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Abstract We consider three-dimensional gravity based on
torsion. Specifically, we consider an extension of the so-
called Teleparallel Equivalent of General Relativity in the
presence of a scalar field with a self-interacting potential,
where the scalar field is non-minimally coupled with the tor-
sion scalar. Then, we find asymptotically AdS hairy black
hole solutions, which are characterized by a scalar field with
a power-law behavior, being regular outside the event hori-
zon and null at spatial infinity and by a self-interacting po-
tential, which tends to an effective cosmological constant at
spatial infinity.

Keywords Hairy black holes · Teleparallel gravity

1 Introduction

Although standard four-dimensional (4D) General Relativ-
ity (GR) is believed to be the correct description of grav-
ity at the classical level, its quantization faces many well-
known problems. Therefore, three-dimensional (3D) grav-
ity has gained much interest, since classically it is much
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simpler and thus one can investigate more efficiently its
quantization. Amongst others, in 3D gravity one obtains
the Banados-Teitelboim-Zanelli (BTZ) black hole (Banados
et al. 1992), which is a solution to the Einstein equations
with a negative cosmological constant. This black-hole so-
lution presents interesting properties at both classical and
quantum levels, and it shares several features of the Kerr
black hole of 4D GR (Carlip 1995).

Furthermore, remarkable attention was addressed re-
cently to topologically massive gravity, which is a gener-
alization of 3D GR that amounts to augment the Einstein-
Hilbert action by adding a Chern-Simons gravitational term,
and thus the propagating degree of freedom is a massive
graviton, which amongst others also admits BTZ black-
hole as exact solutions (Deser et al. 1982a, 1982b). The re-
newed interest on topologically massive gravity relies on
the possibility of constructing a chiral theory of gravity
at a special point of the parameter-space, as it was sug-
gested in Li et al. (2008). This idea has been extensively
analyzed in the last years (Strominger 2008; Carlip et al.
2008, 2009; Carlip 2008; Giribet et al. 2008; Park 2008;
Blagojevic and Cvetkovic 2009; Grumiller et al. 2008;
Garbarz et al. 2009; Grumiller and Johansson 2008, 2009;
Henneaux et al. 2009), leading to a fruitful discussion that
ultimately led to a significantly better understanding of the
model (Maloney et al. 2010). Moreover, another 3D massive
gravity theory known as new massive gravity (Bergshoeff
et al. 2009, 2010) (where the action is given by the Einstein-
Hilbert term plus a specific combination of square-curvature
terms which gives rise to field equations with a second or-
der trace) have attracted considerable attention, this theory
also admits interesting solutions, see for instance Clement
(2009a, 2009b), Oliva et al. (2009). Furthermore, 3D grav-
ity with torsion has been extensively studied in Mielke
and Baekler (1991), Garcia et al. (2003), Blagojevic and
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Cvetkovic (2008a, 2008b), Blagojevic et al. (2009), Gonza-
lez and Vasquez (2011) and references therein.

On the other hand, hairy black holes are interesting so-
lutions of Einstein’s Theory of Gravity and also of certain
types of Modified Gravity Theories. The first attempts to
couple a scalar field to gravity was done in an asymptoti-
cally flat spacetime. Then, hairy black hole solutions were
found Bocharova et al. (1970), Bekenstein (1974, 1975) but
these solutions were not examples of hairy black hole con-
figurations violating the no-hair theorems because they were
not physically acceptable as the scalar field was divergent
on the horizon and stability analysis showed that they were
unstable (Bronnikov and Kireyev 1978). To remedy this a
regularization procedure has to be used to make the scalar
field finite on the horizon. Hairy black hole solutions have
been extensively studied over the years mainly in connec-
tion with the no-hair theorems. The recent developments in
string theory and specially the application of the AdS/CFT
principle to condense matter phenomena like superconduc-
tivity (for a review see Hartnoll 2009), triggered the inter-
est of further study of the behavior of matter fields outside
the black hole horizon (Gubser 2005, 2008). There are also
very interesting recent developments in Observational As-
tronomy. High precision astronomical observations of the
supermassive black holes may pave the way to experimen-
tally test the no-hair conjecture (Sadeghian and Will 2011).
Also, there are numerical investigations of single and bi-
nary black holes in the presence of scalar fields (Berti et al.
2013). The aforementioned is a small part on the relevance
that has taken the study of hairy black holes currently in
the field of physics, for more details see for instance Gon-
zalez et al. (2013, 2014) and references therein. Also, we
refer the reader to references Martinez and Zanelli (1996),
Henneaux et al. (2002), Zhao et al. (2014), Xu and Zou
(2014), Cardenas et al. (2014) and references therein, where
black holes solutions in three space-time dimensions with a
scalar field (minimally and/or conformally) coupled to grav-
ity have been investigated.

