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Abstract We try to study the theory of modified Gauss-
Bonnet gravity in non-isotope universe. It is considered
the exact power-law solution in modified gravity models.
A f (G) function corresponding with power law solutions
for given scale factor are calculated. We show that BI-like
power-law solutions only exist for a very special class of
f (G) theories. It is shown that transition to phantom phase
is happened by applied some bound on free parameters.
We also explore the stability issue of modified gravitational
models.
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gravity

1 Introductions

It is well known that recently it has been found strong ev-
idence for an accelerated expansion of the universe, appar-
ently due to the presence of an effective positive cosmologi-
cal constant and associated with this acceleration there exists
the so called dark energy issue (see for example Padman-
abhan 2003). According to the observations of type Ia su-
pernovae, cosmic microwave background (CMB) and large
scale structures, the Universe is expanding at an acceler-
ating rate which is linked with dark energy (DE) (having
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strong negative pressure). Dark energy dynamical models
and modified theories of gravity are two candidates to ex-
plain the mysterious nature of DE. In physical cosmology
and astrophysics, the simplest candidate for the dark en-
ergy (DE) is the cosmological constant (Λ) (Carroll 2001;
Peebles and Ratra 2003). However, it needs to be extremely
fine-tuned to satisfy the current value of the DE density,
which is a serious problem (Overduin and Cooperstock
1998). The simplest candidate of dark energy is a cosmolog-
ical constant with the equation of state parameter ω = −1.
However, this scenario suffers from serious problems like
a huge fine tuning and the coincidence problem (Shani and
Starobinsky 2000, 2006). Alternative models of dark energy
suggest a dynamical form of dark energy, which is often re-
alized by one or two scalar fields. In this respect, dark energy
has many dynamical components such as quintessence (Ra-
tra and Peebles 1988; Wetterich 1988; Caldwell et al. 1998),
K-essence (Armendariz-Picon et al. 2000), tachyon (Sen
2002; Padmanabhan 2002; Setare 2007), phantom (Cald-
well 2002), ghost condensate and quintom (Feng et al. 2005;
Guo et al. 2005; Setare and Saridakis 2008), and so forth. Al-
ternative to dark energy, modified theories of gravity is ex-
tremely attractive, such as f (R) gravity (see, for instance,
Felice and Tsujikawa (2010) for reviews), here f (R) is
an arbitrary function of the Ricci scalar R. Cosmic ac-
celeration can be explained by f (R) gravity (Nojiri and
Odintsov 2003), and the conditions of viable cosmologi-
cal models have been derived in Capozziello et al. (2006).
A general model of f (R) gravity has been proposed in
Allemandi et al. (2005), which contains a non-minimal cou-
pling between geometry and matter. Viable cosmological
models have been found in Capozziello et al. (2006), No-
jiri and Odintsov (2006, 2007a) under some conditions,
and weak field constraints obtained from the classical tests
of general relativity for the solar system regime seem to
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rule out most of the models so far (Erickcek et al. 2006;
Chiba et al. 2007). For this kind of modification, one as-
sumes that the gravitational action may contain some ad-
ditional terms which starts to grow with decreasing cur-
vature and obtain a late time acceleration epoch. One of
the other of modification of Einstein’s gravity is Gauss-
Bonnet (GB) modification. As a possibility the Einstein-
Gauss-Bonnet gravity is low energy limit of the string theory
is of particular interest because of its special features. The
reconstruction scenario for f (G) gravity is proposed and
developed in Nojiri and Odintsov (2007b, 2011). The GB
generalization adds quadratic terms, involving second order
curvature invariants (specifically Gauss-Bonnet term is a
topological invariant in four dimensions) to the Einstein-
Hilbert Lagrangian (Carter and Neupane 2006, see also
Carroll et al. 2005). Finally, such class of modified gravi-
ties may successfully describe the universe expansion his-
tory from the early-time inflation till late-time acceleration
(Cognola et al. 2006; Nojiri et al. 2008, 2010) with the uni-
fication of the inflation with DE.

