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Abstract In the context of modified tele-parallel theory of
gravity, we undertake cosmological anisotropic models and
search for their solutions. Within a suitable choice of non-
diagonal tetrads, the decoupled equations of motion are ob-
tained for Bianchi-I, Bianchi-III and Kantowski-Sachs mod-
els, from which we obtain the correspondent solutions. By
the way, energy density and pressures are also obtained,
showing, as an important result, that our universe may live
a quintessence like universe even while anisotropic models
are considered.
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1 Introduction

It is well known nowadays that modifying the law of grav-
ity may lead to possible explanations for the acceleration
mechanism of the our universe (Nojiri and Odintsov 2006,
2007, 2011; Bamba et al. 2012; Capozziello and De Lau-
rentis 2011; Capozziello and Francaviglia 2008; De Fe-
lice and Tsujikawa 2010; Capozziello and Faraoni 2011;
de la Cruz-Dombriz and Sáez-Gómez 2012; Boisseau et al.
2000; Esposito-Farese and Polarski 2001; Zhang 2006; Car-
roll et al. 2006). Various theories based on the modification
of the law of gravity have been performed, among those,
the modified version of the Tele-Parallel theory of gravity
(TT), the so-called f (T ) gravity, where T denotes the tor-
sion scalar. The teleparallel gravity is a theory equivalent
to the general relativity, but does not depend on the Levi-
Civita’s connection, as is the case of the GR. The TT and its
modified version are based on the Weitzenbock connection
where the curvature scalar vanishes whereas the torsion is
different from zero. Within this theory, various works have
been developed and interesting results have been found,
see Bengochea et al. (2009); Aktas et al. (2012); Sharif
and Kausar (2011a, 2011b); Leon and Saridakis (2011);
Sharif and Zubair (2010); Shamir (2011); Sharif and Shamir
(2010).

Note that the observational data are based on the assump-
tion that the universe is homogeneous and isotropic for large
scales. Indeed, the matter distribution in the universe is rig-
orously non-homogeneous and the propagation of the light
may not be isotropic. In this way, it reasonable to look for at
models able to approach this feature of the universe. This is
the goal of this paper.
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There are several metric models that traduce the anisotro-
pic feature of the universe but we focus our attention on
three of them, the Bianchi-I, Bianchi-III and Kantowski-
Sachs. The motif of using these models is the fact that there
their topologies, for large scales, may lead to the well known
trivial FRW model within physical assumptions. An impor-
tant point to be put out here is that the geometrical objects
as the torsion and contorsion, which are indispensable for
any calculus depend on the so-called tetrad. The tetrads play
an important role and depending on their form, the theory
may present some constraints on the gravitational action. In
fact, for diagonal tetrads, constraints appears and the action
is reduced to the TT one, with cosmological constant. How-
ever, when the non-diagonal tetrads are considered, the con-
straints disappear letting free the choice of the action.

Our goal is to search for the solutions of these models,
say, finding the expression of the scale factor in the three
space directions, within the modified TT. As consequence,
through the dependence of the content of the universe of the
geometrical part of the field equations, solutions are found
for the energy density and the pressure, showing, as an inter-
esting and important result, that still using anisotropic metric
models, our universe may live a quintessence-like phase.

The paper is organised as follows: at Sect. 2, we general
equation of motion and write down the expression of the
energy-momentum tensor within the assumption of inhomo-
geneous content of the universe. Section 3 is devoted to the
decoupling of the generalized equations following the pres-
sures and the energy density. Still in this section solutions
and comments are performed. The conclusion is presented
at Sect. 4.

