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Abstract This paper deals with the theoretical modeling of
anisotropic compact stars in the framework of f (T ) theory
of gravity, where T is torsion scalar. To this end, we have
used the exact solutions of Krori and Barua metric to a static
spherically symmetric metric. The unknown constants in-
volved in the Krori and Barua metric have been specified
by using the masses and radii of compact stars 4U1820-30,
Her X-1, SAX J 1808-3658. The physical properties of these
stars have been analyzed in the framework of f (T ) theory.
In this setting, we have checked the anisotropic behavior,
regularity conditions, stability and surface redshift of the
compact stars.

Keywords Modified theories of gravity · Models beyond
the standard models · Compact stars

1 Introduction

On the basis of Einstein’s proposal for the investigation of
a new version to General Relativity (GR) (Unzicker and
Case 2005), an alternative theory of gravitation, termed as
Teleparallel Theory (TT) has been adopted many years later
from the original formulation of GR. However, the anal-
ogy between GR and TT has been tackled once again on
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the basis of postulates defined by Moller (Moller 1961;
Pellegrini and Plebanski 1963; Moller 1978; Hayashi and
Nakano 1967; Hayashi 1973, 1977). According to GR the
gravitational effects due to a gravitating source can be de-
scribed by the curvature of that source. In general it is true
that a spacetime may posses curvature and torsion (as in
case of Cartan space), one can distinguish all the terms re-
sulting from torsion of spacetime as Riemann tensor, con-
nection, etc. Therefore, one can remark that the theory that
accounts gravity as an action of curvature of spacetime
(resulting from the Riemann tensor without either torsion
or antisymmetric connection) can be considered as a the-
ory that consists of only torsion with null contribution from
Riemann tensor without torsion (Capozziello and Faraoni
2011).

On the basis of current expanding paradigm and exis-
tence of exotic energy component named as dark energy,
various modifications of GR have been proposed. The uni-
fied theories of gravitation in low-energy scales involves
the terms R2,RμνRμν and RμναβRμναβ , in their effective
actions. In such candidates f (R) has gained great interest
(Sharif and Shamir 2009; Shamir 2010; Shamir et al. 2012;
Shamir and Raza 2014, 2015) and it agrees with the cos-
mological and astrophysical observational data (Nojiri and
Odintsov 2011). In f (R) gravity, the dynamical equations
are of the fourth order differential equations, so it becomes
more difficult to solve these equations as compared to GR
(Nojiri and Odintsov 2007). As the GR has the similarity
with Teleparallel theory, a theory namely f (T ) (where T is
a torsion scalar) has been used. Such theory would be the al-
ternative form of the generalization of GR, namely the f (R)

theory of gravity. This newly proposed f (T ) theory is the
modification of TT, which is free of curvature and Riemann
tensors resulting from the terms without torsion.
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In the relativistic cosmology, f (T ) theory has been em-
ployed to discuss the inflation of the universe (Ferraro and
Fiorini 2007). Since then there has been growing interest
to study the various aspects of cosmology in f (T ) theory
of gravity. Many authors (Hayashi 1977; Capozziello and
Faraoni 2011; Nojiri and Odintsov 2007, 2011; Ferraro and
Fiorini 2007; Bayin 1982; Linder 2011; Bamba et al. 2011;
Zubair 2015; Zubair and Waheed 2015), investigated that
this theory can be utilized as a handy candidate for the ac-
celerated expansion of the universe without the inclusion of
dark energy. In the astronomy and astrophysics, the f (T )

theory was initially used to drive the BTZ black hole solu-
tions (Dent et al. 2011). Bamba et al. (2011) and Miao et al.
(2011) shown that first of black hole thermodynamics does
not hold in f (T ) theory. Recently, some static spherically
symmetric solutions with Maxwell term have been found
in f (T ) theory (Wang 2011). Boehmer et al. (2011) and
Daouda et al. (2011) investigated the existence of relativis-
tic stars in f (T ) theory developing the various static perfect
fluid solutions.

People (Bhar et al. 2014; Kalam et al. 2013; Maurya
et al. 2014; Rahaman et al. 2012) have discussed the ana-
lytical models of compact strange stars in the framework of
Einstein gravity. In this paper, we formulate the models of
anisotropic compact objects in f (T ) theory, without using
the equation of state. We have discussed the various prop-
erties of the compact objects. This paper is organized as
follows: The brief review of Weitzenbock’s geometry and
equation of motion of f (T ) gravity will be presented in
Sect. 2. Section 3, deals with the geometry of the source
and physical significance of matter component. The phys-
ical analysis of the proposed model is presented in Sect. 4.
Finally, we discuss the summary of results in the last section.