Under the above circumstances, it is observed that in re-
cent years Bianchi universes have been gaining an increas-
ing interest and tremendous impetus of observational cos-
mology. According to this, the Universe should achieve the
following features: (i) a slightly anisotropic special geome-
try in spite of the inflation, and (ii) a nontrivial isotropization
history of Universe due to the presence of an anisotropic en-
ergy source. The anomalies found in the cosmic microwave
background (CMB) and large scale structure observations
stimulated a growing interest in anisotropic cosmological
model of Universe. Here we confine ourselves to model LRS
Bianchi type I whose spatial sections are flat but the expan-
sion or contraction rate are direction dependent. For study-
ing the possible effects of anisotropy in the early Universe
based on the present day observations many researchers
(Saha 2006a, 2006b; Pradhan and Singh 2004) have inves-
tigated Bianchi type I models from different point of view.
We would like to further mention that unlike the FRW model
this Bianchi type I model describes a different kind of Uni-
verse in which the scale factor is not restricted to be the
same in each direction. Recently Aluri et al. (2013) have
shown the importance of BI model to discuss the effects
of anisotropy on the basis of recent evidences. Fayaz et
al. (2014) discussed holographic and new agegraphic dark
energy for anisotropic cosmological models in f (R,T ).
Hossienkhani et al. (2014) investigated accelerating of the
universe for Bianchi models in f (R,T ).

In this paper, we investigate the cosmological viability of
f (G) models by investigating the conditions under which
one can find power law solutions that mimic the standard
BI expansion history of the Universe. We discover that such
solutions only exist for a very special class of f (G) theories.
Furthermore, we extend these results to show the existence

of phantom phase power law solutions for an special form
of f (G) gravity. The investigation is organized as follows:
The metric and field equations are presented in Sect. 2. In
Sects. 3 and 4, we deals with the exact matter dominant and
phantom phase power law solutions and physical behavior
of the model. de Sitter solutions and stability of the model is
investigated in Sects. 5 and 6 respectively. The results of the
paper are summarized in the last section.

2 Field equations and f (G) gravity

In this section, we consider the following gravitational ac-
tion (Nojiri and Odintsov 2005).

S =
∫

d4xe

[
1

2κ2
R + f (G) +Lm

]
, (1)

where Lm corresponds to the matter Lagrangian and e =
det(ei

μ) = √−g, with g being the determinant of the met-
ric tensor, R is the Ricci scalar curvature and f (G) is an
arbitrary differentiable function of G which is generally de-
fined as: G = R2 − 4RμνR

μν + RμνρλR
μνρλ, where Rμν

and Rμνρλ are Ricci curvature tensor and Riemann curvature
tensor respectively. By varying the action S given in Eq. (1)
with respect to the metric tensor gμν , the corresponding field
equations are obtained as follow (Nojiri and Odintsov 2005):

0 = 1

2κ2

(
1

2
gμνR − Rμν

)
+ T μν + 1

2
gμνf (G)

− 2fGRRμν + 4fGRμ
ρ Rνρ − 2fGRμρλτRν

ρλτ

− 4fGRμρλνRρλ + 2
(
�μ�νfG

)
R − 2gμν

(
�2fG

)
R

− 4
(
�ρ�μfG

)
Rνρ − 4

(
�ρ�νfG

)
Rμρ + 4

(
�2fG

)
Rμν

+ 4gμν(�ρ�λfG)Rρλ − 4(�ρ�λfG)Rμρνλ, (2)

where fG = df/dG is the first derivative with respect to G

of the function f and T μν represents the energy-momentum
tensor of the perfect fluid.