In the present work we are interested in investigating
the existence of 3D hairy black holes solutions for theories
based on torsion. In particular, the so-called “teleparallel
equivalent of General Relativity” (TEGR) (Einstein 1928;
Unzicker and Case 2005; Hayashi and Shirafuji 1979, 1982)
is an equivalent formulation of gravity but instead of using
the curvature defined via the Levi-Civita connection, it uses
the Weitzenböck connection that has no curvature but only
torsion. So, we consider a scalar field non-minimally cou-
pled with the torsion scalar, with a self-interacting poten-
tial in TEGR, and we find three-dimensional asymptotically
AdS, hairy black holes. It is worth mentioning, that this kind
of theory (known as scalar-torsion theory), has been stud-
ied in the cosmological context, where the dark energy sec-
tor is attributed to the scalar field. It was shown that the

minimal case is equivalent to standard quintessence. How-
ever, the nonminimal case has a richer structure, exhibiting
quintessence-like or phantom-like behavior, or experiencing
the phantom-divide crossing Geng et al. (2011, 2012), Gu
et al. (2013), see also Horvat et al. (2014) for applications of
this theory (with a complex scalar field) to boson stars.

It is also worth to mention that a natural extension of
TEGR is the so called f (T ) gravity, which is represented
by a function of the scalar torsion T as Lagrangian den-
sity (Ferraro and Fiorini 2007, 2008; Bengochea and Fer-
raro 2009; Linder 2010a, 2010b). The f (T ) theories picks
up preferred referential frames which constitute the autopar-
allel curves of the given manifold. A genuine advantage of
f (T ) gravity compared with other deformed gravitational
schemes is that the differential equations for the vielbein
components are second order differential equations. How-
ever, the effects of the additional degrees of freedom that
certainly exist in f (T ) theories is a consequence of break-
ing the local Lorentz invariance that these theories exhibit.
Despite this, it was found that on the flat FRW background
with a scalar field, up to second order linear perturbations
does not reveal any extra degree of freedom at all (Izumi and
Ong 2012). As such, it is fair to say that the nature of these
additional degrees of freedom remains unknown. Remark-
ably, it is possible to modify f (T ) theory in order to make
it manifestly Lorentz invariant. However, it will generically
have different dynamics and will reduce to f (T ) gravity in
some local Lorentz frames (Li et al. 2011; Weinberg 1972;
Arcos et al. 2010). Clearly, in extending this geometry sec-
tor, one of the goals is to solve the puzzle of dark energy
and dark matter without asking for new material ingredients
that have not yet been detected by experiments (Capozziello
and Francaviglia 2008; Ghosh and Chattopadhyay 2013).
For instance, a Born-Infeld f (T ) gravity Lagrangian was
used to address the physically inadmissible divergences oc-
curring in the standard cosmological Big Bang model, ren-
dering the spacetime geodesically complete and powering
an inflationary stage without the introduction of an infla-
tion field (Ferraro and Fiorini 2008). Also, it is believed
that f (T ) gravity could be a reliable approach to address
the shortcomings of general relativity at high energy scales
(Capozziello and De Laurentis 2011). Furthermore, both in-
flation and the dark energy dominated stage can be realized
in Kaluza-Klein and Randall-Sundrum models, respectively
(Bamba et al. 2013). In this way, f (T ) gravity has gained
attention and has been proven to exhibit interesting cos-
mological implications. On the other hand, the search for
black hole solutions in f (T ) gravity is not a trivial prob-
lem, and there are only few exact solutions, see for instance
Capozziello et al. (2013), Atazadeh and Mousavi (2012),
Wang (2011), Ferraro and Fiorini (2011a), Hamani Daouda
et al. (2011, 2012), Iorio and Saridakis (2012), Gonzalez
et al. (2012), Nashed (2013a, 2013b, 2014), Paliathanasis
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et al. (2014), Rodrigues et al. (2013). Remarkably, it is
possible to construct other generalizations, as Teleparallel
Equivalent of Gauss-Bonnet Gravity (Kofinas and Saridakis
2014a, 2014b), Kaluza-Klein theory for teleparallel gravity
(Geng et al. 2014) and scalar-torsion gravity theories (Geng
et al. 2011; Kofinas et al. 2015).

