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Abstract This work aims to present an analytical study on
the dynamics of a third body in the restricted three-body
problem. We study this model in the context of the third
body having variable-mass changes according to Jeans’ law.
The equation of motion is constructed when the variation
of the mass is non-isotropic. We find an appropriate ap-
proximation for the locations of the out-of-plane equilibrium
points in the special case of a non-isotropic variation of the
mass. Moreover, some graphical investigations are shown
for the effects of the parameters which characterize the vari-
able mass on the locations of the out-of-plane equilibrium
points, the regions of possible and forbidden motions of the
third body. This model has many applications, especially
in the dynamics behavior of small objects such as cosmic
dust and grains. It also has interesting applications for artifi-
cial satellites, future space colonization or even vehicles and
spacecraft parking.
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1 Introduction

The three-body problem is one of the most important prob-
lems in celestial mechanics. This problem arises in many
different contexts in nature. There are many mechanical sys-
tems consisting of three bodies. So it has many applications
in scientific research, not only in the fields of astrodynamics
but in astrophysics as well. The significance of this problem
comes from the fact that it describes actual physical situa-
tions. This problem is classified into two classes; the first
class is the general problem which describes the motion of
three celestial bodies under their mutual gravitational attrac-
tion. The second class is the restricted problem where the
third body has an infinitesimal mass, it is very small in com-
parison to the masses of the other two bodies, and the latter’s
motions are not affected by this mass. The three-body prob-
lem is an old problem and logically follows the two-body
problem, which was solved by Newton. He considered also
the three-body problem in connection with the motion of the
Moon under the influence of the Sun and Earth.

As we know, the classical restricted three-body problem
is constructed under the effect of mutual gravitation forces
between the bodies with neglecting many perturbing forces.
Some perturbations can occur from the radiation pressure,
the atmospheric drag, the solar wind, the potential from the
belt, small perturbations in Coriolis and centrifugal forces,
the variable masses, and the lack of sphericity as in oblate
and triaxial bodies.

A great number of researchers devoted their efforts to
the study of the existence of libration points, their stabil-
ity, and sometimes the periodic orbits around these points
in the restricted three-body problem under the effects of ra-
diation, the lack of sphericity, and small perturbations in
Coriolis and centrifugal forces. See Simmons et al. (1985),
Kumar and Choudhry (1986), El-Shaboury et al. (1991);
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Khanna and Bhatnagar (1999), Sharma et al. (2001) Szebe-
hely (1967), Bhatnagar and Hallan (1978), Devi and Singh
(1994), Shu and Lu (2005), Abouelmagd (2012, 2013a,
2013b), Abouelmagd and El-Shaboury (2012), Abouelmagd
and Sharaf (2013), Abouelmagd et al. (2013, 2014a, 2014b,
2015a, 2015b).

Some significant contributions were made by Douskos
and Markellos (2006), Das et al. (2009), Shankaran et al.
(2011a, 2011b), Singh (2012), Singh and Umar (2013), aim-
ing to find the locations of out-of-plane equilibrium points
or to examine the stability of motion around these points
when one or both primaries are radiating or have an oblate
spheroid shape, as well as taking account of the influence
of small perturbations in Coriolis and centrifugal forces in
some cases.

In variable-mass systems, Newton’s second law of mo-
tion cannot directly be applied because it is valid for con-
stant mass systems only; see Plastino and Muzio (1992). In-
stead, a body whose mass m varies with time can be de-
scribed by rearranging Newton’s second law and adding a
term to account for the momentum carried by the mass en-
tering or leaving the system. The general equation of the
variable-mass motion is written as

m
du

dt
= F ext + urel

dm

dt
(1)

where F ext is the net external force on the body, urel =
v − u is the relative velocity of the escaping or incoming
mass with respect to the body and u is the velocity of the
body in the inertial frame, while v is the velocity of the
escaping or incoming mass to the body. In astrodynamics,
which deals with the mechanics of rockets, the term urel is
often called the effective exhaust velocity.

Many authors have paid attention to the study of the re-
stricted three-body problem with variable mass (Shrivas-
tava and Ishwar 1983; Singh and Ishwar 1984, 1985; Das
et al. 1988; Singh 2003, 2008, 2009, and 2011; and Zhang
et al. 2012). All of them considered the special case of non-
isotropic loss of mass law [the mass escaping from or in-
coming to the body has zero momentum]; see for more
details Varvoglis and Hadjidemetriou (2012) and Zhang
(2012). Furthermore, there are many precise works related
to the restricted three-body problem with variable mass; see
Jeans (1928), Meshcherskii (1949, 1952), Jha and Shrivas-
tava (2001), Razbitnaya (1961, 1971), Bekov (1987, 1991),
Bekov and Mukhametkalieva (1990), Lukyanov (1988,
1990, 2009), Letelier and da Silva (2011).

