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Abstract Bianchi type-I cosmological model containing
perfect fluid with quadratic equation of state has been stud-
ied in general theory of relativity. The general solutions of
the Einstein’s field equations for Bianchi type-I space-time
have been obtained under the assumption of quadratic equa-
tion of state (EoS) p = αρ2 − ρ, where α is constant and
strictly α �= 0. The physical and geometrical aspects of the
model are discussed.

Keywords Bianchi type-I space-time · Quadratic equation
of state

1 Introduction

“The universe is highly homogeneous and isotropic on large
scales” has been indicated by the recent observations of
large scale structure (LSS) (Tegmark et al. 2004) and cosmic
microwave background radiation (CMBR) (Bennett et al.
2003; Spergel et al. 2003a, 2003b). In general, it has been
observed that anisotropic models do not isotropize suffi-
ciently as they evolve into future. This isotropy problem can
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be solved by inflation. Wald (1983) has proved that initially
expanding Bianchi models with a cosmological constant ap-
proach asymptotically to spatially homogeneous & isotropic
models like de Sitter model.

Ananda and Bruni (2005) studied the general relativis-
tic dynamics of Robertson-Walker models with a non-linear
equation of state. They have verified that the behavior of the
anisotropy at the singularity found in the brane scenario can
be recreated in the general relativistic context by considering
a quadratic term in equation of state [EoS] given by

P = P0 + αρ + βρ2,

where P0, α and β are parameters.
This equation represents the first terms of the Taylor ex-

pansion of any equation of state of the form P = P(ρ) about
ρ = 0.

Ananda and Bruni (2006) used the simplified equation of
state in the form

P = αρ + ρ2

ρc

to analyze the effects of quadratic equation of state in homo-
geneous & inhomogeneous anisotropic cosmological mod-
els in general relativity to isotropize the universe at early
times when the initial singularity is approached.

Dark energy universe with different equations of state
has been discussed by Nojiri and Odintsov (2005) with in-
homogeneous Hubble parameter term. The observational
constraints on dark energy with quadratic equation of state
has been presented by Capozziello et al. (2006). Accord-
ing to Nojiri and Odintsov (2005), Capozziello et al. (2006)
quadratic equation of state may describe dark energy or uni-
fied dark matter. Rahman et al. (2009) have modelled elec-
tron as a spherically symmetric charged perfect fluid dis-
tribution of matter characterized by quadratic equation of
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state in general relativity. Feroze and Siddiqui (2011) stud-
ied the charged anisotropic matter with quadratic equation of
state and obtained new classes of static spherically symmet-
ric models of relativistic stars. Maharaj and Takisa (2013)
have obtained new exact solutions of the Einstein-Maxwell
field equations with charged anisotropic matter distribution
and a quadratic equation of state. Chavanis (2013a) studied
a cosmological model based on a quadratic equation of state
unifying vacuum energy, radiation and dark energy. Chava-
nis (2013b) has developed a cosmological model describing
the early inflation, the intermediate decelerating expansion,
and the late accelerating expansion by a quadratic equation
of state. Sharma and Ratanpal (2013) have obtained a class
of solutions describing the interior of a static spherically
symmetric compact anisotropic star & shown that the model
admits an equation of state which is quadratic in nature. Re-
cently, Malaver (2014) studied the behavior of compact rel-
ativistic objects with anisotropic matter distribution consid-
ering quadratic equation of state and new solutions to the
Einstein-Maxwell system of equations are found in terms of
elementary functions.

In brane world models, inspired by string theory, the
physical fields in our four dimensional universe are confined
to three brane, while gravity can access the extra dimen-
sion. In brane world scenario, the gravity on brane can be
described by the modified 4-dimensional Einstein’s equa-
tions which contain (i) Sμ which is quadratic in the stress
energy tensor of matter confined on the brane and (ii) E

which is trace less tensor originating from the 5D Weyl
tensor. The quadratic term of energy density appears in
the 4-dimensional effective energy momentum tensor in the
Einstein’s equations and it plays a significant role of differ-
ent characteristics of the cosmological brane models. Hence,
motivation to consider a quadratic equation of state includes
its importance in the brane world models and the study of
dark energy and general relativistic dynamics for different
models. So, it is not unnatural to choose quadratic form
of equation of state to study anisotropy problems. Hence,
the anisotropic Bianchi type-I homogeneous cosmological
model containing a perfect fluid with quadratic equation of
state has been studied.

