
Astrophys Space Sci (2015) 357:105
DOI 10.1007/s10509-015-2332-5

O R I G I NA L A RT I C L E

Dirac and scalar particles tunnelling from topological massive
warped-AdS3 black hole

G. Gecim1 · Y. Sucu1

Received: 28 October 2014 / Accepted: 26 March 2015 / Published online: 13 May 2015
© Springer Science+Business Media Dordrecht 2015

Abstract We investigate the Dirac and scalar particles tun-
nelling as a radiation of Warped AdS3 black holes in Topo-
logical Massive Gravity. Using Hamilton-Jacobi method, we
discuss tunnelling probability and Hawking temperature of
the spin-1/2 and spin-0 particles for the black hole. We ob-
serve the tunnelling probability and Hawking temperature
to be same for the spin-1/2 and spin-0. We show that the
tunnelling process may occur, for both Dirac and scalar par-
ticles.

Keywords Hawking radiation · Particle tunnelling ·
Warped AdS3 black holes

1 Introduction

A self-consistent quantum gravity theory hasn’t been con-
structed yet. Therefore, the quantum mechanical properties
of a classical gravitational field is studied by the quantum
mechanical behaviour of a physical system effected from
it. In particular, thanks to the extension of standard Quan-
tum theory to curved spacetime, some events, such as parti-
cle creation and thermal radiation of a black hole, can be
predicted. Moreover, the black holes as the most popular
concepts of the classical gravity are just understood by the
quantum mechanical concepts. From this point of view, the
solutions of the relativistic quantum mechanical wave equa-
tions in a gravitational background became an important tool
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for getting information about its nature (Parker 1968, 1969,
1971). For this reason, the relativistic quantum mechanical
wave equations in a curved spacetime background have been
extensively studied (Brill and Wheeler 1957; Chandrasekhar
1976; Barut and Duru 1987; Sucu and Unal 2004).

The nature of black holes have been started to be under-
stood by thermodynamical and quantum mechanical con-
cepts since 1970 (Greif 1969; Carter 1972; Bekenstein 1973;
Hawking 1974, 1975, 1976). Among these concepts, espe-
cially, thermal radiation, known as Hawking radiation in the
literature, has been investigated as a quantum tunnelling ef-
fect of the relativistic particles from a black hole (Shankara-
narayanan et al. 2001; Srinivasan and Padmanabhan 1999;
Vagenas 2002; Kraus and Wilczek 1995a,b; Parikh and
Wilczek 2000; Vagenas 2001; Arzano et al. 2005; Kerner
and Mann 2006, 2008a). Thanks to the studies, a black hole
temperature, which is called hawking temperature in the lit-
erature, is related to the black hole surface gravity. There-
fore, the Hawking temperature becomes an important con-
cept to investigate a black hole physics. Since then, in the
framework of standard Einstein general relativity, the Hawk-
ing radiation as a tunnelling process of the particles from
various black holes has been studied, extensively, in the lit-
erature in both 3+1 and 2+1 dimensional (Chen et al. 2008,
2009; Zhang and Zhao 2006; Li and Ren 2008; Li et al.
2006; Gecim and Sucu 2013; Qi 2013). On the other hand,
Kerner and Mann extended the tunnelling process to include
the Dirac particle emission from a 3 + 1 dimensional black
hole (Kerner and Mann 2006, 2008a). Also, Ren and Li con-
sidered the Dirac particles’ tunnelling process to investigate
the Hawking radiation for the 2 + 1-dimensional BTZ black
hole using the tunneling method (Li and Ren 2008). The
particle tunnelling process in all these studies give useful in-
formation about the mathematical and physical properties of
the black holes. In the similar way, the Hawking radiation is
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used to discuss the properties of a black hole in the context
of modified gravity theories (Mirekhtiary and Sakalli 2014;
Slavov and Yazadjiev 2012; Zeng et al. 2008). As an exam-
ple, Gecim and Sucu discussed Hawking radiations for both
Dirac and scalar particles from the New-type black hole in
the framework of 2 + 1 dimensional New Massive Gravity
theory (Gecim and Sucu 2013). However, according to the
method, both particles probe the black hole in same way.
Also, in the context of modified gravity theories, Qi inves-
tigates the fermion tunnelling radiation from the static Lif-
shitz black hole in 2 + 1 dimensional New Massive Gravity
theory, and from New Class Black Holes in 3 + 1 Einstein-
Gauss-Bonnet Gravity (Qi 2013).

