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Abstract The exact solutions of the field equations for
Hypersurface-homogeneous space time under the assump-
tion on the anisotropy of the fluid (dark energy) are obtained
for exponential and power-law volumetric expansions in a
scalar-tensor theory of gravitation proposed by Saez and
Ballester (Phys. Lett. A 113:467, 1985). The physical and
kinematical properties of the universe have been discussed.

Keywords Hypersurface-homogenous space-time ·
Anisotropic fluid · Dark energy · Scalar-tensor theory

1 Introduction

Recent observational data indicate that our Universe is cur-
rently in accelerated phase (Riess et al. 1998, 1999; Perlmut-
ter et al. 1998; Hicken et al. 2009; Dunkley et al. 2009; Per-
cival et al. 2010). The accelerating expansion of the universe
may be explained in context of the dark energy (Bamba et al.
2012). Moreover, the universe is filled about 70 percent by
this unknown ingredient i.e. Dark energy and in addition
that about 25 percent of this is composed by dark matter
(DM). Dark energy with negative pressure and positive en-
ergy density depends on the equation of state (EoS), p = ωρ,
where ω is the function of cosmic time called EoS parameter
(Sharif and Zubair 2010). The present data seem to slightly
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favor an evolving Dark Energy with EoS ω < −1 around the
present epoch and ω > −1 in the recent past. Obviously, ω

cannot cross −1 for quintessence or phantoms alone. Ray
et al. (2010), Akarsu and Kilinc (2010a, 2010b), Pradhan
et al. (2010), Yadav et al. (2011), Yadav and Yadav (2011),
Pradhan and Amirhashchi (2011), Pradhan et al. (2011), Ya-
dav (2011), Kumar and Singh (2011), Singh (2011), Kumar
and Yadav (2011), Kumar (2011), Chandel et al. (2012b,
2014), Adhav (2012), Adhav et al. (2013b), Pradhan (2013),
Mishra and Biswal (2014) are some of the authors who have
obtained dark energy models with variable EoS parameter.

Several theories of gravitation have been proposed as al-
ternative to Einstein’s theory to incorporate certain desirable
features in the original theory. Noteworthy among them are
scalar-tensor theories of gravitation i.e. Sen (1957), Brans
and Dicke (1961), Nordtvedt (1970), Sen and Dunn (1971),
Ross (1972), Canuto et al. (1977), Schmidt et al. (1981),
Saez and Ballester (1985). Saez and Ballester (1985) formu-
lated a scalar-tensor theory of gravitation in which the met-
ric is coupled with a dimensionless scalar field φ in a simple
manner. The coupling gives a satisfactory description of the
weak fields. In spite of the dimensionless character of the
scalar field an antigravity regime appears. This theory also
suggests a possible way to solve missing matter problem
in non-flat FRW cosmologies. Singh and Agrawal (1991),
Reddy and Venkateswara Rao (2001), Reddy et al. (2006,
2013a, 2013b) Mohanty and Sahu (2004a, 2004b), Adhav
et al. (2007), Tripathy et al. (2008), Sahu (2010), Katore et.
al (2010, 2012a), Samanta et al. (2013) are some of the au-
thors who have studied several aspects of the Saez-Ballester
scalar-tensor theory.