We consider the homogeneous and anisotropic space-
time described by Bianchi type I metric in the form

ds2 = −dt2 + A(t)2dx2 + B(t)2dy2 + C(t)2dz2, (3)

where A(t), B(t) and C(t) are the scale factors (metric ten-
sors) and functions of the cosmic time t . This metric does
not cover Robertson-Walker metric, but gets its closest form
to RW metric when A(t) = B(t) = C(t), thus we may talk
about its approaching to isotropy, but not a total isotropiza-
tion of this metric. The anisotropy of the expansion can be
parameterized after defining the directional Hubble param-
eters and the mean Hubble parameter of the expansion. The
directional Hubble parameters in the directions of x, y and
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z for the Bianchi type I metric defined in (3) may be defined
as follows,

Hx = Ȧ

A
, Hy = Ḃ

B
, Hz = Ċ

C
, (4)

and the mean Hubble parameter is given as

H = ȧ

a
= 1

3

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
, (5)

with a = (ABC)1/3 being the average scale factor of
Bianchi type I model. In this background, the above field
equations can be represented as (Hossienkhani and Pasqua
2014; Saaidi and Hossienkhani 2011; Fayaz et al. 2012,
2013; Fayaz and Hossienkhani 2013)

3H 2 − σ 2 = κ2ρeff, (6)

3H 2 + 2Ḣ + σ 2 = −κ2peff, (7)

where ρeff and peff are the effective energy density and ef-
fective pressure densities respectively, and σ 2 is the shear
scalar. The equation of state parameter, ωeff = peff/ρeff, can
be expressed in terms of the Hubble parameter and shear
tensor as

ωeff = −1 − 2(Ḣ + σ 2)

3H 2 − σ 2
. (8)

The corresponding shear scalar, Ricci scalar and Gauss-
Bonnet invariant become

σ 2 = 1

3

((
Ȧ

A

)2

+
(

Ḃ

B

)2

+
(

Ċ

C

)2)

− 1

3

(
ȦḂ

AB
+ ḂĊ

BC
+ ȦĊ

AC

)
, (9)

R = 2
(
6H 2 + 3Ḣ + σ 2)

= 2

(
Ä

A
+ B̈

B
+ C̈

C
+ ȦḂ

AB
+ ḂĊ

BC
+ ȦĊ

AC

)
, (10)

G =
(

Ä

A

)2

+
(

B̈

B

)2

+
(

C̈

C

)2

+
(

ȦḂ

AB

)2

+
(

ḂĊ

BC

)2

+
(

ȦĊ

AC

)2

. (11)

Using Eqs. (2) and (3), the field equations are given by

− 1

κ2

(
ȦḂ

AB
+ ḂĊ

BC
+ ȦĊ

AC

)
− 24

Ȧ

A

Ḃ

B

Ċ

C
ĠfGG

+ GfG − f + ρm = 0, (12)

+ 1

3κ2

[
2

(
Ä

A
+ B̈

B
+ C̈

C

)
+

(
ȦḂ

AB
+ ḂĊ

BC
+ ȦĊ

AC

)]

+ 8

3
ḟG

(
ȦB̈

AB
+ ḂÄ

AB
+ ȦC̈

AC
+ ĊÄ

AC
+ ĊB̈

C
B + ḂC̈

BC

)

+ 8

3

(
ȦḂ

AB
+ ḂĊ

BC
+ ȦĊ

AC

)
f̈G + f − GfG + pm = 0,

(13)

where dot denotes the first order derivative with respect to t .
We take physical assumption for the scale factor A as A =
Bm = Cm, where m �= 0,1 (Collins et al. 1980). Note that
the Kantowski-Sachs (KS) is recovered by taking B = C.
We propose to start with the Bianchi type-I case, from which
KS can be recovered. Hubble parameter H , scale factor a

and shear scalar σ , for this model are

H = m + 2

3

Ḃ

B
, a = a0B

m+2
3 ,

σ 2 = (1 − m)2

3

(
Ḃ

B

)2

= 3(1 − m)2

(m + 2)2
H 2.