The (2 + 1) dimensional gravitational models provide a
suitable area to investigate the quantum effects of the grav-
ity (Carlip 1998; Deser et al. 1984; Witten 1988, 1989).
Among these, Topologically Massive Gravity as an interest-
ing modified three-dimensional gravitation theory is formed
by adding a Cern-Simons term to the standard Einstein-
Hilbert action (Deser et al. 1982). With this term, the gravity
theory has gained both physical and mathematical interest-
ing properties. However, in contrast to other gravitational
theories, the graviton becomes a massive particle (Aliev and
Nutku 1996; Carlip et al. 2008; Clement 1992, 2009).

The warped AdS3 black holes for the solution of the
Topological massive gravity is given by the following metric
(Moussa et al. 2003).

ds2 = N(r)2dt2 − 1

N(r)2F(r)2
dr2

− F(r)2[dφ + Nφ(r)dt
]2 (1)

The abbreviations used in here are as follows;

F(r)2 = r2 + 4ωr + 3ω2 + r2
0

3

N(r)2 = r2 − r2
0

F(r)2
, Nφ(r) = −2r + 3ω

F(r)2

The Warped-AdS3 Black holes have two horizon at r = ∓r0.
The parameters ω and r0 are related to the physical parame-
ters of the black hole, mass and angular momentum (Moussa
et al. 2003). For the metric, the surface gravity is calculated
by classical (standard) method as,

κ = 1

2

[
F(r)

∂

∂r

[
N2(r)

]]

r=r0

(2)

and thus,

κ = √
3

(
r0

2r0 + 3ω

)

The Hawking temperature, TH , is defined in terms of the
surface gravity as TH = �κ

2π
and, for the black hole, it is given

as follows

TH = �
√

3

2π

(
r0

2r0 + 3ω

)
.

The Warped-AdS3 Black hole becomes extremal at
r0 = 0. According to (2) the surface gravity becomes zero
in the extremal case, hence the Hawking temperature of the
extremal black hole is zero. Additionally, in the extremal
case, the black hole has a double horizon at r = 0. More-
over, this result does not depend on parameter ω. In an even
more special case (ω = r0 = 0), the metric (1) is reduced
to the horizonless metric that is characterized as the ground
state or ‘vacuum’ of the black-hole (Moussa et al. 2003).

To understand the quantum mechanical properties of the
black hole, we find the probability of tunnelling and Hawk-
ing temperature by using the solutions of the relativistic
quantum mechanical wave equation for the scalar and Dirac
particles.

The organization of this work are follows. In Sect. 2, we
write the Dirac equation in Warped-AdS3 Black holes back-
ground, and calculate the tunnelling possibility of the Dirac
particle by using the semi-classical method. Also, we find
Hawking temperature. In Sect. 3, Klein-Gordon equation is
rewritten in Warped-AdS3 Black hole spacetime. The tun-
nelling probability of scalar particles from the black hole
and their Hawking temperature is also calculated. Finally,
we evaluate and summarize the results.