Bianchi type-I dark energy model with variable equa-
tion of state (EoS) parameter is presented by Rao et al.
(2012b) in a scalar-tensor theory of gravitation proposed by
Brans and Dicke theory. A locally rotationally symmetric
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Bianchi type-II (LRS B-II) space-time with variable equa-
tion of state (EoS) parameter and constant deceleration pa-
rameter have been investigated by Naidu et al. (2012c) in
the scalar-tensor theory proposed by Saez and Ballester the-
ory. An axially symmetric Bianchi type-I space time with
variable equation of state (EoS) parameter and constant de-
celeration parameter has been investigated by Reddy et al.
(2012a) in scale covariant theory of gravitation. A five di-
mensional Kaluza-Klein dark energy model with variable
equation of state (EoS) parameter and a constant deceler-
ation parameter is presented by Reddy et al. (2012a) in Saez
and Ballester theory of gravitation. Bianchi type-III dark
energy model in Saez-Ballester scalar-tensor theory have
been investigated by Naidu et al. (2012a). Spatially homoge-
neous Bianchi type-II, VIII & IX dark energy anisotropic as
well as isotropic cosmological models with variable equa-
tion of state (EoS) parameter are presented by Rao et al.
(2012a) in a scalar tensor theory of gravitation proposed by
Saez and Ballester. Bianchi type III dark energy cosmolog-
ical model in scalar tensor theory of gravitation is investi-
gated by Katore et al. (2012b). A spatially homogeneous and
anisotropic Bianchi type-V universe with variable equation
of state (EoS) parameter and constant deceleration param-
eter is obtained by Naidu et al. (2012b) in a scalar-tensor
theory of gravitation. Locally rotationally symmetric (LRS)
Bianchi type-I dark energy cosmological model with vari-
able equation of state (EoS) parameter in general scalar ten-
sor theory of gravitation is obtained by Rao and Neelima
(2013). Mahanta and Biswal (2013) have constructed LRS
Bianchi type I dark energy models with variable equation of
state (EoS) parameter in Barber’s second self creation the-
ory. Rao et al. (2013) have presented spatially homogeneous
anisotropic Bianchi type II, VIII and IX as well as isotropic
space times filled with perfect fluid and Dark Energy pos-
sessing dynamical energy density in Saez-Ballester scalar-
tensor theory of gravitation. Anisotropic Bianchi Type-III
dark energy model with time dependent deceleration param-
eter in Saez-Ballester theory have been investigated by Rah-
man and Ansari (2013). The Bianchi type-IX cosmological
model with variable ω has been studied by Ghate and Son-
takke (2014) in the scalar tensor theory of gravitation pro-
posed by Saez and Ballester theory in the presence and ab-
sence of magnetic field of energy density ρb .

Motivated with the above research work, in this paper, we
have investigated Homogeneous-Hypersurface dark energy
model with variable EoS parameter in Saez-Ballester scalar-
tensor theory of gravitation.

2 The model and the field equations

General solutions of Einstein’s field equations for a perfect
fluid distribution satisfying a barotropic equation of state for

the Hypersurface-homogeneous space time have been ob-
tained by Stewart and Ellis (1968). We consider metrics ad-
mitting a group of motions G4 on V3, which are Locally
Rotationally Symmetric (LRS) in the form

ds2 = −dt2 + A2(t)dx2 + B2(t)
(
dy2

+ Σ2(y,K)dz2), (1)

where A and B are the cosmic scale functions and
Σ(y,K) = siny, y, sinhy for K = 1,0,−1 respectively.
Hajj-Boutros (1985) developed a method to build exact so-
lutions of field equations in case of the metric (1) in pres-
ence of perfect fluid and obtained exact solutions of the
field equations which add to the rare solutions not satis-
fying the barotropic equation of state. Some hypersurface-
homogeneous cosmological models with bulk viscous fluid
and time-dependent cosmological term are investigated by
Verma and Shri Ram (2010). Hypersurface-homogeneous
cosmological models containing a bulk viscous fluid with
time varying G and Λ have been presented by Shri Ram
and Verma (2010). Chandel et al. (2012a) have investigated
hypersurface-homogeneous bulk viscous fluid cosmologi-
cal models with time-dependent cosmological term. Ka-
tore et al. (2012c) studied the inflationary hypersurface-
homogeneous cosmological models with massless scalar
field with a flat potential. Katore et al. (2012d) study the
hypersurface-homogeneous cosmological model in pres-
ence of perfect fluid within the framework of Barber’s sec-
ond self-creation theory of gravitation.

The field equations given by Saez and Ballester (1985)
are

Rij − 1

2
gijR − wφm

(
φ,iφ,j − 1

2
gijφ,kφ

,k

)
= −Tij , (2)

2φmφi
;i + mφm−1φ,kφ

,k = 0. (3)

Here w and m are constants, Tij is an energy momentum
tensor of matter, comma and semicolon denote partial and
covariant differentiation respectively with respect to time t .

The energy momentum tensor of a fluid can be written
most generally in an anisotropic diagonal form:

T i
j = diag

[
T 1

1 , T 2
2 , T 3

3 , T 4
4

]
. (4)

The simplest generalization of the EoS parameter of a per-
fect fluid may be to determine the EoS parameter separately
on each spatial axis while preserving the diagonal form of
the energy-momentum tensor in a consistent way with the
considered metric.