(14)

For the metric (3), the Gauss-Bonnet invariant G and the
Ricci scalar R may be defined as functions of the Hubble
parameter

R = 2

(
(m + 2)

B̈

B
+ (

1 + m + m2)( Ḃ

B

)2)

= 2

(
3Ḣ + m2 + 2m + 3

(m + 2)2
H 2

)
, (15)

and

G = 648m

(m + 2)3
H 2(H 2 + Ḣ

)
. (16)

Thus Eqs. (12) and (13) take the form

− 1

κ2

(
3H 2 − σ 2) − 648m

(m + 2)3
H 3ḟG + GfG

− f + ρm = 0, (17)

− 96H

(m + 2)2

[
2(1 + 4m)Ḣ + 3(m2 + 7m + 2)

m + 2
H 2

]
ḟG

+ 1

κ2

(
2Ḣ + 3H 2 + σ 2) + 8

3

(
3H 2 − σ 2)f̈G − f

+ GfG + pm = 0. (18)

The conservation equation law can be expressed as the stan-
dard continuity equation

ρ̇m + θ(ρm + pm) = 0, (19)

where θ is the volume expansion which defines a scale factor
a(t) along the fluid flow lines via the standard relation θ =
3H . We often consider the case that ρm and pm satisfy the
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simple EoS, pm = ωρm. Then if ω is a constant, Eq. (19) can
be easily integrated as

ρm = ρ0a
−3(1+ω). (20)

3 Exact matter dominant and accelerating power
law solutions

Let us now assume there exists an exact power-law solu-
tion to the field equations, i.e., the scale factor behaves as:
B(t) = B0t

h, where h is a fixed real number. If 0 < h < 1,
then the requisite power-law solution is decelerating, while
for h > 1 it is accelerating. Since we know that within
the standard paradigm, the expansion history of the Uni-
verse underwent a power-law decelerating phase, it is im-
portant to study these kinds of exact solutions in our mod-
ified gravity models. Hubble parameter H , time-derivative
Hubble parameter Ḣ and shear scalar σ , for this model are
(Hossienkhani and Pasqua 2014; Saaidi and Hossienkhani
2011; Fayaz et al. 2012, 2013; Fayaz and Hossienkhani
2013)

H = h(m + 2)

3t
, Ḣ = −h(m + 2)

3t2
,

σ 2 = h2(1 − m)2

3t2
,

(21)

we see that at the beginning of the universe e.g., about
Planck time tp = 10−43 s σ 2 is very larger of one in the
late time e.g., the proceeding inflation, the particle horizon
is smaller than the Hubble length, this indicates the Universe
is very anisotropic at the early time and when time is grow-
ing the shear tensor tends to zero. Hence, it is expected, the
anisotropic parameter is disappeared and the universe tends
to be isotropic at late time. From the energy conservation
equation, we obtain

ρm = ρ0t
−h(m+2)(1+ω), (22)

and the Ricci scalar and the Gauss-Bonnet term becomes

R = 2h

t2

[
h
(
m2 + 2m + 3

) − (m + 2)
]
, (23)

G = 8mh3(h(m + 2) − 3)

t4
= χhmt−4. (24)

The negative sign of G for all decelerating models is re-
flected by χhm < 0 for the power-law models with 0 <

h < 1. By substituting (22) and (24) into (17) we obtain the
BI equation

αG2fGG + GfG − f − γG
1
2 + ρ0

(
G

χhm

)ε

= 0, (25)

where

α = 96mh3

χhm

, γ = (1 + 2m)h2

κ2√χhm

,

ε = h(m + 2)(1 + ω)

4
.

(26)

Note that for the power-law solution a(t) = a0t
h(m+2)

3 ,
G/χhm is positive all the time by definition (24), and there-
fore Eq. (25) is real-value over the range of G. Solving
Eq. (25) get the f (G)-gravity as

f (G) = − 1 + 2m

3 + h(m + 2)

√
h(−3 + h(m + 2))

2mκ4
G

1
2

+ C1G + C2G
− 1

α − AhmωGε, (27)

where

Ahmω = 4ρ0(8mh3)−ε((h(m + 2) − 3))1−ε

[−4 + h(m + 2)(1+ ω)][−3 + h(m + 2)(4 + 3ω)],
(28)

and C1 and C2 are arbitrary constants of integration. This
solution is in agreement with the one obtained in Goheer
et al. (2009) and, as is explained there, we can without any
lost of generality assume the constants C1 = C1 = 0. Hence,
the required form of the function f (G) becomes

f (G) = − 1 + 2m

3 + h(m + 2)