2 General equations of motion

We first define a metric for the geometry of the Weitzenbock
spacetime as

dS2 = gμνdxμdxν, (1)

where gμν are the components of the metric which is sym-
metric and possess 10 degrees of freedom. One can describe
the theory in the spacetime or in the tangent space, which
allows to rewrite the line element (1) as follows

dS2 = gμνdxμdxν = ηij θ
iθj , (2)

dxμ = e
μ

i θ i, θ i = ei
μdxμ, (3)

where ηij = diag[1,−1,−1,−1] and e
μ

i ei
ν = δ

μ
ν or

e
μ

i e
j
μ = δ

j
i . The square root of the metric determinant is

given by
√−g = det [ei

μ] = e and the matrix ea
μ are called

tetrads and represent the dynamic fields of the theory. Note
that the tetrads have a degree of freedom greater than the one

of the metric, and this is showed in Li et al. (2011c), and we
still have a possibility of non unequivocal choice (Daouda
et al. 2012).

We can define the Weitzenbock’s connection as

Γ α
μν = e α

i ∂νe
i
μ = −ei

μ∂νe
α

i . (4)

The main geometrical objects of the spacetime are con-
structed from this connection. The components of the tensor
torsion are defined by the antisymmetric part of this connec-
tion

T α
μν = Γ α

νμ − Γ α
μν = e α

i

(
∂μei

ν − ∂νe
i
μ

)
. (5)

We also define the components of the so-called contorsion
tensor as

Kμν
α = −1

2

(
T μν

α − T νμ
α − T μν

α

)
. (6)

In order to make more clear the definition of the scalar
equivalent to the curvature scalar of RG, we first define a
new tensor S

μν
α , constructed from the components of the

torsion and contorsion tensors as

S μν
α = 1

2

(
Kμν

α + δμ
α T

βν
β − δν

αT
βμ
β

)
. (7)

Now, we are able to construct a contraction which is equiva-
lent to the scalar curvature in GR. We define then the torsion
scalar as

T = T α
μνS

μν
α . (8)

As f (R) gravity generalizes the GR, we also define the ac-
tion of f (T ) gravity as the generalization of the teleparallel,
being the continue sum

S =
∫

d4x e
[
f (T ) +LMatter

]
, (9)

where f (T ) is an algebraic function of the torsion scalar T .
Making the functional variation of the action (9) with re-
spect to the tetrads, we get the following equations of motion
(Li et al. 2011a, 2011b; Daouda et al. 2014)

S νρ
μ ∂ρTfT T + [

e−1ei
μ∂ρ

(
ee α

i S νρ
α

) + T α
λμS νλ

α

]
fT

+ 1

4
δν
μf = 4πT ν

μ , (10)

where T ν
μ is the energy momentum tensor, fT = df (T )/dT

and fT T = d2f (T )/dT 2. By setting f (T ) = T − 2Λ, the
equations of motion (10) are the same as that of the Telepar-
allel theory with a cosmological constant, and this is dynam-
ically equivalent to the GR. These equations clearly depend
on the choice made for the set of tetrads (Deliduman and
Yapiskan 2011).
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The contribution of the interaction with the matter fields
is given by the energy momentum tensor which, is this case,
is defined as

T ν
μ = (ρ + pt )uμuν − ptδ

ν
μ + (pr − pt)vμvν, (11)

where uμ is the four-velocity, vμ a unitary space-like vector
in the radial direction, ρ the energy density, pr the pressure
in the direction of vμ (radial pressure) and pt the pressure
orthogonal to vμ (tangential pressure). This tensor charac-
terizes an anisotropic fluid.

3 Anisotropic models

In this section, we will study the equations of motion coming
from the metric of Bianchi type-I, type-III and Kantowski-
Sachs, first in a unified way and with a choice of two sets of
tetrads, the diagonal and the non-diagonal.