2 Metric and field equations

We have considered the Bianchi type-I line element as

ds2 = dt2 − A2dx2 − B2dy2 − C2dz2, (2.1)

where A, B and C are scale factors and are functions of time
t only.

The Einstein field equations, in natural limits (8πG = 1
and c = 1) are

Rij − 1

2
Rgij = −Tij , (2.2)

where Rij is the Ricci tensor; R is the Ricci scalar and Tij

is the energy-momentum tensor.
The energy-momentum tensor Tij for the perfect fluid is

given by

Tij = (ρ + p)uiuj − pgij , (2.3)

where ρ is the energy density, p is the pressure and ui is the
four velocity vector satisfying giju

iuj = 1.
We have assumed an equation of state (EoS) in the gen-

eral form p = p(ρ) for the matter distribution.
We consider it, in this case, in the quadratic form as

p = αρ2 − ρ, (2.4)

where α is constant and strictly α �= 0.
This will not affect the quadratic nature of equation of

state.
In co-moving coordinate system, the Einstein field

equations (2.2) for the metric (2.1) with the help of Eqs. (2.3)
reduce to following set of equations:

ȦḂ

AB
+ ḂĊ

BC
+ ȦĊ

AC
= ρ, (2.5)

B̈

B
+ C̈

C
+ ḂĊ

BC
= −p, (2.6)

Ä

A
+ C̈

C
+ ȦĊ

AC
= −p, (2.7)

Ä

A
+ B̈

B
+ ȦḂ

AB
= −p, (2.8)

where overhead dot (.) denote differentiation with respect to
time t .

The energy conservation equation T
ij

;j = 0 leads to the
following simple expression

ρ̇ +
(

Ȧ

A
+ Ḃ

B
+ Ċ

C

)
(ρ + p) = 0. (2.9)

We have defined the spatial volume V and average scale fac-
tor a for Bianchi type-I space-time as

V = a3 = ABC. (2.10)

The mean Hubble parameter H for Bianchi type-I universe
is defined as

H = ȧ

a
= 1

3
(Hx + Hy + Hz), (2.11)

where

Hx = Ȧ

A
, Hy = Ḃ

B
, Hz = Ċ

C

are the directional Hubble parameters in the directions of x,
y and z axes respectively.
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3 Solutions of the field equations

Subtracting Eq. (2.6) from (2.7); Eq. (2.7) from (2.8) and
Eq. (2.6) from (2.8) respectively, we get

Ä

A
− B̈

B
+ Ċ

C

(
Ȧ

A
− Ḃ

B

)
= 0, (3.1)

B̈

B
− C̈

C
+ Ȧ

A

(
Ḃ

B
− Ċ

C

)
= 0, (3.2)

Ä

A
− C̈

C
+ Ḃ

B

(
Ȧ

A
− Ċ

C

)
= 0. (3.3)

After solving Eqs. (3.1) to (3.3) with some simplification,
we get

A

B
= d1 exp

(
x1

∫
dt

V

)
, (3.4)

B

C
= d2 exp

(
x2

∫
dt

V

)
, (3.5)

A

C
= d3 exp

(
x3

∫
dt

V

)
, (3.6)

where x1, x2, x3 and d1, d2, d3 are constants of integration.
Using above Eqs. (3.4), (3.5) and (3.6), we can write the

metric functions A, B and C explicitly as

A(t) = D1V
1
3 exp

(
X1

∫
dt

V

)
, (3.7)

B(t) = D2V
1
3 exp

(
X2

∫
dt

V

)
, (3.8)

C(t) = D3V
1
3 exp

(
X3

∫
dt

V

)
, (3.9)

where D1, D2, D3 and X1, X2, X3 are the constants of
integration which satisfy the relations D1D2D3 = 1 and
X1 + X2 + X3 = 0.

It should be noted that the isotropic subcase, A = B =
C, is not possible here because X1 + X2 + X3 �= 0 from
Eq. (3.7) to Eq. (3.9).

Now, using Eq. (2.10) in Eq. (2.9), we get

ρ̇ + V̈

V
(ρ + p) = 0. (3.10)

Using equations from (2.5) to (2.8), we obtain

V̈

V
= 3

2
(ρ − p). (3.11)

After solving Eq. (3.11) and integrating, we obtain

V̇ =
√

3ρV 2 + c1, (3.12)

where c1 is an integration constant.
Again integrating above Eq. (3.12), we get∫

dV√
3ρV 2 + c1

= t + t0, (3.13)

where the integration constant t0 can be taken to be zero,
since it gives a shift in time.

