κc)
have significant and opposite effects on the solitons
profiles. Superthermality of cold electron increases
the amplitude of the compressive waves, while it re-
verses in the rarefactive case.

(iii) At higher lever of superthermality, the electric field
becomes less localized with lower amplitudes.

(iv) It is noticed that the amplitude and width of nega-
tive potential solitons are enlarged with increase in
σ , but reduced for the case of positive potential soli-
tons, hence, the effects of electron temperatures sig-
nificantly modify the soliton profiles.

(v) Compressive waves are not affected by the Tempera-
ture ratio (σ = Tc/Th). Nevertheless, σ increases the
height and width of the rarefactive waves.

(vi) The polarity of our solitary waves solutions are de-
termined by the density ratio of hot electrons to ions
(μ = nh0/ni0).

(vii) SKP equation admits spherical soliton as solution as
reveals in Fig. 7.

(viii) The magnitude of the electric field is proportional to
the density ratio μ.

(ix) Based on data obtained from Saturn’s magnetosphere
(Schippers et al. 2008), we have carried out the IAWs
in the inner Saturn’s magnetosphere (R < 9 RS),

the intermediate Saturn’s magnetosphere (9 ≤ R ≤
13 RS), and the outer Saturn’s magnetosphere (R >

13 RS), as well as the corresponding electric field
of each region. It was found that, the solitary struc-
tures have greater amplitude (potential perturbation)
and width (the spatial extension) in the inner region.
This was expected, because this region has the dens-
est plasma in the Saturnian system, and is character-
ized by low temperature and high equatorial densities.
Elsewhere, in the outer region of the magnetosphere
which is characterized by low plasma density and is
strongly influenced by the solar wind, the amplitude
and width of the localized structure are the smaller
one. Moreover, the electric field is more localized with
much sharper peaks in the inner magnetosphere. In-
deed, it was found that as we move away from the cen-
ter of the magnetosphere, the electric field becomes
less localized with reduced amplitude.

It is worthwhile to remind that the above results yield im-
proved understanding of the propagation of non-linear ion
acoustic waves in unmagnetized plasma in the case that
electrons are κ-distributed. Especially, in Saturn’s magne-
tosphere where two different temperatures electrons with
kappa distribution are often present. As a final point, the re-
sults of the present work should also be helpful to explain
the basic features of localized electrostatic disturbance ob-
served in laboratory, astrophysical and space plasmas, such
as plasma expansion, laser-plasma interaction, the auroral
zone and the upper ionosphere, where two temperature elec-
trons population obeying kappa distribution exist. Further-
more, this study is of interest in the context of the inves-
tigation of mono-energetic ion beams from intense laser
interactions with plasmas. The more about the properties
of IAWs in space plasma in which electrons bi-kappa dis-
tributed are the major plasma species, viz., pulsar magneto-
sphere, Earth’s magnetosphere plasma sheet and solar wind
are worthy of studying further.
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