3.1 Diagonal tetrads

In this subsection we will study the case of a choice of
a set of diagonal tetrads for some inhomogeneous models.
We can describe the models of Bianchi type-I, type-III and
Kantowski-Sachs (KS) through the metric

dS2 = dt2 − A2(t)dr2 − B2(t)
[
dθ2 + K2

j (θ)dφ2], (12)

where j = 1,2,3, K1(θ) = θ,K2(θ) = sin θ and K3(θ) =
sinh θ are the models of Bianchi type-I, Kantowski-Sachs
and Bianchi type-III, respectively. Let us start choosing a
set of diagonal tetrads
[
ea

μ

] = diag
[
1,A,B,BKj (θ)

]
. (13)

The determinant of this matrix is e = AB2Kj(θ). The
components of the torsion tensor (5), for the choice of
tetrads (13), are given by

T 1
01 = Ȧ

A
, T 2

02 = T 3
03 = Ḃ

B
, T 3

23 = 1

Kj

dKj

dθ
,

(14)

those the correspond the contorsion (6) components are

K01
1 = Ȧ

A
, K02

2 = K03
3 = Ḃ

B

K32
3 = 1

B2Kj

dKj

dθ
,

(15)

and those of the tensor S
μν

α , in (7), are given by

S 10
1 = Ḃ

B
, S 20

0 = S 21
1 = 1

2B2Kj

dKj

dθ

S 20
2 = S 30

3 = 1

2

(
Ȧ

A
+ Ḃ

B

)
.

(16)

Making use of the components (14) and (16), the torsion
scalar (8) is given by

T = −2

(
Ḃ

B

)2

− 4
ȦḂ

AB
. (17)

The equations of motion (10) are

4πρ = f

4
+ fT

[(
Ḃ

B

)2

+ 2
ȦḂ

AB
+ k

2B2

]
, (18)

−4πpr = Ḃ

B
Ṫ fT T + f

4

+ fT

[
B̈

B
+

(
Ḃ

B

)2

+ ȦḂ

AB
+ k

2B2

]
, (19)

−4πpt = 1

2

(
Ȧ

A
+ Ḃ

B

)
Ṫ fT T + f

4

+ fT

2

[
Ä

A
+ B̈

B
+

(
Ḃ

B

)2

+ 3
ȦḂ

AB

]
, (20)

Ṫ (dKj/dθ)

2B2Kj

fT T = 0, (21)

where k = −K−1
j (d2Kj/dθ2). For the Kantowski-Sachs

model k = +1, for Bianchi type-I k = 0, and for Bianchi
type-III k = −1. This classification stems from the scalar
curvature of the spatial hyper-surface (3)R = 2k/B2(t), in
the case of the GR (Mimosots and Crawford 1993).

The constraint equation (21) imposes to the function
f (T ) to be linear, as in the Teleparallel Theory (TT), and
we can choose it as f (T ) = T − 2Λ, where Λ is the cosmo-
logical constant. Hence, Eqs. (18)–(20) become

(
Ḃ

B

)2

+ 2
ȦḂ

AB
+ k

B2
= Λ + 8πρ, (22)

2
B̈

B
+

(
Ḃ

B

)2

+ k

B2
= Λ − 8πpr, (23)

Ä

A
+ B̈

B
+ ȦḂ

AB
= Λ − 8πpt . (24)

These equations are the same as those of the GR (Aguiar and
Crawford 2000), and then, all the known solutions for these
models can be regained. Once again, this is not surprising,
since the TT is dynamically equivalent to the GR and the
equations of motion must be identical. We can also observe
that the particular case A(t) = B(t) = a(t) and pr = pt ,
for the model of Bianchi type-I (k = 0), we regain the flat
FLRW universe in (22)–(24), with a(t) being the scale fac-
tor.

In the next section, we will study a choice of a set of non-
diagonal tetrads.
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3.2 Non-diagonal tetrads

In this subsection we will study the inhomogeneous models,
with a set of non-diagonal tetrads, similar to the static case
(Daouda et al. 2012), or in the cosmological case (Daouda
et al. 2014). Our goal here is to get some slight modifica-
tion in the equations of motion, coming from a set of non-
diagonal tetrads, and compare the results with the diagonal
case. This can lead in general to some understanding for the
use of anisotropic models.