2 f (T ) theory of gravity

Recently, it has been proved that TT is equivalent theory to
the GR (Bayin 1982; Linder 2011; Rehaman et al. 2010).
Here, we briefly introduce the basic concept of TT, for this
purpose, it is assumed that Latin and Greek indices are re-
lated to the tetrad fields and spacetime coordinates, respec-
tively. In this case metric of spacetime is defined as follows:

ds2 = gμνdxμdxν, (1)

The above metric can be transformed to Minkowskian de-
scription by the tetrad matrix, defined by

dS2 = gμνdxμdxν = ηij θ
iθj , (2)

dxμ = e
μ
i θ i, θ i = ei

μdxμ, (3)

where ηij = diag[1,−1,−1,−1] and e
μ
i eν

i = δ
μ
ν or

e
μ
i eν

j = δ
j
i .

The root of the metric determinant is given by
√−g =

det[ei
μ] = e. The Weitzenbock’s connection components for

vanishing Riemann tensor part and non-vanishing torsion
term are defined as

Γ α
μν = eα

i ∂νe
i
μ = −e

μ
i ∂νe

α
i (4)

The torsion and the contorsion are defined by

T α
μν = Γ α

νμ − Γ α
μν = eα

i

(
∂μei

ν − ∂νe
i
μ

)
(5)

Kμν
α = −1

2

(
T μν

α − T νμ
α − T μν

α

)
(6)

and the components of the tensor S
μν
α as

Sμν
α = 1

2

(
Kμν

α + δμ
α T

βν
β − δν

αT
βμ
β

)
. (7)

Here, torsion scalar is

T = T α
μνS

μν
α (8)

Analogous to f (R) gravity, the action for f (T ) gravity is

S
[
ei
μ,ΦA

] =
∫

d4xe

[
1

16π
f (T ) +LMatter (ΦA)

]
, (9)

in the above action G = c = 1 have been used and the
LMatter (ΦA) is matter field. The variation of the above ac-
tion provide the following field equations in f (T ) gravity
(Dent et al. 2011)

Sνρ
μ ∂ρTfT T + [

e−1ei
μ∂ρ

(
eeα

i Sνρ
α

) + T α
λμSνλ

α

]
fT + 1

4
δν
μf

= 4πT ν
μ , (10)

where T ν
μ is matter. In the present case, we take the matter

as anisotropic fluid for which energy-momentum tensor is

T ν
μ = (ρ + pt)uμuν − ptδ

ν
μ + (pr − pt)vμvν, (11)

where uμ and vμ are the four-velocity and radial-four vec-
tors, respectively. Further, pr and pt are pressures along ra-
dial and transverse directions.

3 Model of anisotropic compact stars in
generalized teleparallel gravity

We assume the geometry of star in the form of static spheri-
cally symmetric spacetime which is given by

ds2 = ea(r)dt2 − eb(r)dr2 − r2(dθ2 + sin2(θ)dφ2). (12)

We introduce the tetrad matrix for (12) as follows:
[
ei
μ

] = diag
[
e

a(r)
2 , e

b(r)
2 , r, r sin(θ)

]
. (13)

Using Eq. (13), one can obtain e = det[ei
μ] = e

(a+b)
2 r2 sin(θ),

and with (4)–(8), torsion scalar and its derivative are deter-
mined in terms of r as
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T (r) = 2e−b

r

(
a

′ + 1

r

)
, (14)

T
′
(r) = 2e−b

r

(
a

′′ + 1

r2
− T

(
b

′ + 1

r

))
, (15)

where prime represents derivative with respect to r . The set
of equations for an anisotropic fluid as

4πρ = f

4
− fT

2

(
T − 1

r2
− e−b

r

(
a

′ + b
′)
)

, (16)

4πpr = fT

2

(
T − 1

r2

)
− f

4
, (17)

4πpt =
[
T

2
+ e−b

(
a

′′

2
+

(
a

′

4
+ 1

2r

)(
a

′ − b
′)
)]

fT

2
− f

4
,

(18)
cot θ

2r2
T

′
fT T = 0, (19)

In Eqs. (16)–(18), Eq. (19), has been used. Further, Eq. (19)
leads to the following linear form of f (T ):

f (T ) = βT + β1, (20)

where β and β1 are integration constants. We parameterize
the metric as the following:

b(r) = Ar2, a(r) = Br2 + C (21)

where arbitrary constants A, B and C can be evaluated
by using some physical matching conditions. Now using
Eqs. (20), (21), we get following form of matter compo-
nents:

ρ = −e−Ar2
β

8πr2
+ β1

16π
+ β

8πr2
+ e−Ar2

Aβ

4π
, (22)

pr = e−Ar2
Bβ

4π
+ e−Ar2

β

8πr2
− β

8πr2
− β1

16π
, (23)

pt = e−Ar2
Bβ

4π
+ e−Ar2

βr2B2

8π
− ABβr2e−Ar2

8π

− e−Ar2
Aβ

8π
− β1

16π
, (24)

Also, the equation of state (EOS) parameters can be written
as

ωr(r) = 4r2Bβe−Ar2 + 2βe−Ar2 − 2β − r2β1

−2βe−Ar2 + r2β1 + 2β + 4r2Aβ
, (25)

ωt(r) = r2Bβ + 2r4B2βe−Ar2 − 2βABr4 + 2r2Aβe−Ar2 − 4r2β1

e−Ar2 + 2β1r2 + β + 2r2Aβe−Ar2 ,

(26)

4 Analysis of the proposed model

Here, we discuss the following properties of the proposed
model:

4.1 Anisotropic behavior

Using Eqs. (22) and (23), we get

dρ

dr
= βAe−Ar2

4πr
+ βe−Ar2

4πr3
− β

4πr3
− A2βre−Ar2

2π
, (27)

dpr

dr
= −βABre−Ar2

2π
− βAe−Ar2

4πr
− βe−Ar2

4πr3
+ β

4πr3
.

(28)

The above results lead to following equations

d2ρ

dr2
= βA2e−Ar2

2π
− βAe−Ar2

4πr2
− βAe−Ar2

2πr2
− 3βe−Ar2

4πr4

+ 3β

4πr4
− βA2e−Ar2

2π
+ βA3r2e−Ar2

π
,

d2pr

dr2
= −βABe−Ar2

2π
+ βA2Br2e−Ar2

π
+ βAe−Ar2

πr2

+ βA2e−Ar2

2π
+ 3βe−Ar2

4πr4
+ βAe−Ar2

4πr2
− 3β

4πr4
.

The ρ and pr have maximum values (see Figs. 1 and 2). This
implies that density and pressure have maximum value at the
center of the star (r = 0). Figure 3 indicates that transverse
pressure is decreasing function of radial coordinate. From
Figs. 4 and 5, it can be see that effective EOS is given by
0 < ωi(r) < 1, (i = r, t) similar to normal matter distribu-
tion. This indicates the fact that compact stars are composed
of ordinary matter and contribution of f (T ) terms. The mea-
sure of anisotropy, Δ = 2

r
(pt −pr) in this model is obtained

as follows:

Δ = βB2re−Ar2

4π
− βABre−Ar2

4π
− βAe−Ar2

4πr
− βe−Ar2

4πr3

+ β

2πr3
. (29)

It is well known that anisotropy will be directed outward
when pt > pr i.e., Δ > 0, and inward when pt < pr i.e.,
Δ < 0. From Fig. 6, we conclude that at r = 0, dρ

dr
= 0,

dpr

dr
= 0, and d2ρ

dr2 < 0,
d2pr

dr2 < 0. Figure 7 shows that in
this model a repulsive (anisotropic) force would exists as
(Δ > 0) (for smaller values of r) which permits the for-
mation of super massive star, while for larger values of r ,
Δ = 0, where a star comes to the equilibrium position.

4.2 Matching conditions

In this section, we discuss the smooth matching of space-
time (12) to the vacuum exterior spherically symmetric met-
ric given by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

− r2(dθ2 + sin2(θ)dφ2). (30)
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Fig. 1 First, second and third graphs represent the density variation of Strange star candidate Her X-1, SAX J 1808.4-3658(SS1) and 4U 1820-30,
respectively

Fig. 2 First, second and third graphs represent the radial pressure variation of Strange star candidate Her X-1, SAX J 1808.4-3658(SS1) and
4U 1820-30, respectively

Fig. 3 First, second and third graphs represent the transverse pressure variation of Strange star candidate Her X-1, SAX J 1808.4-3658(SS1) and
4U 1820-30, respectively
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Fig. 4 First, second and third graphs represent the EOS parameter ωr variation of Strange star candidate Her X-1, SAX J 1808.4-3658(SS1) and
4U 1820-30, respectively

Fig. 5 First, second and third graphs represent the EOS parameter ωt variation of Strange star candidate Her X-1, SAX J 1808.4-3658(SS1) and
4U 1820-30, respectively

The continuity of metric components gtt , grr and ∂gtt

∂r
at the

boundary surface r = R yield,

A = − 1

R2
ln

(
1 − 2M

r

)
, (31)

B = M

R3

(
1 − 2M

r

)−1

(32)

C = ln

(
1 − 2M

r

)
− M

R

(
1 − 2M

r

)−1

(33)

For the values of M and R for a given star, the constants A

and B can be specified as in Table 1.