Thus we may parametrize the energy-momentum tensor
(4) as follows:

T i
j = diag[px,py,pz,−ρ]

= diag[ω,ω + γ,ω + δ,−1]ρ, (5)

where ρ is the energy density; px,py,pz are pressure on
x, y, z axes respectively; ωx,ωy,ωz are the directional EoS
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parameter p = ωρ along x, y, z axes respectively. The de-
viation from isotropy is parameterized by setting ωx =
ω,ωy = ω + γ,ωz = ω + δ. Here ω, δ, γ are not necessarily
constants and can be functions of the cosmic time t .

Since G2
2 = G3

3, the energy-momentum tensor (5) can be
customized to the metric (1) by

T i
j = diag[ω,ω + γ,ω + γ,−1]ρ. (6)

In co-moving coordinate system, the field equations (2)
and (3) for the metric (1) with the help of (6) take the form

2B̈

B
+ Ḃ2

B2
+ K

B2
− w

2
φmφ̇2 = −ωρ, (7)

Ä

A
+ B̈

B
+ Ȧ

A

Ḃ

B
− w

2
φmφ̇2 = −(ω + γ )ρ, (8)

2
Ȧ

A

Ḃ

B
+ Ḃ2

B2
+ K

B2
+ w

2
φmφ̇2 = ρ, (9)

φ̈ + φ̇

(
Ȧ

A
+ 2

Ḃ

B

)
+ m

2

φ̇2

φ
= 0, (10)

where a dot denotes a derivative with respect to the cosmic
time t .

3 Some basic equations

The anisotropy of the expansion can be parameterized af-
ter defining the directional Hubble parameters and the mean
Hubble parameter of the expansion. The directional Hubble
parameters, which determine the universe expansion rates in
the directions of the x, y, z axes, defined as

Hx = Ȧ

A
, Hy = Hz = Ḃ

B
. (11)

The mean Hubble parameter is given as

H = 1

3

V̇

V
= 1

3

(
Ȧ

A
+ 2

Ḃ

B

)
, (12)

where V = (AB2) is the volume of the universe.
The physical quantities of observational interest are the

expansion scalar θ , the average anisotropy parameter Am

and the shear scalar σ 2. These are defined as

θ = ui
:i =

(
Ȧ

A
+ 2

Ḃ

B

)
, (13)

Am = 1

3

3∑

i=1

(
Hi − H

H

)2

, (14)

σ 2 = 3

2
AmH 2. (15)

Using Eqs. (11) and (12), the average anisotropy parameter
can be reduced to

Am = 2

9H 2

(
Ȧ

A
− Ḃ

B

)2

. (16)

From Eqs. (7) and (8), we get

Ȧ

A
− Ḃ

B
= 1

V

[
λ +

∫ (
K

B2
− γρ

)
V dt

]
, (17)

where λ is a real integration constant.
Using Eqs. (16) and (17), we obtain the anisotropy pa-

rameter of the expansion

Am = 2

9H 2

[
λ +

∫ (
K

B2
− γρ

)
V dt

]2

V −2. (18)

The anisotropy parameter can be reduced to the hyper-
surface-homogenous models in the presence of a perfect
fluid (isotropic) by choosing γ = 0, i.e.

Am = 2

9H 2

[
λ + K

∫
V

B2
dt

]2

V −2. (19)

The integral term in (18) vanishes for

γ = K

ρB2
. (20)

Hence, the energy-momentum tensor (6) reduces to

T i
j = diag

[
ω,ω + K

ρB2
,ω + K

ρB2
,−1

]
ρ, (21)

whereas the anisotropy parameter (18) reduces to

Am = 2λ2

9H 2
V −2. (22)

The anisotropy parameter is the measure of the devia-
tion from isotropic expansion. The anisotropy parame-
ter of the expansion is crucial to determine whether the
models approach isotropy or not. It is observed that the
value of anisotropy parameter Am given by (22) is sim-
ilar to Am’s obtained for Bianchi type-I, Bianchi type-
III, Bianchi type-V, Bianchi type-VI0, Hypersurface-homo-
genous and Kantowaski-Sachs in General Relativity (Kumar
and Singh 2007; Singh and Baghel 2009; Singh et al. 2008;
Akarsu and Kilinc 2010a, 2010b; Adhav et al. 2011a, 2011b;
Singh and Beesham 2011a).