√
h

2mκ4

(−3 + h(m + 2)
)
G

1
2

− AhmωGε. (29)

We note that the above form of f identically satisfies the
other field equations, if we similarly transform them as dif-
ferential equations in G space. First, we note that a real-
value solution for f (G) requires the values h and m. It has
been seen that isotropic universe, σ = 0 or m = 1, Eq. (29)
reduces to

f (G) = − 1

1 + h

√
3h

2κ4
(−1 + h)G

1
2 − AhωG

3
4 h(1+ω), (30)

Ahω = ρ0(h − 1)(24h3(h − 1))− 3
4 h(1+ω)

1 + h[ 13
4 + 9

4ω + 3h(1 + ω)(1 + 3
4ω)] . (31)

The case h = 1 and m = 1 leads to G = 0 and R = 6/t2

which is the general relativity limit. The coefficient Ahmω

are real-values and non-zero unless h = 1 and m = 1, in
which case a(t) ∝ t . In general, the function f (G) is real-
value only if G/χhm > 0, which is satisfied based on the ex-
act power law solution. According to (22), it is readily seen
by taking h = 2/[(m + 2)(1 + ω)] the f (G) reduce to gen-
eral relativity, and taking h = 1 and m = 1 the equation of
state parameter is fixed by ω = −1/3 which accounts for a
negative pressure but not still an accelerating Universe. The



Astrophys Space Sci (2015) 357:136 Page 5 of 9 136

Fig. 1 The evolution of the EoS parameter in f (G)-gravity model,
Eq. (32), versus h and m

case h > 1, leads to a nonzero real Gauss-Bonnet term G

and a positive Ricci scalar R. However, in order to avoid di-
vergence in the Gauss-Bonnet term we have to keep h, m

and ω far away from the values in which Ahmω diverges ac-
cording to the following equation

[−4+h(m+2)(1+ω)
][−3+h(m+2)(4+3ω)

] = 0 (32)

In this case, taking h > 1 and m > 1 predicts an accelerat-
ing universe. The evolution of the EoS parameter obtained
in (32), is plotted in Fig. 1. Thus, power-law solutions time
dependent type a(t) = a0t

h(m+2)/3 or H = h(m+2)/3t held
for the actions, that are as [R + f (G) + Lm] with f (G)

given by (27) except for its values of h and m which sat-
isfy (32). It is interesting to note that an exact GR-like so-
lution h = 2/[(m + 2)(1 + ω)] is possible with non-zero C2

for f (G) = C2G
12(1+ω)

1+3ω for values of ω for which f (G) is
real-valued. Using (22) the effective EoS for this model is
obtained as

ωeff = −1 − 2[−2 − m + h(1 − m)2]
3h(1 + 2m)

, (33)

which is less than −1 if h > 1 and m > 1, which corre-
sponds to phantom era. In the phantom phase, the Big Rip
type singularity at t = ts might occur. Near the Big Rip
singularity, however, the curvature becomes dominant and
f (G)-term may be neglected. Then the universe expands as
a = a0t

2/(m+2)(1+ω). Hence, the Big Rip singularity eventu-
ally does not occur.

4 Exact phantom phase power low solution

One may also study the power law solutions where the uni-
verse enters a phantom phase in which equation of state
(EoS) is smaller than −1, leading to a Big Rip singu-
larity. For this case, the general set of Hubble parame-
ters, shear scalar and cosmological solutions are defined as
(Hossienkhani and Pasqua 2014; Saaidi and Hossienkhani
2011; Fayaz et al. 2012, 2013; Fayaz and Hossienkhani
2013)

a(t) = a0(ts − t)−
h(m+2)

3 , t ≤ ts , (34)

H = h(m + 2)

3(ts − t)
, Ḣ = h(m + 2)

3(ts − t)2
, (35)

σ 2 = 1

3

(
h(1 − m)

(ts − t)