2 Tunnelling of Dirac particles

To investigate tunnelling the Dirac particles from Warped-
AdS3 Black hole, we write Dirac equation in (2 + 1) dimen-
sional spacetime in the following representation (Sucu and
Unal 2007),

{
iσμ(x)

[
∂μ − Γμ(x)

]}
Ψ (x) = m0

�
Ψ (x). (3)

In this representation; Dirac spinor, Ψ (x), has only two
components corresponding positive and negative energy
eigenstates which has only one spin polarization. σμ(x) are
the spacetime depended Dirac matrices and they are writ-
ten in terms of constant Dirac matrices, σ i , by using triads,
e
μ

(i)
(x), as follows

σμ(x) = e
μ

(i)(x)σ i, (4)

where σ i are Dirac matrices in a flat spacetime and given as

σ i = (
σ 0, σ 1, σ 2) (5)

with

σ 0 = σ 3, σ 1 = iσ 1, σ 2 = iσ 2, (6)

where σ 1, σ 2 and σ 3 Pauli matrices, and Γμ(x) are the spin
affine connection by the following definition,

Γμ(x) = 1

4
gλα

(
ei
ν,μeα

i − Γ α
νμ

)
sλν(x). (7)
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Here, Γ α
νμ is Christoffell symbol, and gμν(x) is spacetime

depended metric tensor and it is given in term of triads as
follows,

gμν(x) = e(i)
μ (x)e(j)

ν (x)η(i)(j), (8)

where μ and ν are curved spacetime indices running from 0
to 2. i and j are flat spacetime indices running from 0 to 2
and η(i)(j) is the metric of (2 + 1) dimensional Minkowski
spacetime, with signature (1,−1,−1), and sλν(x) is a spin
operator given by

sλν(x) = 1

2

[
σλ(x), σ ν(x)

]
. (9)

From Eqs. (1) and (8), the triads of eα
(i) are written as;

e
μ

(0) =
(

1

N
,0,−Nφ

N

)

e
μ

(1) = (0,FN,0)

e
μ

(2) =
(

0,0,
1

F

)

The tunnelling probability for the classically forbidden
trajectory from inside to outside of the black hole horizon is
given by

Γ = e− 2
�

ImS (10)

where S is the classical action function of a particle tra-
jectory (Kerner and Mann 2006; Li and Ren 2008; Di Cri-
scienzo and Vanzo 2008; Volovik 1992, 1999, 2003). There-
fore, in order to discuss tunneling probability, one needs to
calculate the imaginary part of a classical action function,
S, in regards to the tunnelling probability. To investigate
the tunnelling probability of a Dirac particle from the black
hole, we use the following ansatz for the wave function in
Eq. (3);

Ψ (x) = exp

(
i

�
S(t, r,φ)

)(
A(t, r,φ)

B(t, r,φ)

)
(11)

where A(t, r,φ) and B(t, r,φ) are functions of space-time
(Li and Ren 2008; Di Criscienzo and Vanzo 2008). To apply
the Hamilton-Jacobi method, we insert Eq. (11) in the Dirac
equation given by Eq. (3). Dividing by the exponential term
and neglecting the terms with �, we derive the following two
coupled differential equations.

A

[
m0N(r) + ∂S

∂t
− Nφ(r)

∂S

∂φ

]

+ B

[
iF (r)N(r)2 ∂S

∂r
+ N(r)

F (r)

∂S

∂φ

]
= 0

A

[
iF (r)N(r)2 ∂S

∂r
− N(r)

F (r)

∂S

∂φ

]

+ B

[
m0N(r) − ∂S

∂t
+ Nφ(r)

∂S

∂φ

]
= 0.

(12)

These two equations have nontrivial solutions for A(t, r,φ)

and B(t, r,φ) when the determinant of the coefficient matrix
is vanished. Accordingly,

F(r)2
(

∂S

∂t

)2

− 2F(r)2Nφ(r)

(
∂S

∂t

)(
∂S

∂φ

)

+ (
F(r)2Nφ(r)2 − N(r)2)

(
∂S

∂φ

)2

− N(r)4F(r)4
(

∂S

∂r

)2

− N(r)2F(r)2m2
0 = 0. (13)

As (∂t ) and (∂φ) are two killing vectors we can separate
S(t, r,φ) to the variables as follows

S(t, r,φ) = −Et + jφ + K(r) + C, (14)

where E and j are the energy and angular momentum of
a Dirac particle, respectively, and C is a complex constant.
Inserting Eq. (14) in Eq. (13) and integrating the radial func-
tion, K(r), by using a contour that has a semicircle around
the pole at the horizon r = r0 we get