Using the energy-momentum tensor (21), the field equa-
tions (7)–(10) now read

2B̈

B
+ Ḃ2

B2
− w

2
φmφ̇2 = −(ω + γ )ρ, (23)

Ä

A
+ B̈

B
+ Ȧ

A

Ḃ

B
− w

2
φmφ̇2 = −(ω + γ )ρ, (24)

2
Ȧ

A

Ḃ

B
+ Ḃ2

B2
+ w

2
φmφ̇2 = (1 − γ )ρ, (25)

φ̈ + φ̇

(
Ȧ

A
+ 2

Ḃ

B

)
+ m

2

φ̇2

φ
= 0. (26)

Now we have a set of four equations with six unknown func-
tions A, B , φ, ρ, ω, γ . To get a determinate solution of
field equations, we need extra conditions. One can introduce
more conditions either by an assumption corresponding to
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some physical situation of an arbitrary mathematical sup-
position. However, these procedures have some drawbacks.
Physical situation may lead to differential equations which
will be difficult to integrate and mathematical supposition
may leads to non physical situation. Therefore, we assume
two volumetric expansion laws

V = c1e
3k2t , (27)

V = c2t
3n, (28)

where c1, c2, k and n are positive constant. The exponen-
tial law model exhibit acceleration volumetric expansion for
n > 1. In power law model, for 0 < n < 1 the universe decel-
erates and for n > 1 the universe accelerates. On the other
hand the anisotropic fluid we dealt here can be considered
in the context of dark energy in the models with exponential
expansion and the power law expansion for n > 1.

4 Model for exponential expansion

Using Eqs. (23) and (24), we get

Ȧ

A
− Ḃ

B
= λ

V
. (29)

For the exponential volumetric expansion, using Eqs. (27)
and (29), we obtain

A = c4 exp

(
k2t − 2λ

9k2c1
e−3k2t

)
, (30)

B = c3 exp

(
k2t + λ

9k2c1
e−3k2t

)
, (31)

where c3, c4 are integration constants.
It is clear that, the scale factor admit constant values at

time t = 0, afterwards they evolve with time without any
type of singularity and finally diverge to infinity. This is con-
sistent with big bang scenario.

The scalar field is given by

φ =
{(

m + 2

2

)
e−3k2t

(−3k2)

} 2
m+2

. (32)

Classical scalar fields are essential in the study of the
present day cosmological models. In view of the fact that
there is an increasing interest, in recent years, in scalar fields
in general relativity and alternative theories of gravitation in
the context of inflationary Universe and they help us to de-
scribe the early stages of evolution of the Universe. From
Fig. 1, it is clear that the nature of scalar field is increasing
as redshift (z) increases which resembles with Naidu et al.
(2012a).

Making use of Eqs. (30)–(31) in (9), we can obtain the
energy density of the fluid as

Fig. 1 Scalar field vs. redshift (z)

Fig. 2 Energy density vs. red shift (z). (For K = 1 (blue line), K = −1
(green line) and K = 0 (red line))

ρ = 3k2
2 − λ2

9c2
1

e−6k2t + K

c3 exp(k2t + 2λ
9c1

e−3k2t )

+ w

2
e−6k2t . (33)

The graphical representation (Fig. 2) shows the increasing
behaviour of energy density as z → ∞ which resembles
with the results of Sharif and Azeem (2012).

The skewness parameter is

γ = 1

ρ

K

c2
3 exp

(
2k2t + 2λ

9c1
e−3k2t

) . (34)

The Skewness parameter decreases with redshift as shown
in Fig. 3 and tends to zero as z → ∞ which resembles with
the results Singh and Beesham (2011b).