The paper is organized as follows. In Sect. 2 we give
a brief review of three-dimensional Teleparallel Gravity.
Then, in Sect. 3 we find asymptotically AdS black holes with
scalar hair, and we conclude in Sect. 4 with final remarks.

2 3D teleparallel gravity

In 1928, Einstein proposed the idea of teleparallelism to
unify gravity and electromagnetism into a unified field
theory; this corresponds to an equivalent formulation of
General Relativity (GR), nowadays known as Teleparallel
Equivalent to General Relativity (TEGR) (Einstein 1928;
Unzicker and Case 2005; Hayashi and Shirafuji 1979, 1982),
where the Weitzenböck connection is used to define the
covariant derivative (instead of the Levi-Civita connection
which is used to define the covariant derivative in the context
of GR). The first investigations on teleparallel 3D gravity
were performed by Kawai almost twenty years ago (Kawai
1993, 1995a, 1995b). The Weitzenböck connection men-
tioned above has not null torsion. However, it is curvature-
less, which implies that this formulation of gravity exhibits
only torsion. The Lagrangian density T is constructed from
the torsion tensor. To clarify, the torsion scalar T is the re-
sult of a very specific quadratic combination of irreducible
representations of the torsion tensor under the Lorentz group
SO(1,3) (Hehl et al. 1995). In this way, the torsion tensor in
TEGR includes all the information concerning the gravita-
tional field. The theory is called “Teleparallel Equivalent to
General Relativity” since the field equations are exactly the
same as those of GR for every geometry choice.

The Lagrangian of teleparallel 3D gravity corresponds to
the more general quadratic Lagrangian for torsion, under the
assumption of zero spin-connection. So, the action can be
written as (Muench et al. 1998; Itin 2001)

S = 1

2κ

∫
(ρ0L0 + ρ1L1 + ρ2L2 + ρ3L3 + ρ4L4), (1)

where κ is the three-dimensional gravitational constant,
ρi are parameters, and

L0 = 1

4
ea ∧ �ea, L1 = dea ∧ �dea,

L2 = (
dea ∧ �ea

) ∧ �
(
deb ∧ eb

)
,

L3 = (
dea ∧ eb

) ∧ �(dea ∧ eb),

L4 = (
dea ∧ �eb

) ∧ �
(
deb ∧ ea

)
,

(2)

where ea denotes the vielbein, d is the exterior derivative,
� denotes the Hodge dual operator and ∧ the wedge prod-
uct. The coupling constant ρ0 = − 8

3Λ represents the cos-
mological constant term. Moreover, since L3 can be written
completely in terms of L1, in the following we set ρ3 = 0
(Muench et al. 1998). Action (1) can be written in a more
convenient form as

S = 1

2κ

∫
(T − 2Λ) � 1, (3)

where �1 = e0 ∧ e1 ∧ e2, and the torsion scalar T is given by

T = �
[
ρ1

(
dea ∧ �dea

) + ρ2
(
dea ∧ ea

) ∧ �
(
deb ∧ eb

)
+ ρ4

(
dea ∧ eb

) ∧ �
(
deb ∧ ea

)]
. (4)

Expanding this expression in terms of its components, the
torsion scalar yields

T = 1

2
(ρ1 + ρ2 + ρ4)T

abcTabc + ρ2T
abcTbca

− ρ4T
ac
a T b

bc, (5)

note that for TEGR ρ1 = 0, ρ2 = − 1
2 and ρ4 = 1. A varia-

tion of action (3) with respect to the vielbein provides the
following field equations:

δL = δea ∧ {{
ρ1

[
2d � dea + ia

(
deb ∧ �deb

)
− 2ia

(
deb

) ∧ �deb

]
+ ρ2

{−2ea ∧ d �
(
deb ∧ eb

) + 2dea ∧ �
(
deb ∧ eb

)
+ ia

[
dec ∧ ec ∧ �

(
deb ∧ eb

)]
− 2ia

(
deb

) ∧ eb ∧ �
(
dec ∧ ec

)}
+ ρ4

{−2eb ∧ d �
(
ea ∧ deb

) + 2deb ∧ �
(
ea ∧ deb

)
+ ia

[
ec ∧ deb ∧ �

(
dec ∧ eb

)]
− 2ia

(
deb

) ∧ ec ∧ �
(
dec ∧ eb

)}}
− 2Λ � ea

} = 0, (6)

where ia is the interior product and for generality’s sake
we have kept the general coefficients ρi , and we have used
ε012 = +1. Through the following choice of the coefficients
ρ1 = 0, ρ2 = − 1

2 and ρ4 = 1 Teleparallel Gravity coincides
with the usual curvature-formulation of General Relativity
and therefore the following BTZ metric is solution of TEGR

ds2 = N2dt2 − N−2dr2 − r2(dϕ + Nϕdt)2, (7)

where the lapse N and shift Nϕ functions are given by,

N2 = −8GM + r2

l2
+ 16G2J 2

r2
, Nϕ = −4GJ

r2
, (8)

and the two constants of integration M and J are the usual
conserved charges associated with the asymptotic invariance
under time displacements (mass) and rotational invariance
(angular momentum) respectively, given by flux integrals
through a large circle at spacelike infinity, and Λ = −1/l2

is the cosmological constant (Banados et al. 1992). Finally,
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note that the torsion scalar can be calculated, leading to the
constant value

T = −2Λ, (9)

which is the cosmological constant as the sole source of tor-
sion.

3 3D teleparallel hairy black holes

3.1 The model

In this section we will extend the above discussion consider-
ing a scalar field φ non-minimally coupled with the torsion
scalar with a self-interacting potential V (φ), and then we
will find hairy black hole solutions. So, the action can be
written as

S =
∫ (

1

2κ
T � 1 − ξφ2T � 1 + 1

2
dφ ∧ �dφ − V (φ) � 1

)
,

(10)

where T is given by (4) and ξ is the non-minimal coupling
parameter. Thus, the variation with respect to the vielbein
leads to the following field equations:

δeaL = δea ∧
{(

1

2κ
− ξφ2

){
ρ1

[
2d � dea + ia

(
deb ∧ �deb

)

− 2ia
(
deb

) ∧ �deb

]
+ ρ2

{−2ea ∧ d �
(
deb ∧ eb

) + 2dea ∧ �
(
deb ∧ eb

)
+ ia

[
dec ∧ ec ∧ �

(
deb ∧ eb

)]
− 2ia

(
deb

) ∧ eb ∧ �
(
dec ∧ ec

)}
+ ρ4

{−2eb ∧ d �
(
ea ∧ deb

) + 2deb ∧ �
(
ea ∧ deb

)
+ ia

[
ec ∧ deb ∧ �

(
dec ∧ eb

)]
− 2ia

(
deb

) ∧ ec ∧ �
(
dec ∧ eb

)}}
− 4ξ

[
ρ1φdφ ∧ �dea + ρ2φdφ ∧ ea ∧ �

(
deb ∧ eb

)
+ ρ4φdφ ∧ eb ∧ �

(
deb ∧ ea

)]

− V (φ)ia(�1) − 1

2
dφ ∧ ia(�dφ)

− 1

2
ia(dφ) ∧ �dφ

}
= 0, (11)

and the variation with respect to the scalar field leads to the
Klein-Gordon equation

δφL = δφ

(
−2ξφT � 1 − d � dφ − dV

dφ
� 1

)
= 0. (12)