)2

. (36)

Considering the era when phantom phase is dominated i.e.,
ω < −1, and the smaller redshift, e.g., z � 0.25. It is clear
Eq. (34) has a Big Rip singularity at t = ts with Ḣ > 0, is
that a(t) → ∞. The model is shown that an escape from the
Big Rip is possible on making quantum corrections to en-
ergy density ρ and pressure p in Bianchi type I space-time.
when t → ts , so the scale factor will diverge for a future
value on the world time: ts and only 0 < t < ts is considered
due to the fact that H should be real number. Again, using
the above solution and working out the analogous calcula-
tions we obtain the following results

ρm = ρ0(ts − t)h(m+2)(1+ω), (37)

G = 8mh3(h(m + 2) + 3)

(ts − t)4
= χ ′

hm(ts − t)−4, (38)

Ġ = 32mh3(h(m + 2) + 3)

(ts − t)5
= 4χ ′

hm(ts − t)−5, (39)

R = 2h

(ts − t)2

[
h
(
m2 + 2m + 3

) + (m + 2)
]
. (40)

Substituting (37), (38) and (39) into the first BI equation (17)
we obtain

−α′G2fGG + GfG − f − γ ′G
1
2 + ρ0

(
G

χ ′
hm

)ε

= 0, (41)
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where

α′ = 96mh3

χ ′
hm

, γ ′ = (1 + 2m)h2√
χ ′

hm

. (42)

Therefore its solution is obtained by using the same way in
(27) as

f (G) = − 1 + 2m

3 − h(m + 2)

√
h(3 + h(m + 2))

2mκ4
G

1
2

+ C′
1G + C2G

1
α′ + A′

hmωG−ε, (43)

where

A′
hmω = 4ρ0(8mh3)ε[(h(m + 2) + 3)]1+ε

[4 + h(m + 2)(1 + ω)][3 + h(m + 2)(4 + 3ω)] .
(44)

Similar to the solutions in the previous section, we assume
C′

1 = C′
2 = 0. Then, the required form of the function f (G)

becomes

f (G) = − 1 + 2m

3 − h(m + 2)

√
h(3 + h(m + 2))

2mκ4
G

1
2

+ A′
hmωG−ε . (45)

Actually, h > 0 leads to a real values function f (G) accord-
ing to (43). However, demanding a Big Rip that may be dur-
ing the phantom phase, as the cosmic time t approaches ts ,
requires h ≥ 1 in (34). However, h = 1 and m = 1 causes
a divergence in f (G) through the first term of (43) in the
bracket. Moreover, the Gauss-Bonnet term diverges through
A′

hmω for its value of m which the following equation is sat-
isfied

(
4 + h(m + 2)(1 + ω)

)(
3 + h(m + 2)(4 + 3ω)

) = 0. (46)

For h > 1 and m > 1 one can find the EoS parameter (46)
corresponds to the phantom phase regime in which ω < −1.
The evolution of the EoS parameter obtained in Eq. (46),
is plotted in Fig. 2. Therefore, power-law solutions in the
phantom phase of the type a(t) = a0(ts − t)−h(m+2)/3 exist
for the actions, that is as [R +f (G)+Lm] with f (G) given
by (43) except for its values of h and m which satisfy (46).

5 De Sitter solutions

de Sitter solutions are well known in the context of cosmol-
ogy because the current epoch, where in the Universe expan-
sion is being accelerated, can be described approximately
with a de Sitter solution. This kind of solution consists of
an exponential expansion of the scale factor, which yields

Fig. 2 The evolution of the EoS parameter, Eq. (46), versus h and m

a constant Hubble parameter. This kind of solutions con-
sists on an exponential expansion of the scale factor, which
yields a constant Hubble parameter. Astrophysical data in-
dicate that ω lies in a very narrow strip close to ω → −1.
In the case of Bianchi type-I and Kantowski-Sachs metrics
(B = C) in (3), we may assume an exponential expansion
for each spatial direction,