Lukyanov (2009) found the possible regions of motions
for the small body and surfaces of minimum energy that
bound them via the Jacobi quasi-integral in the restricted
circular three-body problem when the primary bodies have
variable masses but the sum of their masses is constant. He
also applied his results to close binary star systems with con-
servative mass transfer. The differential equations of motion

of the elliptical restricted problem of three bodies with vari-
able masses were derived with the help of Meshcherskii’s
transformation by Jha and Shrivastava (2001). They estab-
lished that the equations of motion differ from the classi-
cal equations by an extra term. Zhang et al. (2012) stud-
ied the triangular libration points and their stability in the
photo-gravitational restricted three-body problem when the
mass of the infinitesimal body varies with time according to
Jeans’ law and both primaries are radiating.

In this work, we focus our efforts on finding the equa-
tions of motion of the third body in the restricted three-body
problem when the mass of the third body changes accord-
ing to Jeans’ law in the case that the variation of the mass
is from more than one point. We also find an appropriate
approximation for the locations of the out-of-plane equilib-
rium points in the special case of a non-isotropic variation
of the mass. In addition we will investigate the regions of
possible and forbidden motions for the third body.

2 Model description

We shall adopt the notation and terminology of Varvoglis
and Hadjidemetriou (2012). As a consequence, we impose
the requirement that Pi is a body of mass mi (i = 1,2,3)

with the position vectors Ri from the origin of the inertial
frames XYZ. We also define r1 = R3 − R1, r2 = R3 − R2,
and r = R2 − R1. Now, if we assume the body p3 has vari-
able mass, i.e., a mass that changes with time [m3 = m3(t)].
In the framework of the loss of mass being taken non-
isotropic, one can apply Newton’s second modified law in
Eq. (1) to obtain the equations of motion for the infinitesi-
mal body in the inertial frame in the case that the escaping
or incoming mass occurs from n points for the body in the
form

m3R̈3 = −Gm3m1

r3
1

r1 − Gm3m2

r3
2

r2 + ṁ3

n∑

i=1

ui. (2)

Equation (2) gives the equation of motion of the third
body when its mass changes with time; see Varvoglis and
Hadjidemetriou (2012) for further illustrations. In addition,
we also impose the requirement that ui = vi − Ṙ3 where
ui(vi) is the relative velocity (the velocity) of the escaping
(incoming) mass with respect to the body from (to) the point
i (i = 1,2, . . . , n), while Ṙ3 is the velocity of the body in the
inertial frame. Here we would like to refer to the last term
in Eq. (2), which will vanish in two cases: when the value
of the sum equals zero or vi = Ṙ3. Consequently the loss of
mass is isotropic in the two cases.

For simplicity, we assume the escaping or incoming mass
has zero momentum (vi = 0) for all i and replace R3, m3 by
R and m, respectively. Moreover, let us go to the model of
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the circular restricted three-body problem. Equation (2) will
be rewritten in the following form:

mR̈ = −Gmm1

r3
1

r1 − Gmm2

r3
2

r2 − nṁṘ. (3)

Equation (3) describes the motion of the infinitesimal body
in terms of a vectorial formula.

3 Equations of motion

Let (XYZ), (xyz) be the inertial and rotating frames, respec-
tively. They have the same origin at the center of mass
of the primaries. We also assume that the coordinates of
m1, m2, and m in the inertial frames are (X1, Y1,Z1),
(X2, Y2,Z2), and (X,Y,Z), while in the rotating frame they
are (x1, y1, z1), (x2, y2, z2), and (x, y, z), respectively. Con-
sequently the equations of motion for the infinitesimal body
that has variable mass are

Ẍ + n
ṁ

m
Ẋ = −Gm1(X − X1)

r3
1

− Gm2(X − X2)

r3
2

, (4)

Ÿ + n
ṁ

m
Ẏ = −Gm1(Y − Y1)

r3
1

− Gm2(Y − Y2)

r3
2

, (5)

Z̈ + n
ṁ

m
Ż = −Gm1(Z − Z1)

r3
1

− Gm2(Z − Z2)

r3
2

. (6)

Here

r2
1 = (X − X1)

2 + (Y − Y1)
2 + (Z − Z1)

2, (7a)

r2
2 = (X − X2)

2 + (Y − Y2)
2 + (Z − Z2)

2. (7b)

If the rotating frames rotate with the angular velocity ω,
the relation between the inertial and rotating coordinates is
governed by

X = x cosωt − y sinωt, (8a)

Y = x sinωt + y cosωt, (8b)

Z = z. (8c)

Now we assume that the origin of both coordinates is the
center of the masses m1 and m2 such that the x-axis passes
through their centers with positive direction from m2 to m1.
Moreover, the units of distance and masses are taken as the
distance between the primaries and the sum of their masses,
respectively. The unit time is also chosen in such a way
that the gravitational constant is unity. It follows that ω = 1,
m1 = 1 − μ, m2 = μ ≤ 1/2 as well as that the coordinates
of these masses are (μ,0,0) and (μ − 1,0,0), respectively,
where μ = m2/(m1 + m2).