3.2 Circularly symmetric hairy solutions

Let us now investigate hairy black hole solutions of the the-
ory. In order to analyze static solutions we consider the met-

ric form as

ds2 = A(r)2dt2 − 1

B(r)2
dr2 − r2dϕ2, (13)

which arises from the triad diagonal ansatz

e0 = A(r)dt, e1 = 1

B(r)
dr, e2 = rdϕ. (14)

Then, inserting this vielbein in the field equations (11), (12)
yields

−1

r

(
1

2κ
− ξφ(r)2

)
dB2

dr
+ 4

r
ξB(r)2φ(r)

dφ

dr

− 1

2
B(r)2

(
dφ

dr

)2

− V (φ) = 0, (15)

B(r)2

rA(r)2

(
1

2κ
− ξφ(r)2

)
dA2

dr

− 1

2
B(r)2

(
dφ

dr

)2

+ V (φ) = 0, (16)

2ξφ(r)
dφ

dr

B(r)2

A(r)2

dA2

dr
− 1

2
B(r)2

(
dφ

dr

)2

+ 1

2A(r)4

(
1

2κ
− ξφ(r)2

)(
−A(r)2 dA2

dr

dB2

dr

+ B(r)2
(

dA2

dr

)2

− 2A(r)2B(r)2 d2A2

dr2

)

− V (φ) = 0, (17)

−2B(r)2

rA(r)2
ξφ(r)

dA2

dr
+ 1

r
B(r)2 dφ

dr
+ 1

2

dB(r)2

dr

dφ

dr

+ B(r)2

2A(r)2

dA(r)2

dr

dφ

dr
+ B(r)2 d2φ

dr2
− dV

dφ
= 0. (18)

It is worth mentioning that, in the case of a minimally
coupled scalar field, the above simple, diagonal relation
between the metric and the vielbeins (14) is always al-
lowed, due to in this case the theory is invariant under
local Lorentz transformations of the vielbein. In contrast,
in the extension of a non-minimally coupled scalar field
with the torsion scalar, the theory is not local Lorentz in-
variant, therefore, one could have in general a more com-
plicated relation connecting the vielbein with the metric,
with the vielbeins being non-diagonal even for a diago-
nal metric (Sotiriou et al. 2011). However, for the three-
dimensional solutions considered here, using a preferred di-
agonal frame is allowed, in the sense that this frame de-
fines a global set of basis covering the whole tangent bun-
dle, i.e., they parallelize the spacetime (Fiorini et al. 2014;
Ferraro and Fiorini 2011b).

In the following, and in order to solve the above system
of equations, we will consider two cases: first, we analyze
the case A(r) = B(r), and then we analyze the more general
case A(r) �= B(r).
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3.2.1 A(r) = B(r)

In this case the field equations (15)–(18) simplify to

−1

r

(
1

2κ
− ξφ(r)2

)
dA2

dr
+ 4

r
ξA(r)2φ(r)

dφ

dr

− 1

2
A(r)2

(
dφ

dr

)2

− V (φ) = 0, (19)

1

r

(
1

2κ
− ξφ(r)2

)
dA2

dr
− 1

2
A(r)2

(
dφ

dr

)2

+ V (φ) = 0,

(20)

2ξφ(r)
dφ

dr

dA2

dr
− 1

2
A(r)2

(
dφ

dr

)2

−
(

1

2κ
− ξφ(r)2

)
d2A2

dr2
− V (φ) = 0, (21)

−2

r
ξφ(r)

dA2

dr
+ 1

r
A(r)2 dφ

dr
+ dA(r)2

dr

dφ

dr

+ A(r)2 d2φ

dr2
− dV

dφ
= 0. (22)

Now, by adding Eqs. (19) and (20) we obtain

A(r)2 dφ

dr

(
4ξ

r
φ − dφ

dr

)
= 0. (23)

Therefore, the nontrivial solution for the scalar field is given
by

φ(r) = Br4ξ , (24)

and by using this profile for the scalar field in the remaining
equations, we obtain the solution

A(r)2 = Gr2 + H 2F1

(
1,− 1

4ξ
,1 − 1

4ξ
,2κB2ξr8ξ

)
, (25)

V (φ) = H

κ

(
φ

B

)− 1
2ξ + 2G

(
− 1

2κ
+ B2ξ(1 + 4ξ)