4.3 Stability

For this anisotropic model, the sound speeds are defined as

υ2
sr = dpr

dρ
≡ −2ABr4e−Ar2 − Ar2e−Ar2 − e−Ar2 + 1

−2A2r4e−Ar2 + Ar2e−Ar2 + e−Ar2 − 1
,

(34)

υ2
st = dpt

dρ
≡ B2r4e−Ar2 − AB2r6e−Ar2 + 4A2Br6 + A2r4e−Ar2

Ar2e−Ar2 + e−Ar2 − 2A2r4e−Ar2 − 1
.

(35)

The above equations lead to

υ2
st − υ2

sr = {−2ABr4 + B2r4 − AB2r6 + 4A2Br6eAr2

+ A2r4 + (r2A + 1) − e−Ar2}

× {
Ar2 + 1 − 2A2r4 − eAr2}−1 (36)

Few years ago, Herrera (1992) published a new proposal
to check the stability of anisotropic gravitating source. Cur-
rently, this technique is termed as cracking concept which
states that if radial speed of sound is greater than the trans-
verse speed of sound in a region then such a region is a
potentially stable region, otherwise unstable region. In our
case, Fig. 8 indicates that there is change of sign for the
term v2

st − v2
sr within the particular configuration. Hence,

we find that our strange star model is unstable.
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Fig. 6 All these graphs has
been plotted only for the data of
4U 1820-30

Fig. 7 First, second and third graphs represent the variation of anisotropy Δ for Strange star candidate Her X-1, SAX J 1808.4-3658(SS1) and
4U 1820-30, respectively

Table 1 Values of constants for
given masses and radii of stars Strange Quark Star M R (km) M

R
A (km−2) B (km−2)

Her X-1 0.88M� 7.7 0.168 0.00749431669 0.017062831

SAX J 1808.4-3658 1.435M� 7.07 0.299 0.010949753 0.020501511

4U 1820-30 2.25M� 10.0 0.332 0.005715628647 0.0101366226
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Fig. 8 First, second and third graphs represent the variation of v2
st − v2

sr for Strange star candidate Her X-1, SAX J 1808.4-3658(SS1) and
4U 1820-30, respectively

Fig. 9 First, second and third graphs show the evolution of surface redshift Zs for Strange star candidates Her X-1, SAX J 1808.4-3658(SS1) and
4U 1820-30, respectively

4.4 Surface redshift

The compactness of the star is given by

u = M

b
= 2b

√
Aπβ + √

πβ(π − 2Aπr2) erf[√Ab] + bπr2β1
√

A

4π
√

A

(37)

The surface redshift (Zs) resulting from the compactness
u is obtained as

1 + Zs = [1 − 2u]−1
2 , (38)

where

1 + Zs = [
1 − ({

2b
√

Aπβ + √
πβ(π − 2Aπr2) erf(

√
Ab)

+ bπr2β1
√

A
}{

4π
√

A
}−1)]−1

2 . (39)

The maximum value of the surface redshift for the compact
stars is shown in Fig. 9.

5 Concluding remarks

Recently, there has been growing interest to study gravita-
tional field as the effect of torsion of the underlying geome-
try, which was originally introduced in parallel to curvature

description of gravity. This concept was developed in sev-
eral years as teleparallel equivalence of GR. The black hole
(BH) are extremely compact astrophysical objects which
store information about the entropy on the BH horizon. In
the modified TEGR, f (T ) gravity posses many interesting
feature. Recent observations from solar system orbital mo-
tions in order to constrain f (T ) gravity have been made
and interesting results have been found. The conditions for
the existence and non-existence of relativistic stars have
been studied in f (T ) gravity (Nojiri and Odintsov 2007;
Ferraro and Fiorini 2007). It is important to model the com-
pact stars in f (T ) using the diagonal tetrad field.

In this paper, we have constructed the model of compact
stars in f (T ) gravity. The interior of the stars has been taken
as static spherically symmetric with anisotropic gravitating
source. The equations of motions have been obtained by us-
ing the diagonal tetrad field. In this case the f (T ) appears
as a linear function of T . The explicit form of matter den-
sity, radial pressure, transverse pressure and EOS parame-
ters have been calculated. The anisotropy, regularity and en-
ergy conditions have been discussed in detail. The observed
values of masses and radii of compact stars have been used
to specify the values of unknown constants of the interior
metric. By using the fist and second derivatives of density
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and pressures, we have found that these quantities have max-
imum values at the center and vanish at boundary.