Now choosing β = −1 and γ = 0 in Eq. (2.4) and using
Eq. (3.10), we obtain energy density in terms of volume as,

ρ = (α logV )−1. (3.14)

It can be observed that the energy density is a positive quan-
tity.

Using Eqs. (3.14) in Eq. (3.13) and choosing c1 = t0 = 0,
we get∫

dV√
3(α logV )−1V 2

= t. (3.15)

Integrating above Eq. (3.15), we obtain

V = e3( t2
4α

)1/3
. (3.16)

Using Eq. (3.16) in Eqs. (3.7), (3.8) and (3.9), we obtain the
scale factors A, B and C as

A(t) = D1e
( t2

4α
)1/3

exp
[
X1F(t)

]
, (3.17)

B(t) = D2e
( t2

4α
)1/3

exp
[
X2F(t)

]
, (3.18)

C(t) = D3e
( t2

4α
)1/3

exp
[
X3F(t)

]
, (3.19)

where

F(t) = α1/3

6

{√
3αα1/3erf

[√
3/α(t/2α)1/3]

− 3(4t)1/3e−3( t2
4α

)1/3}
and erf is the “error function”.

Using Eq. (3.16) in Eq. (3.14), we obtain energy density
as

ρ = 1

3

(
2

αt

)2/3

. (3.20)

From Eqs. (2.4) and (3.20), we obtain pressure as

p = α

9

(
2

αt

)4/3

− 1

3

(
2

αt

)2/3

. (3.21)

Now the physical quantities in cosmology, the mean Hubble
parameter H , the expansion scalar θ , the mean anisotropy
parameter �, the shear scalar σ 2 and deceleration parame-
ter q are defined and found to be

H = 1

3

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
= 2t−1/3

3(4α)1/3
, (3.22)

θ = 3H = 2t−1/3

(4α)1/3
, (3.23)

� = 1

3

3∑
i=1

(
�Hi

H

)2

= 3X

4
t2/3e−6( t2

4α
)1/3

, (3.24)

σ 2 = 3

2
�H 2 = X

2(4α)2/3
e−6( t2

4α
)1/3

, (3.25)
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q = d

dt

(
1

H

)
− 1 = (4α)1/3

2t2/3
− 1, (3.26)

where X = X2
1 + X2

2 + X2
3.

4 Discussion

The spatial volume V is finite at t = 0. It expands expo-
nentially as time t increase and becomes infinitely large as
t → ∞ as shown in Fig. 1.

The evolution of expansion scalar θ for α = 0.5 is as
shown in Fig. 2, it is observed that the expansion scalar θ

start with infinite value at t = 0 but as cosmic time t in-
creases it decreases and becomes constant after some finite
time.

From Fig. 3, it is observed that the evolution of the energy
density ρ is infinite at t = 0 and as cosmic time t increases
it decreases and becomes constant after some finite time for
α = 0.5.

The deceleration parameter q is decelerating at t = 0 and
if time t increases then it decreases and becomes negative
after some finite time for α = 0.5 as shown in Fig. 4.

Fig. 1 The variation of V vs. t for α = 0.5

Fig. 2 Expansion scalar θ vs. t for α = 0.5

It shows that the universe accelerates after an epoch of
deceleration. The deceleration parameter q is in the range
−1 ≤ q ≤ 0 (shaded region) which matches with the obser-
vations made by Riess et al. (1998) and Perlmutter et al.
(1999).

5 Conclusion

A Bianchi type-I cosmological model has been investigated
with a quadratic equation of state (EoS) parameter. The
physical and kinematical parameters which are very impor-
tant in the discussion of cosmological models have been ob-
tained and a graphical representation of each of them is pre-
sented and studied. It is observed that the spatial volume
of the model expands exponentially with time and the en-
ergy density decreases with time and becomes constant after
a finite time. Observation of deceleration parameter shows
early inflation and late time acceleration of the obtained uni-
verse which is in accordance with the present day scenario
of accelerated expansion of our universe as per Riess et al.
(1998) and Perlmutter et al. (1999).

Fig. 3 Evolution of energy density ρ vs. t for α = 0.5

Fig. 4 Deceleration parameter q vs. t for α = 0.5
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