(
φ

B

)2)

− 2H

(
φ

B

)− 1
2ξ

(
1

2κ
− B2ξ(1 + 4ξ)

(
φ

B

)2)

× 2F1

(
1,− 1

4ξ
,1 − 1

4ξ
,2κξφ2

)
, (26)

where B , G, and H are integration constant and 2F1 is
the Gauss hypergeometric function. In the limits ξ → 0 or
B → 0 the theory reduces to TEGR, therefore, we must hope
our solution reduces to the BTZ black hole, this is indeed the
case, as we show below. For those limits we obtain:

lim
ξ→0

2F1

(
1,− 1

4ξ
,1 − 1

4ξ
,2κB2ξr8ξ

)
= 1, (27)

lim
B→0

2F1

(
1,− 1

4ξ
,1 − 1

4ξ
,2κB2ξr8ξ

)
= 1, (28)

therefore,

lim
ξ→0 or B→0

A(r)2 = Gr2 + H, (29)

Fig. 1 The behavior of A(r)2, for H = −1, G = 1, B = 1, κ = 1, and
ξ = −0.25,−0.5,−1

Fig. 2 The Potencial V (φ), for H = −1, G = 1, B = 1, κ = 1, and
ξ = −0.25,−0.5,−1

which is the non-rotating BTZ metric. In order to see the
asymptotic behavior of A(r)2, we expand the hypergeomet-
ric function for large r and ξ < 0:

2F1

(
1,− 1

4ξ
,1 − 1

4ξ
,2κB2ξr8ξ

)
≈ 1 − κB2r8ξ

2(1 − 1
4ξ

)
+ · · · .

(30)

This expansion shows that the hairy black hole is asymp-
totically AdS. On other hand, in the limit φ → 0 the po-
tential goes to a constant (the effective cosmological con-
stant) V (φ) → −G

κ
= Λ. In Fig. 1 we plot the behav-

ior of the metric function A(r)2 given by Eq. (25) for a
choice of parameters H = −1, G = 1, B = 1, κ = 1, and
ξ = −0.25,−0.5,−1. The metric function A(r)2 changes
sign for low values of r , signaling the presence of a hori-
zon, while the scalar field is regular everywhere outside the
event horizon (for ξ < 0) and null at large distances. In Fig. 2
we show the behavior of the potential, and we observe that
it tends asymptotically (φ → 0) to a negative constant (the
effective cosmological constant). We also plot the behavior
of the Ricci scalar R(r), the principal quadratic invariant
of the Ricci tensor RμνRμν(r), and the Kretschmann scalar
RμνλτRμνλτ (r) in Fig. 3 by using the Levi-Civita connec-
tion, and we observe that there is not a Riemann curvature
singularity outside the horizon for ξ = −0.25,−0.5,−1.
Also, we observe a Riemann curvature singularity at r = 0
for ξ = −0.25 and the torsion scalar is singular at r = 0 for
ξ = −0.25, see Fig. 4.
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Fig. 3 The behavior of R(r), RμνRμν(r) and Rμνλτ Rμνλτ (r) for H = −1, G = 1, B = 1, κ = 1, and ξ = −0.25 (left figure), ξ = −0.5 (right
figure), and ξ = −1 (bottom figure)

Fig. 4 The behavior of torsion scalar T as function of r for H = −1,
G = 1, B = 1, κ = 1, and ξ = −0.25,−0.5,−1

3.2.2 A(r) �= B(r)

Now, by considering the following ansatz for the scalar field

φ(r) = Brγ , (31)

we find the following solution to the field equations

A(r)2 = Gr2 + H 2F1

(
− 1

γ
,

γ

4ξ
,1 − 1

γ
,2κB2ξr2γ

)
, (32)

B(r)2 =
(

1

2κ
− r2γ ξB2

)−2+ γ
2ξ

A(r)2, (33)

V (φ) = 2H

(
φ

B

)− 2
γ
(

1

2κ
− ξφ2

)−1+ γ
2ξ (

1 − 2κξφ2)− γ
4ξ

− G

2

(
1

2κ
− ξφ2

)−2+ γ
2ξ

(
2

κ
− (

γ 2 + 4ξ
)
φ2

)