Using Eqs. (29)–(30) in Eq. (7), we obtain the EoS pa-
rameter as
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Fig. 3 Skewness parameter vs. redshift (z). (For K = −1 (blue line),
K = 1 (green line))

ω = − 1

ρ

{
4k2

2 + 4λk2t

3c1
e−3k2t − λ2

9c2
1

e−6k2t

+ K

c2
3 exp(2k2t + 2λ

9c1
e−3k2t )

− w

2
e−6k2t

}
. (35)

Models with ω crossing −1 near the past have been mildly
favored by the analysis on the nature of dark energy from re-
cent observations (for example see Astier et al. 2006). SNeIa
alone favors a ω larger than −1 in the recent past and less
than −1 today, regardless of whether using the thesis of a
flat universe (Astier et al. 2006; Nojiri and Odintsov 2006)
or not (Dicus and Repko 2004). The SN Ia data suggests that
−1.67 < ω < −0.62 (Knop et al. 2003) while the range of w
by a combination of SN Ia data, CMB anisotropy and galaxy
clustering statistic is −1.33 < ω < −0.79 (Tegmark et al.
2004). The limit −1.44 < ω < −0.92 is the latest observa-
tional results with 68 % confidence level (Hinshaw et al.
2009; Komatsu et al. 2009). Evolution of equation of state
with respect to red-shift is shown in Fig. 4. We can see for
large enough red-shift it goes to a huge positive amount,
which shows an inflationary behavior for vacuum universe
which resembles with the investigations of Masoudi and
Saffari (2013). In terms of redshift the average scale fac-
tor (Amirhashchi 2013; Malekjani 2013; Debnath and Chat-
topadhyay 2013) is defined through the relation 1 + z = 1

a
,

where we have considered the value of mean scale factor at
the present epoch to be 1 for graphical representation. In the
past, ω evolves from a negative value and increases gradu-
ally to a constant value in future which resembles with Sa-
hoo et al. (2014). For K = −1, the behavior of the equation
of state resembles with Adhav et al. (2013a) as it approaches
to stiff fluid ω = 1.

The Hubble parameter is obtained as

H = k2. (36)

Fig. 4 EoS parameter vs. redshift (z). (For K = 1 (blue line), K = −1
(green line) and K = 0 (red line))

The deceleration parameter yields as

q = d

dt

(
1

H

)
− 1 = −1. (37)

The sign of q indicate whether the universe accelerates or
decelerates. A positive sign of q corresponds to the stan-
dard decelerating model and the negative sign of q indi-
cate acceleration. Cosmological observations indicated that
the expansion of the universe is accelerating at the present
and it was decelerating in the past. Here from Eq. (37), it
is observed that the deceleration parameter is negative i.e.
the universe is accelerating. Observational data (Ade et al.
2013) shows that the present value of deceleration parame-
ter lies somewhere in the range −1 < q < 0. Therefore in
this case we can construct an accelerating model of the uni-
verse.

The mean anisotropic parameter becomes

Am = 1

3

3∑

i=i

(
Hi − H

H

)2

= 2λ2

9k2
2c2

1

e−6k2t . (38)

One should note that the above anisotropy parameter of the
expansion is equivalent to the ones obtained for exponen-
tial expansion in Bianchi type-I (Kumar and Singh 2007)
and Bianchi type-V (Singh et al. 2008; Singh and Baghel
2009) cosmological models with isotropic fluid and is ex-
actly same for exponential expansion in Bianchi type-III
(Akarsu and Kilinc 2010a, 2010b) for anisotropic fluid. We
observe that at t = 0,Am �= 0 that means fluid anisotropic
at early epoch and at t → ∞,Am = 0 i.e. at large time
fluid isotropization, i.e. from Eq. (38), we should note that
the anisotropy of the expansion Am is not promoted by the
anisotropy of the fluid and decreases to null exponentially as
t increase.

The expansion scalar and shear scalar are found to be
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Fig. 5 Scalar field vs. redshift (z)

θ = 3H = 3k2, (39)

σ 2 = 3

2
AmH 2 = λ2

3k2
2c2

1

e−6k2t . (40)

The rate of expansion of the universe is constant for k2 > 0
and the shear scalar σ → 0, as t → ∞. The shear scalar is
finite at t = 0. Since H = k2, hence dH

dt
= 0, which implies

the greatest value of Hubble’s parameter and the fastest rate
of expansion of the universe. Therefore the solutions con-
ferred during this model are in line with the observations and
will notice applications within the analysis currently time
evolution of the particular universe.