It is clear from Fig. 7 that in this model a repulsive
(anisotropic) force would exists as (Δ > 0) which indi-
cates the formation of more massive distributions. Using
the cracking concept, we have found that radial speed of
sound is greater than the transverse speed of sound in a
region. It is clear from Fig. 8 that there is change of sign
for the term v2

st − v2
sr within the specific configuration.

Hence, we conclude that our strange star model is unsta-
ble. The range of surface redshift Zs for Strange star candi-
date Her X-1, SAX J 1808.4-3658(SS1) and 4U 1820-30 is
shown in Fig. 9.

References

Bamba, L., Geng, C.Q., Lee, C.C., Luo, L.W.: J. Cosmol. Astropart.
Phys. 01, 021 (2011)

Bayin, S.: Phys. Rev. D 81, 1262 (1982)
Bhar, P., Rahaman, F., Ray, S., Chatterjee, V.: arXiv:1503.03439

(2014)
Boehmer, C.G., Mussa, A., Tamani, N.: Class. Quantum Gravity 28,

245020 (2011)
Capozziello, S., Faraoni, V.: Beyond Einstein Gravity: A Survey

of Gravitational Theories for Cosmology and Astrophysics.
Springer, New York (2011)

Daouda, M.H., Rodrigues, M.E., Houndjo, M.J.S.: Eur. Phys. J. C 71,
1817 (2011)

Dent, J.B., Dutta, S., Saridakis, E.N.: J. Cosmol. Astropart. Phys. 01,
009 (2011)

Ferraro, R., Fiorini, F.: Phys. Rev. D 75, 084031 (2007)
Hayashi, K.: Nuovo Cimento A 16, 639 (1973)
Hayashi, K.: Phys. Lett. B 69, 441 (1977)
Hayashi, K., Nakano, T.: Prog. Theor. Phys. 38, 491 (1967)
Herrera, L.: Phys. Lett. A 165, 206 (1992)
Kalam, M., Rahaman, F., Hossein, S.M., Ray, S.: Eur. Phys. J. C 73,

2409 (2013)
Linder, E.V.: Phys. Rev. D 81, 127301 (2011)
Maurya, S.K., Gupta, Y.K., Ray, S.: arXiv:1408.5126 (2014)
Miao, R.X., Lie, M., Miao, Y.G.: J. Cosmol. Astropart. Phys. 11, 033

(2011)
Moller, C.: K. Dan. Vidensk. Selsk. Mat.-Fys. Skr. 1, 10 (1961)
Moller, C.: K. Dan. Vidensk. Selsk. Mat.-Fys. Skr. 89, 13 (1978)
Nojiri, S., Odinstov, S.D.: Phys. Rep. 505, 59 (2011)
Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115

(2007)
Pellegrini, C., Plebanski, J.: Mat.-Fys. Skr. K. Dan. Vidensk. Selsk. 2,

4 (1963)
Rahaman, F., Sharma, R., Ray, S., Maulick, R., Karar, I.: Eur. Phys.

J. C 72, 2017 (2012)
Rehaman, F., Jamil, M., Ghosh, A., Chakraborty, K.: Mod. Phys.

Lett. A 25, 835 (2010)
Shamir, M.F.: Astrophys. Space Sci. 330, 183 (2010)
Shamir, M.F., Raza, Z.: Commun. Theor. Phys. 62, 348 (2014)
Shamir, M.F., Raza, Z.: Can. J. Phys. 93, 37 (2015)
Shamir, M.F., Jhangeer, A., Bhatti, A.A.: Chin. Phys. Lett. 29, 080402

(2012)
Sharif, M., Shamir, M.F.: Class. Quantum Gravity 26, 235020 (2009)
Unzicker, A., Case, T.: arXiv:physics/0503046v1 (2005)
Wang, T.: Phys. Rev. D 84, 024042 (2011)
Zubair, M.: Adv. High Energy Phys. 2015, 292767 (2015)
Zubair, M., Waheed, S.: Astrophys. Space Sci. 355, 361 (2015)

http://arxiv.org/abs/arXiv:1503.03439
http://arxiv.org/abs/arXiv:1408.5126
http://arxiv.org/abs/arXiv:physics/0503046v1

	Anisotropic compact stars in f(T) gravity
	Abstract
	Introduction
	f(T) theory of gravity
	Model of anisotropic compact stars in generalized teleparallel gravity
	Analysis of the proposed model
	Anisotropic behavior
	Matching conditions
	Stability
	Surface redshift

	Concluding remarks
	References