− H

2

(
φ

B

)− 2
γ
(

1

2κ
− ξφ2

)−2+ γ
2ξ

×
(

2

κ
− (

γ 2 + 4ξ
)
φ2

)

× 2F1

(
− 1

γ
,

γ

4ξ
,1 − 1

γ
,2κξφ2

)
, (34)

where B , G and H are integration constants. This solution
is asymptotically AdS and generalizes the previous one, be-
cause if we take γ = 4ξ it reduces to the solution of the case
A(r) = B(r). Furthermore, for γ = 0 we recover the static
BTZ black hole. On the other hand, in the limit φ → 0 the

potential tends to a constant V (φ) → −2G(2κ)
1− γ

2ξ = Λ.
As in the previous case, we plot the behavior of the met-

ric function B(r)2 given by (33), in Fig. 5 for a choice
of parameters H = −1, G = 1, B = 1, κ = 1, ξ = −0.25
and γ = −0.25,−1,−2. The metric function B(r)2 changes
sign for low values of r , signaling the presence of a horizon,
while for γ < 0 the scalar field is regular everywhere outside
the event horizon and null at large distances. In Fig. 6 we
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show the behavior of the potential, asymptotically (φ → 0)
it tends to a negative constant (the effective cosmological
constant) as in the previous case. Also, we plot the behav-
ior of R(r), RμνRμν(r), and RμνλτRμνλτ (r) in Fig. 7 by
using the Levi-Civita connection, and we observe that there
is not a Riemann curvature singularity outside the horizon
for γ = −0.25,−1,−2. Also, we observe a Riemann curva-
ture singularity at r = 0 and the torsion scalar is singular at
r = 0 for all the cases considered. Asymptotically, the tor-
sion scalar goes to −2Λ since this spacetime is asymptoti-
cally AdS, see Fig. 8. Therefore, we have shown that there
are three-dimensional black hole solutions with scalar hair
in Teleparallel Gravity.

Fig. 5 The behavior of B(r)2, for H = −1, G = 1, B = 1, κ = 1,
ξ = −0.25 and γ = −0.25,−1,−2

4 Final remarks

Motivated by the search of hairy black holes solutions in the-
ories based on torsion, we have considered an extension of
three-dimensional TEGR with a scalar field non-minimally
coupled to the torsion scalar along with a self-interacting
potential, and we have found three-dimensional asymptot-
ically AdS black holes with scalar hair. These hairy black
holes are characterized by a scalar field with a power-law be-
havior and by a self-interacting potential, which tends to an
effective cosmological constant at spatial infinity. We have
considered two cases A(r) = B(r) and A(r) �= B(r). In the
first case the scalar field depends on the non-minimal cou-

Fig. 6 The Potencial V (φ), for H = −1, G = 1, B = 1, κ = 1,
ξ = −0.25 and γ = −0.25,−1,−2

Fig. 7 The behavior of R(r), RμνRμν(r) and Rμνλτ Rμνλτ (r) for H = −1, G = 1, B = 1, κ = 1, ξ = −0.25 and γ = −0.25 (left figure), γ = −1
(right figure), and γ = −2 (bottom figure)
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Fig. 8 The behavior of torsion scalar T as function of r for H = −1,
G = 1, B = 1, κ = 1, ξ = −0.25 and γ = −0.25,−1,−2

pling parameter ξ , and it is regular everywhere outside the
event horizon and null at spatial infinity for ξ < 0, while for
ξ = 0 we recover the non-rotating BTZ black hole. In the
second case the scalar field depends on a parameter γ , and
it is regular everywhere outside the event horizon and null
at spatial infinity for γ < 0, this solution generalizes the so-
lution of the first case, which is recovered for γ = 4ξ . Fur-
thermore, for γ = 0 we recover the non-rotating BTZ black
hole. Moreover, the analysis of the Riemann curvature in-
variants and the torsion scalar shows that they are all regular
outside the event horizon. In furthering our understanding, it
would be interesting to study the thermodynamics of these
hairy black hole solutions in order to study the phase transi-
tions. Work in this direction is in progress.
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