One will observe that the universe approaches to symme-
try monotonically even within the presence of the anisotropic
fluid, and also the anisotropic fluid isotropizes and evolves
to the constant just in case of exponential volumetrically
expansion.

5 Model for power law expansion

For the power law volumetric expansion, using Eq. (28) we
obtain

A = c6t
n exp

( −2λ

3(3n − 1)c2
t1−3n

)
, (41)

B = c5t
n exp

(
λ

3(3n − 1)c2
t1−3n

)
. (42)

At t = 0 both the scale factors vanish, start evolving with
time and finally as t → ∞ they diverge to infinity. This is
consistent with the big bang model. As scale factors diverge
to infinity at large time there will be Big rip at least as far in
the future.

Fig. 6 Energy density vs. redshift (z). (For K = 1 (blue line), K = −1
(green line) and K = 0 (red line))

The scalar field is given by

φ =
{(

m + 2

2

)
t−3n+1

(−3n + 1)

} 2
m+2

. (43)

It is clear that the nature of scalar field is increasing as red-
shift (z) increases. The physical behaviour of Scalar field vs.
redshift in Fig. 5, resembles with the investigations of Fara-
jollahi et al. (2011).

Making use of Eqs. (41) and (42) in (9), we obtain

ρ = 6n2

t2
− λ2

3c2
2

t−6n + K

c2
5

t−2n exp

(
2λ

3(3n − 1)c2
t1−3n

)

− w

2
t−6n. (44)

It is observed in Fig. 6 that the behaviour of energy density is
same for K = 1,−1,0. At initial epoch, the energy density
was positive and as redshift increases, it tends to be nega-
tive. The negative energy density does not violate any law
of physics but this violates the weak energy condition. The
negative energy density indicates that there is vacuum insta-
bility in the inertial frames at early stage of the evolution.
The energy density decayed to be negative which resembles
with Frampton (2004).

The skewness parameter is found as

γ = 1

ρ

K

c2
5

t−2n exp

(
2λ

3(3n − 1)c2
t1−3n

)
. (45)

It is clear from Eq. (45) that the skewness parameter tends
to zero as t → ∞. For K = 1, the skewness parameter
start with zero value, increases to maximum value and then
approaches to zero i.e. the behavior of the fluid may be
isotropic at early stage and may be isotropic in the future.
This is in accordance with the results obtained by Akarsu
and Kilinc (2010a, 2010b) and Katore et al. (2014) as shown
in Fig. 7.
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Fig. 7 Skewness parameter vs. redshift (z). (For K = 1 (red line),
K = −1 (green line))

The deviation free EoS parameter is obtained as

ω = −1

ρ

{
3n2

t2
− 2n

t2
+ λ2

3c2
2

t−6n

+ K

c2
5

t−2n exp

(
2λ

3(3n − 1)c2
t1−3n

)
− w

2
t−6n

}
. (46)

In order to explain Dark Energy of the current universe, dif-
ferent kinds of fluids are characterized by the positive val-
ues of ω, with the help of Bianchi models. One can use ω

with negative values. The universe passes through Λ CDM
epoch, when ω = −1. We live in the phantom-dominated
universe if ω < −1 and for ω > −1, the quintessence dark
era occurs. It is worthwhile to mention here that obser-
vational analysis of a recent supernova strongly supports
w < −1 being EoS parameter for phantom Dark Energy
(Alam et al. 2004; Bertolami et al. 2004; Singh et al. 2003).
Figure 8, clearly shows ω that evolves at intervals a spread,
that is in nice agreement with SN Ia and cosmic radiation
observations. We observe that in early stage of evolution of
the universe, the EoS parameter ω was positive (i.e. the uni-
verse was matter dominated) and at late time it is evolving
with negative value (i.e. at the present epoch) comes toward
zero i.e. the universe may dominate by dust in the future.
At z → ∞, the value of ω turns out to be zero which indi-
cate that the pressure of the universe vanishes at that epoch
which resembles with Shamir and Bhatti (2012).