K±(r) = ±
∫

√
(E + jNφ(r))2 − N(r)2(m2

0 + j2

F(r)2 )

F (r)N(r)2
dr

= ± iπ
√

3(E − jΩ+)

6r0
(2r0 + 3ω) (15)

where K+(r) is outgoing and K−(r) is incoming solutions
of radial part and the K±(r) values stem from the first or-
der poles of the complex integral. Here, Ω+ = −Nφ(r0) =

3
2r0+3ω

is the angular velocity of the outer event horizon
of the black hole. The total imaginary part of the action is
ImS(t, r,φ) = ImK±(r) = ImK+(r) − ImK−(r) (Gecim
and Sucu 2013; Li 2010). Hence, the two kind probabilities
of crossing the outer horizon, from outside to inside or from
inside to outside, are given by

Pout = exp

[
−2

�
ImK+(r)

]

Pin = exp

[
−2

�
ImK−(r)

]
.

(16)

From Eq. (15), we find that ImK+(r) = − ImK−(r). And,
the tunneling probability of the Dirac particle from the outer
event horizon is given by Kerner and Mann (2006, 2008b),
Di Criscienzo and Vanzo (2008),

Γ = Pout

Pin
= exp

[
−2π(E − jΩ+)(2r0 + 3ω)

�
√

3r0

]
(17)

If one expands the classical action in terms of the particle
energy, the Hawking temperature is obtained at the lowest
order (linear order). So, we can write

Γ = e− 2
�

ImS = e−β(E−jΩ+) (18)

where β is the inverse temperature of the outer horizon.
Where, the Hawking temperature is given as follows
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TH = �
√

3

2π

(
r0

2r0 + 3ω

)
, (19)

where ω is a parameter in terms of r0. This result is consis-
tent with the result of the classical gravity.

The Warped-AdS3 Black hole metric given in Eq. (1)
shows different characteristic properties for various values
of the ω parameter, both mathematically and physically. As
mentioned in the previous section, the Warped-AdS3 Black
hole has two horizons located at r = ±r0, and hence their
perimeters are given as A± = 2πr± = 2π |2r0±3ω|√

3
. In par-

ticular, if ω �= ∓ 2r0
3 , the metric can be extended analyt-

ically through the these horizons by the Kruskal coordi-
nates. And, if ω > 0, the regions of F(r)2 < 0 are safely
hidden behind the horizon for the observer located at infin-
ity. Furthermore, for ω = 2r0

3 , the Warped-AdS3 Black hole
has only one horizon located at r = r0, and also it can be
extended through this horizon by the Kruskal coordinates
(Moussa et al. 2003). So, the 2r0

3 value of the ω parameter
becomes a critical value for the Warped-AdS3 Black hole
metric. From these points of view, under the condition of
ω > 0, it is interesting to note that these values of the pa-
rameter ω play a critical role on Hawking temperature of
the Warped-AdS3 Black hole, given in Eq. (19). From this
Hawking temperature expression, we see that the Hawking
temperature increases where ω <

2r0
3 while it decreases in

the case ω >
2r0
3 . This behavior of the temperature can be

simply explained by the black hole instability. In this per-
spective, the angular velocities of the outer and the inner
horizons are given as Ω+ = 3

2r0+3ω
and Ω− = 3

3ω−2r0
, re-

spectively. In the case where ω <
2r0
3 , the angular veloc-

ity of the outer horizon becomes positive (Ω+ > 0) while
the angular velocity of the inner horizon becomes negative
(Ω− < 0). Furthermore, the angular momentum of the black
hole (Moussa et al. 2003),

J = π

κ

(
ω2 − 5

9
r2

0

)
,

becomes increasingly negative. Then, the black hole is said
that emit gravitational radiation and to extract angular mo-
mentum, as in the rotating fluid stars where the CFS mech-
anism applies (Chandrasekhar 1970; Friedman and Schutz
1978; Campbell 1970). This leads to loses in both an energy
and angular momentum. Perhaps, the gravitational radiation
gives a contribution to the Hawking radiation.