By choosing the set of non-diagonal tetrads,
[
ea

μ

]

=

⎡

⎢⎢
⎣

1 0 0 0
0 A sin θ cosφ B cos θ cosφ −BKj(θ) sinφ

0 A sin θ sinφ B cos θ sinφ BKj (θ) cosφ

0 A cos θ −B sin θ 0

⎤

⎥⎥
⎦,

(25)

we get the determinant e = AB2Kj . The components of the
torsion (5), contorsion (6) and tensor S

μν
α (7), are given by

⎧
⎨

⎩

T 1
01 = Ȧ

A
, T 2

02 = T 3
03 = Ḃ

B
, T 2

21 = A
B

,

T 3
31 = A sin θ

BKj
, T 3

23 = (dKj /dθ)−cos θ

Kj
,

(26)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K01
1 = Ȧ

A
, K02

2 = K03
3 = Ḃ

B
,

K12
2 = 1

AB
,

K13
3 = sin θ

ABKj
, K32

3 = (dKj /dθ)−cos θ

B2Kj
,

(27)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S 01
0 = Kj +sin θ

2ABKj
,

S 20
0 = S 21

1 = (dKj /dθ)−cos θ

2B2Kj
,

S 10
1 = Ḃ

B
, S 20

2 = S 30
3 = 1

2 ( Ȧ
A

+ Ḃ
B

),

S 21
2 = sin θ

2ABKj
, S 31

3 = 1
2AB

.

(28)

The torsion scalar (8), from the components (26) and (28),
is given by

T = −2

(
Ḃ

B

)2

− 4
ȦḂ

AB
+ 2 sin θ

B2Kj

. (29)

The equations of motion (10) become

4πρ = −
[
(dKj/dθ) − cos θ

2B2Kj

]
dT

dθ
fT T

+ f

4
+ fT

[(
Ḃ

B

)2

+ 2
ȦḂ

AB

+ k − (sin θ/Kj )

2B2

]
, (30)

−4πpr = Ḃ

B
Ṫ fT T + f

4
+ fT

[
B̈

B
+

(
Ḃ

B

)2

+ ȦḂ

AB
+ k − (sin θ/Kj )

2B2

]
, (31)

−4πpt = 1

2

(
Ȧ

A
+ Ḃ

B

)
Ṫ fT T + f

4
+ fT

2

[
Ä

A
+ B̈

B

+
(

Ḃ

B

)2

+ 3
ȦḂ

AB
− sin θ

B2Kj

]
, (32)

Kj + sin θ

2ABKj

Ṫ fT T = 0, (33)

(dKj/dθ) − cos θ

2B2Kj

Ṫ fT T = 0, (34)

sin θ

2ABKj

dT

dθ
fT T = 0, (35)

1

2

(
Ȧ

A
+ Ḃ

B

)
dT

dθ
fT T = 0. (36)

Also here, the constraint equations (33)–(36) impose to the
function f (T ) to be linear or constant torsion.

By choosing f (T ) = T − 2Λ, the equations of motion
(30)–(32) turn into

(
Ḃ

B

)2

+ 2
ȦḂ

AB
+ k

B2
= Λ + 8πρ, (37)

2
B̈

B
+

(
Ḃ

B

)2

+ k

B2
= Λ − 8πpr, (38)

Ä

A
+ B̈

B
+ ȦḂ

AB
= Λ − 8πpt . (39)

We can define the average volume as V (t) = A(t)B2(t).
Supposing first an exponential expansion V (t) = v0e

3H0t ,
with v0,H0 ∈ �+, one gets

A(t) = v0e
3H0t

B2(t)
. (40)