The Hubble parameter is obtained as

H = n

t
. (47)

The deceleration parameter yields as

q = d

dt

(
1

H

)
− 1 = 1

n
− 1. (48)

Fig. 8 EoS parameter vs. redshift (z). (For K = 1 (blue line), K = −1
(green line) and K = 0 (red line))

For this model, we have noted that the volume of the uni-
verse expands indefinitely for all values of n. The deceler-
ation parameter is always negative for n > 1 indicating ac-
celerating universe and attained its fastest rate of expansion
q = −1 for large n.

The mean anisotropic parameter becomes

Am = 2λ2

9n2c2
2

t2−6n. (49)

From the value of mean anisotropic parameter in Eq. (49),
it is clear that the universe was anisotropic at early stage
of evolution and approach to isotropy at large time. Mean
anisotropic parameter behaves monotonically, decay to zero
for n > 1

3 and diverge for n < 1
3 as t → ∞, and is constant

for n = 1
3 which resembles with (Akarsu and Kilinc 2010a,

2010b; Adhav et al. 2011b).
The expansion scalar and shear scalar are found to be

θ = 3n

t
, (50)

σ 2 = λ2

3c2
2

t−6n. (51)

We observe that the Hubble parameter H , expansion scalar θ ,
shear scalar σ are very large near t ∼ 0 and finally tends to
zero as t → ∞. The rate of expansion of the universe de-
creases with time.

6 Some observational parameters

In this section, we investigate the consistency of our models
with the observational parameters. We measure the physi-
cal parameters such as redshift, look-back time, luminosity
distance, distance modulus.
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6.1 For exponential expansion model

6.1.1 Redshift

The average scale factor a and redshift z, are related by

a = a0

1 + z
, (52)

where a0 is the present value of the scale factor. Hence

a = c
1
3
1 ekt . (53)

There follows that

z =
(

et
0

et

)k

− 1. (54)

6.1.2 Look-back time

The look-back time, �t = t0 − t (z), is the difference be-
tween the age of the universe at present time (z = 0) and the
age of the universe when a particular light ray at redshift z

was emitted. The radial travel time (or look-back time) �t

for a photon emitted by a source at instant t and received at
t0 is given by

t − t0 =
∫ a0

a

da

ȧ
. (55)

From Eq. (54) we can get

t = t0 − ln(1 + z)

H0
. (56)

This equation can be expressed as

H0(t0 − t) = z − z2

2
+ z3

3
− z4

4
+ · · · , (57)

where H0 is the Hubble’s constant at present in km s−1·
Mpc−1 and its value is believed to be somewhere between
50 and 100 km s−1 Mpc−1. For small z, we have

H0(t0 − t) ≈ z. (58)

6.1.3 Proper distance d(z)

The proper distance d(z) is defined as the distance between
a cosmic source emitting light at any instant t = t1 located
at r − r1 with redshift z and an observer at r = 0 and t = t0
receiving the light from the source emitted i.e.

d(z) = r1a0, (59)

where

r1 =
∫ t0

t1

dt

a
= H−1

0 a−1
0 z. (60)

Hence

d(z) = H−1
0 z. (61)

The proper distance d(z) is linear with redshift z. From
Eq. (60), we obtained d(z = ∞) is always infinite.

Fig. 9 Luminosity distance vs. redshift (z)

6.1.4 Luminosity distance

Luminosity distance is another important concept of theo-
retical cosmology of a light source. The luminosity distance
is a way of expanding the amount of light received from a
distant object. In other words, it is defined in such a way as
generalizes the inverse square law of the brightness in the
static Euclidean space to an expanding curved space (Waga
1993). The luminosity distance of a light source is derived
as the ratio of the detected energy flux, L and the apparent
luminosity l∗, i.e.,

d2
L = L

4πl∗
.

It takes the form

dL = r1(1 + z)a0 = (1 + z)d(z). (62)

Using Eq. (60), Eq. (62) reduces to

H0dL = (1 + z)z. (63)

It is seen in Fig. 9, which the luminosity distance increases
faster with red shift, exactly as required by the supernova
data which resembles with the investigations of Singh et al.
(2009). The physical behaviour of the luminosity distance
vs redshift resembles with Singh and Beesham (2011a).