A(t) = A0e
Λmt , C(t) = B(t) = B0e

Λt , (47)

and the rates of the expansion for each direction can be de-
fined as,

Hx = Ȧ

A
= Hx0, Hy = Ḃ

B
= Hy0, Hz = Ċ

C
= Hz0,

(48)

where Hx0 = mΛ and Hy0 = Hz0 = Λ are constants. The
Gauss-Bonnet invariant defined in (11) is given by,

G = H 4
x0 + 2H 4

y0 + H 2
y0 + 2Hx0Hy0. (49)

Then, by assuming px = py = pz = p and an equation of
state p = ωρ, the conservation equation can be easily solved
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for the ansatz (47),

ρm = ρ0e
(Hx0+2Hy0)(1+ω)t . (50)

Hence, the field equations (12) become,

GfG − f (G) − 1

κ2

(
H 2

y0 + 2Hx0Hy0
)

+ ρ0e
(Hx0+2Hy0)(1+ω)t = 0. (51)

Note that the only possible solution in the presence of a
perfect fluid is one with ω = −1 as the r.h.s. of Eq. (51)
is independent of time, according to the expression of the
Gauss-Bonnet invariant for a pure de Sitter solution (49),
unless Hx0 + 2Hy0 = 0, which would imply a decelerating
expansion in a particular direction, being Hi0 < 0. More-
over, for a particular f (G) action, the system of Eq. (51)
reduces to an algebraic system of equations for the variables
Hx0,Hy0,Hz0. In the case of BI, (3) and (47), we consider
the following form of the scale factor:

a = a0e
Λ(2+m)

3 , (52)

where a0 is a constant parameter indicating the present day
value of a(t), i.e. the value of the scale factor for t = 0.

Using the de Sitter scale factor and Eq. (14), we get:

H = H0 = Λ(2 + m)

3
, Ḣ = 0,

σ 2 = Λ2(1 − m)2

3
.

(53)

For large H0t the general solution approaches the isotropic
de Sitter solution. This solution describes a Universe model
entering the inflationary era at t = (2H0)

−1 = 10−35 sec
as an anisotropic Universe, and terminating this era at t =
1.3×10−33 sec as an isotropic de Sitter Universe. The mean
expansion anisotropy has decreased during the inflationary
era. So, can concluded that a Universe with a large amount
of anisotropy will not undergo the inflationary phase. A Uni-
verse with only moderate anisotropy will undergo inflation
and will be rapidly isotropized. We now want to evaluate the
form of f (G) for each of the scale factor mentioned above
in the Bianchi type I models. From Eq. (8), we observe that

ωeff = −1 − 2
3

1+m2−2m
1+2m

for sufficiently large time t . Note
that in the same way, one can construct f (G) action describ-
ing other epoch remembering that form of modified gravity
is different for different epochs (the inflationary epoch ac-
tion is different from the form at late-time universe). More-
over, we can determine the expressions of ρm, R and G,
respectively, as:

ρm = ρ0e
Λ(m+2)(1+ω)t , (54)

R = 2Λ2(m2 + 2m + 3
)
, (55)

G = 8m(m + 2)Λ4. (56)

Note that the only possible solution in the presence of a per-
fect fluid is one with ω = −1 as Eq. (54) is independent of
time, so, ρm is a constant. Substituting Eqs. (53), (54) and
(56) into (51), we obtain:

GfG − f (G) − (1 + 2m)

κ2
√

8m(m + 2)
G

1
2 = 0, (57)

the solution of Eq. (57) is

f (G) = C1G − (1 + 2m)

κ2
√

2m(m + 2)

√
G, (58)

where C1 is integrating constant. Thus, we see that models
corresponding to the inflation and the late time accelerated
Universe can be reconstructed within KS metrics where the
matter content is partially isotropic (px = py = pz).