Now, defining the average Hubble’s parameter as

H(t) = 1

3

V̇

V
= 1

3

(
Ȧ

A
+ 2

Ḃ

B

)
, (41)

one has H(t) = H0. By defining a deceleration factor q =
[(d/dt)(1/H(t)) − 1], one gets q = −1 which yields an ac-
celerated universe. We also define H1 = Ȧ/A,H2,3 = Ḃ/B ,
and the anisotropic parameter of the expansion as

�(t) = 1

3

3∑

i=1

(
Hi

H
− 1

)2

= 2

9H 2

(
Ȧ

A
− Ḃ

B

)2

. (42)
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Making similar considerations to those of Adhav et al.
(2011), we can simplify the equations, using pr = ω(t)ρ(t)

and pt = [ω(t) + δ(t)]ρ(t), with

ρ(t) = k

8πδ(t)B2(t)
. (43)

Then, we can solve the equations of motion (37)–(39),
setting B(t) = exp[b(t)], which yields

6H0ḃ + ke−2b − 3ḃ2 − ke−2b

δ
− Λ = 0, (44)

3ḃ2 + 2b̈ + ke−2b + ke−2b

δ
ω − Λ = 0, (45)

9H 2
0 + 3ḃ2 − 9H0ḃ − b̈ + ke−2b

+ ke−2b

δ
ω − Λ = 0. (46)

Subtracting (45) from (46) one gets

3b̈ + 9H0ḃ − 9H 2
0 = 0 (47)

leading to b(t) = H0t − (b0e
−3H0t /3H0) + b1, with b0 ∈ �.

The solution is then given by

A(t) = v0

b2
2

exp

(
H0t + 2b0

3H0
e−3H0t

)
,

B(t) = b2 exp

(
H0t − b0

3H0
e−3H0t

)
.

(48)

The anisotropic parameter of the expansion (42) is given by

�(t) = 2c2
2

k2
e−6kt . (49)

We can now isolate δ(t) in Eq. (44), getting

δ(t) = exp(4kt + 2s2
3k

e−3kt )

c2
3(3k2e6kt − 3c2

2 − Λe6kt )
. (50)

We also isolate ω(t) in (45), obtaining

ω(t) = −3k2e6kt + 3c2
2 − Λe6kt

3k2e6kt − 3c2
2 − Λe6kt

. (51)

We present the curve that traduces the evolution of this pa-
rameter versus t for some values of the input parameters.
Hence, we see that, setting k2 = 1, Λ = 0.01 and c2

2 = 0.1,
the parameter ω tends to −1; see Fig. 1.

The density (43) becomes

ρ(t) = 3k2 − 3c2
2e

−6kt − Λ

8π
. (52)

Now we can test the physical criteria for this solution,
as we have in Collins and Hawking (1973). The following

Fig. 1 This figure point out the evolution of the parameter ω in terms
of t for k2 = 1, Λ = 0.01 and c2

2 = 0.1

criteria have to be obeyed: (a) density ρ(t) always posi-
tive; (b) volume V (t) going to infinity when t → ∞; (c) the
anisotropic parameter of the expansion �(t) must tend to
zero when t → ∞. For k2 > c2

2 + Λ/3 the density (52) is
always positive, then, satisfies the criterion (a). In the limit
t → ∞, one gets

�(t) → 0, V (t) → ∞, ρ(r) → 3k2 − Λ

8π
,

δ(t) → 0, ω(t) → −1.

(53)

Note that the solution is physical, the anisotropy disappears,
the density is always positive, the volume tends to infinity
and the model tends to the ΛCDM one, with ω = −1.