3 Tunnelling of scalar particles

The scalar field Ψ (t, r,φ) is represented by the Klein-
Gordon equation. In the curved space-time, the Klein-
Gordon equation is given as follows,

1√−g

∂

∂xμ

[√−ggμν ∂

∂xν

]
Ψ (t, r,φ) = m2

0

�2
Ψ (t, r,φ), (20)

where m0 is mass of a scalar particle, � is Planck’s con-
stant, and g is the determinant of the metric tensor given in
Eq. (1). To study the quantum tunnelling of scalar particles
from the Warped-AdS3 Black hole, we assume an ansatz for
the solution in a form that is similar to Eqs. (11) as,

Ψ (t, r,φ) = A exp

(
i

�
S(t, r,φ)

)
, (21)

where A is a constant and S(t, r,φ) is the classical action
term for the outgoing trajectory. Now substituting Eq. (21)
into Eq. (20) and ignoring the small terms of � as mul-
tiplicator via semi-classical approximation, we obtain the
Hamilton-Jacobi equation in the following way

F(r)2
(

∂S

∂t

)2

− 2F(r)2Nφ(r)

(
∂S

∂t

)(
∂S

∂φ

)

+ (
F(r)2Nφ(r)2 − N(r)2)

(
∂S

∂φ

)2

− N(r)4F(r)4
(

∂S

∂r

)2

+ N(r)2F(r)2m2
0 = 0. (22)

Because of ∂t and ∂φ are Killing vectors of the Warped-
AdS3 black hole, we can assume the following separation
of variables for the classical action as a solution of Eq. (22),

S(t, r,φ) = −Et + jφ + W(r) + C.

Here E and j are the energy and angular momentum of the
scalar particle, respectively, and C is a complex constant.
We are only considering radial trajectories W(r). Using this
assumption in Eq. (22), after some simplification, we get

W±(r) = ±
∫

√
(E + jNφ(r))2 + N(r)2(m2

0 − j2

F(r)2 )

F (r)N(r)2
dr

= ± iπ
√

3(E − jΩ+)

6r0
(2r0 + 3ω) (23)

Here ‘+’ and ‘−’ are representing the outgoing and in-
coming trajectories of the tunnelling scalar particles, respec-
tively, and the W±(r) values stem from the first order poles,
as are the complex integral of the K±(r). The tunnelling
probabilities of crossing the horizon from inside to outside
and outside to inside given by Eq. (17). This means that the
probability of the scalar particle tunnelling from inside to
outside the horizon is

Γ = exp

[
−4

�
ImW+(r)

]

= exp

[
−2π(E − jΩ+)(2r0 + 3ω)

�
√

3r0

]
,

which is the same result for both Dirac particles: particle and
anti-particle. Accordingly, the hawking temperature is also
the same,
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T = �
√

3

2π

(
r0

2r0 + 3ω

)
.

4 Summary and conclusion

In this study, we have studied Hawking radiation of fermion
and scalar particles as a quantum tunnelling effect from
the Warped-AdS3 Black holes. By using Hamilton-Jacobi
method, we have derived the tunneling probability of the
relativistic particles (fermions and scalar) from the Warped-
AdS3 Black holes. Subsequently, using the obtained these
particle tunnelling probabilities, we have calculated the
Hawking temperature for the black hole.

The temperature increases when the parameter ω is ω <
2r0
3 . The situation is reasonable, because the angular mo-

mentum becomes negative for values for which the black
hole becomes unstable when the ω <

2r0
3 . This causes the

black hole to radiate gravitational waves similar to the rotat-
ing starts where the CFS mechanism applies.

All of these results show that the classical surface gravity
is in accordance with the Hawking temperature calculated
from the imaginary part of the complex integral with the first
order pole in the Hamilton-Jacobi method. These results are
consistent with previous work. Therefore, each particle, no
matter what their spins are, probes a black hole in the same
way (Kerner and Mann 2008a; Gecim and Sucu 2013).
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