6 The stability issue

The stability issue of a large class of modified gravita-
tional models has been discussed with particular empha-
sis to de Sitter solutions (Capozziello et al. 2006; Cognola
et al. 2005, 2008; Cognola and Zerbini 2006; Faraoni 2005a,
2005b). When ρm = 0, Eq. (12) has a de Sitter Universe so-
lution where H and therefore G are constants. If H = H0

with constant H0, Eq. (12) looks as

G0f
′
0 − f0 = 3H 2

0 − σ 2
0 , (59)

it has been seen that isotropic Universe, σ0 = 0 or m = 1,
(59) reduces to (Nojiri and Odintsov 2005)

G0f
′
0 − f0 = 3H 2

0 . (60)

For a large number of choices of the function f (G), Eq. (59)
has a non-trivial (H0 �= 0) real solution for H0 (de Sitter Uni-
verse). The stability issue leads to the following condition
(Cognola et al. 2005, 2008; Cognola and Zerbini 2006)

R3
0f ′′

0 < 9, (61)

where the critical points are defined by

R0 = 18(m2 + 2m + 3)

(m + 2)2
H 2

0 ,

σ0 = 3(1 − m)2

(m + 2)2
H 2

0 ,

G0 = 648m

(m + 2)3
H 4

0 ,

(62)
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in the case of phantom phase power law solution, namely
(45), the first condition reads as

Ahmω

(
1 + 1

4h(m + 2)(1 + ω)

1 + 2m

)
G− 1

4 h(m+2)(1+ω)− 1
2

+ 1

2(3 − h(m + 2))

√
h(3 + h(m + 2))

2mκ4

=
√

1

8m(m + 2)
, (63)

which implies that

Ahmω

(
1 + 1

4
h(m + 2)(1 + ω)

)
> 0. (64)

By using (64), the second condition (61) reads as

− h(m + 2)(1 + 2m)(1 + ω)(m2 + 2m + 3)3

8(2m(m + 2))
3
2

×
(

1√
2m(m + 2)

−
√

h(3+h(m+2))

2mκ4

3 − h(m + 2)

)

+ (1 + 2m)(m2 + 2m + 3)3

16m2(3 − h(m + 2))(m + 2)
3
2

×
√

h
(
3 + h(m + 2)

)
< 9. (65)

Then, the model is stable around de Sitter solution if the
arbitrary parameters also satisfy both the conditions (64)
and (65).

7 Conclusion

The expansion history of the Universe is thought to have
undergone a phase of decelerated power-law expansion fol-
lowed by late time acceleration. Therefore, power-law solu-
tions play an important role in cosmology as matter domi-
nated phases that later connect to an accelerating phase.

We have considered an f (G) action which describes Ein-
stein’s gravity added with a function of the Gauss-Bonnet
term in Bianchi type I space-time. A f (G) function corre-
sponding with power law solutions for given scale factor are
calculated. Then, it was shown that exact power-law solu-
tions in f (G) gravity only exist for the very special class
of models given in (29) and (45). We have derived the grav-
itational field equations for perfect fluid corresponding to
f (G) gravity model. It have been considered three spe-
cific f (G) models which are important to describe the late
time cosmic acceleration and avoid from the finite time fu-
ture singularities. The First model have been obtained the
field equations using the power-law solution of the type
a = a0t

h(m+2)/3. In the second model we have studied, the

Universe enters a phantom phase, is that, EoS, ω < −1,
given to, the power-law solutions. It is shown that the power-
law solution in the phantom phase, with scale factor as
a(t) = a0(ts − t)−h(m+2)/3 there exists for this f (G) ex-
cept for its values of h and m in which function diverges. In
dS solutions, where the scale factor is an exponential func-
tion of the cosmic time, has been considered for Bianchi
type-I metric by imposing a particular exponential expan-
sion in each direction of the space. We have shown that the
only possible solution turns out to the FLRW metric, such
that no possible dS anisotropic evolution can be found in
f (G), unless one considers an anisotropic fluid. In the case,
we shown that the model can realize the early accelerated
Universe, characterized by the inflation, and the late time
acceleration of our current Universe. The stability issue was
studied in f (G) gravity and it was concluded that the model
is stable around de Sitter solution. It is interesting to men-
tioned here that for σ = 0 or m = 1, the results reduce to
FRW Universe model.
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