We also consider a power type expansion, i.e., V (t) =
c1t

3n, with c1, n ∈ �+. Then, we have A(t) = c1t
3n/B2(t)

and H(t) = n/t . In this case, considering (43) and B =
exp(b), Eqs. (37)–(39), for Λ = 0, yield

3ḃ2 − 6n

t
ḃ + e−2b

δ
= 0 (54)

2b̈ + 3ḃ2 + e−2b

δ
ω = 0 (55)

− b̈ + 3ḃ2 − 9n

t
ḃ − 3n(1 − 3n)

t2
+ e−2b

δ
ω = 0. (56)

Subtracting (55) from (56), one gets

t2b̈ + 3ntḃ + n(1 − 3n) = 0, (57)

which, after integration, yields

b(t) = log
(
tn

) + [
c2t

1−3n/(1 − 3n)
] + b0. (58)
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Fig. 2 The figure shows the evolution of the parameter ω as the time
evolves, for n = 1

The solution is given by

A(t) = c1

c2
2

tn exp

(−2t1−3n

1 − 3n

)
,

B(t) = c2t
n exp

(
2t1−3n

1 − 3n

)
.

(59)

The anisotropic parameter of the expansion (42) is given by

�(t) = 2t2−3n

n2
. (60)

We can now isolate δ(t) in Eq. (54), getting

δ(t) = t2+4n exp(−2t1−3n

1−3n
)

3c2
2(n

2t6n − t2)
. (61)

Also, isolating ω(t) in Eq. (55), one gets

ω(t) = 3t2 + n(3n − 2)t6n

3(t2 − n2t6n)
. (62)

In this case, we plot the evolution of ω versus time for two
different cases. The first one, Fig. 2, shows that the param-
eter ω tends to −1/3 only when n is very closed to 1. On
other hand, we see that, for n > 1, more precisely n = 2 (as
an example), ω does not tend to −1/3, but rather 0.66; see
Fig. 3. Therefore, we conclude that the parameter n is re-
sponsible for quintessence era.

The density (43) becomes

ρ(t) = 3( n2

t2 − t−6n)

8π
. (63)

Fig. 3 This figure presents two curves, one for n = 1 and the second
for n = 2, both pointing out evolutions of the parameter ω

Let us now test the physical criteria for this solution. For t >

n ≥ 1 the density (63) is always positive, and then, satisfies
the criterion (a). For t → ∞, there is a dependence on the
value of n. There is a quintessence-like behaviour, with ω ∈
(−1,0). In the particular case, n = 1, we have

�(t) → 0, V (t) → ∞, ρ(r) → 0,

δ(t) → 0, ω(t) → −1

3
.

(64)

Note that the solution is physical, the anisotropy disappears,
the energy density is always positive, the volume tends to
infinity and the model tends to a quintessence-like one.

4 Conclusion

In this paper, we undertake the modified tele-parallel the-
ory, f (T ) gravity, where T denotes the torsion scalar. In
order to approach the real feature of the universe, due to
the fact that the universe is not rigorously isotropic and ho-
mogeneous, we look for three interesting and realistic met-
ric models, the Bianchi-I, Bianchi-III and Kantowski-Sachs
models, and tried to solve the equations of motion. We focus
our attention on non-diagonal tetrads where the gravitational
action is free from the constraint of recovering the TT. In
this way, we found solutions for the three space directions,
and through the equations of motion, the expressions of the
energy density and pressures are obtained. An analysis of
these expressions showed, as an interesting result that, even
considering that our universe is isotropic, it may live in a
quintessence-like phase.
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Finally, we comment the possibility of Noether symme-
try analysis for the Lagrangian of these anisotropic models.
We believe that the restriction for models of type f (T ) =
f0T

n in Basilakos et al. (2013), should be relaxed for an
anisotropic extension. This is because the metrics have more
than one characteristic function (see A(t) and B(t) in (12)),
soon will see one more component in prolongation vector of
Eq. (47) of Basilakos et al. (2013). Even putting the equa-
tion to Bianchi type-I case in a manner similar to isotropic,
with a anisotropic dependent term Hx and Hy , as we see in
Eq. (37) in Rodrigues et al. (2014), yet we have this new
component in the prolongation vector, it does not eliminate
the anisotropic dependence. This should be the subject of a
new work in this line of approach of f (T ) Gravity.
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