6.1.5 Distance modulus

It is necessary for the investigations of type Ia supernovae
to explore dark energy and the constraint the models. Since
SN Ia behave as excellent standard candles, they can be used
to directly measure the expansion rate of the universe upto
high redshift, comparing with the present rate. The distance
modulus (μ(z)) is given by

μ(z) = 5 logdL + 25. (64)
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Thus, the distance modulus (μ(z)) in terms of redshift pa-
rameter z is obtained as

μ(z) = 5 log

[
z(1 + z)

H0

]
+ 25. (65)

6.2 For power law model

To investigate the consistency of the power law model, we
measure the physical parameters such as redshift, look-back
time, luminosity distance etc. as we have obtained for the
exponential expansion model.

6.2.1 Redshift

z =
(

t0

t

)n

− 1. (66)

6.2.2 Look-back time

H0(t0 − t) = n

[
1 − (1 + z)

−1
n

]
. (67)

6.2.3 Luminosity distance

dL = (1 + z)H−1
0

1 − n

{
1 − (1 + z)1− 1

n

}
. (68)

6.2.4 Distance modulus

The distance modulus (μ(z)) in terms of redshift parame-
ter z is obtained as

μ(z) = 5 log

[
(1 + z)H−1

0

1 − n

{
1 − (1 + z)1− 1

n

}]
+ 25. (69)

7 Conclusion

We have investigated anisotropic dark energy for Hypersur-
face-Homogeneous metric in the context of Saez-Ballester
theory of gravitation. The two models of universe, i.e. ex-
ponential model and power law model are lead by the as-
sumption of constant deceleration parameter. Some impor-
tant cosmological physical parameters for the solutions such
as expansion scalar θ , shear scalar σ 2, mean anisotropy pa-
rameter and average Hubble parameter are evaluated. The
energy density ρ, the deviation—free EoS parameter ω and
the skewness parameter δ are dynamics quantities (functions
of time).

In the Exponential volumetric expansion, the scale fac-
tors attain constant values at initial time. With the increase
in time, they start increasing without any type of initial
singularity and finally diverge to infinity as t → ∞. Thus
the universe starts with zero volume at the initial epoch

and expands exponentially approaching to infinite volume.
At t = 0, the anisotropy parameter Am is constant and de-
creases with time for k2 > 0. It means that the universe
was anisotropic at early stage and approaching to isotropy
as time t increases i.e. the space approaches to isotropy in
this model since Am → 0 as t → ∞. The expansion scalar is
constant throughout the evolution of the universe and there-
fore the universe exhibits uniform exponential expansion in
this model. The shear scalar is finite at t = 0 and tends to

λ2

3k2
2c2

1
as t increases. It has also been observed that limt→0

σ 2

θ2

turns out to be a constant. Thus homogeneity is approached
by the model and the matter vanishes near the origin; this
agrees with a result already given by Collins (1977). Also,
the deceleration parameter appears with negative sign which
implies accelerating expansion of the universe as one can
expect for exponential volumetric expansion.

In the power law solutions, one gets q = −1 as n → ∞,
this implies an exponential evolution of the average scale
factor. For this model, we have noted that the volume of the
universe expands indefinitely for all values of n. The average
scale factor has a linear growth with constant velocity and
q = 0 as n = 1, which shows the marginal inflation (Singh
and Beesham 2011b). At t = 0, the scale factor vanishes and
hence the model has an initial point singularity. We observe
that the Hubble parameter is infinite at t = 0 and converges
to zero as t → ∞. The anisotropic parameter exhibits a non-
trivial behaviour and tends to zero for late times for n > 1

3 .
The model is anisotropic, for all the values of 0 < t < ∞, as
the shear scalar is non-zero. Dark Energy model presents the
dynamics of EoS parameter provided by (46) whose range
is in good agreement with the acceptable range by the re-
cent observations (Knop et al. 2003; Tegmark et al. 2004;
Komatsu et al. 2009; Hinshaw et al. 2009).

In both the models, the scalar field increases as redshift
increases which resembles with the results of Naidu et al.
(2012c). The astrophysical phenomena such as look-back
time, luminosity distance are also discussed and show that
the models are compatible with present observations. It is
important to note that when φ → 0, our results resembles to
(Singh and Beesham 2011b). Thus, even if we observe an
isotropic expansion in the present universe we still cannot
rule out possibility of Dark Energy with an anisotropic EoS
within the framework of Saez-Ballester theory of gravitation
in Homogeneous–Hypersurface space-time.
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