Substituting Eqs. (8a), (8b), (8c) into (4), (5), and (6) us-
ing the aforementioned assumptions, the equations of mo-
tion in a rotating coordinates system for an infinitesimal
body with dimensionless variables are

(ẍ − 2ẏ) + n
ṁ

m
(ẋ − y) = Vx, (9)

(ÿ + 2ẋ) + n
ṁ

m
(ẏ + x) = Vy, (10)

z̈ + n
ṁ

m
ż = Vz, (11)

where

V = 1

2

(
x2 + y2) +

(
(1 − μ)

r1
+ μ

r2

)
, (12)

r2
1 = (x − μ)2 + y2 + z2, (13a)

r2
2 = (x − μ + 1)2 + y2 + z2. (13b)

According to Jeans’ law dm/dt = −αmS , where α is a
constant coefficient and 0.4 ≤ s ≤ 4.4. Now, we introduce
the space-time transformation (x = γ −qξ, y = γ −qη, z =
γ −qζ, dt = γ −kdτ ) such that γ = m/m0, m0 is the mass
of the third body at the initial time (t = 0). But the applica-
ble values for (s, k, q) are s = 1, k = 0, and q = 1/2 (Shri-
vastava and Ishwar 1983). Therefore, dγ

dt
= −αγ , ṁ

m
= −α,

x = γ −1/2ξ , y = γ −1/2η, z = γ −1/2ζ , dt = dτ . Hence, the
velocity and acceleration components are given as

ẋ = γ −1/2
(

ξ ′ + 1

2
αξ

)
, (14a)

ẏ = γ −1/2
(

η′ + 1

2
αη

)
, (14b)

ż = γ −1/2
(

ζ ′ + 1

2
αζ

)
, (14c)

ẍ = γ −1/2
(

ξ ′′ + αξ ′ + 1

4
α2ξ

)
, (15a)

ÿ = γ −1/2
(

η′′ + αη′ + 1

4
α2η

)
, (15b)

z̈ = γ −1/2
(

ζ ′′ + αζ ′ + 1

4
α2ζ

)
, (15c)

where

(·) = d

dt
,

(′) = d

dτ
, and

d

dt
= d

dτ
.

Substituting Eqs. (14a), (14b), (14c) and (15a), (15b), (15c)
into (9), (10) and (11) we obtain

ξ̈ − 2η̇ − α(n − 1)ξ̇ + α(n − 1)η = Uξ , (16a)

η̈ + 2ξ̇ − α(n − 1)η̇ − α(n − 1)ξ = Uη, (16b)

ζ̈ − α(n − 1)ζ̇ = Uζ , (16c)

where

U = 1

8
α2(2n − 1)

(
ξ2 + η2 + ζ 2)

+ 1

2

(
ξ2 + η2) + (

√
γ )3

(
1 − μ

ρ1
+ μ

ρ2

)
, (17)

ρ2
1 = (ξ − √

γμ)2 + η2 + ζ 2, (18a)

ρ2
2 = (

ξ − √
γ (μ − 1)

)2 + η2 + ζ 2. (18b)
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Equation (16a), (16b), (16c) represent the equations of mo-
tion of the restricted three-body problem in the sense that the
variation of the mass of the third body is non-isotropic when
the variation of the mass is from the whole surface (that is,
from more than one point) in the case that the mass that
falls to or is ejected from the surface has zero momentum.
If we assume that the variation of the mass originates from
one point (n = 1) these equations can be rewritten in the
form

ξ̈ − 2η̇ = Wξ, (19a)

η̈ + 2ξ̇ = Wη, (19b)

ζ̈ = Wζ , (19c)

where

W = 1

8
α2(ξ2 + η2 + ζ 2) + 1

2

(
ξ2 + η2)

+ (
√

γ )3
(

1 − μ

ρ1
+ μ

ρ2

)
, (20)

Wξ = 1

4

(
α2 + 4

)
ξ − (

√
γ )3

×
(

(1 − μ)(ξ − √
γμ)

ρ3
1

+ μ[ξ − √
γ (μ − 1)]
ρ3

2

)
,

(21a)

Wη =
[

1

4

(
α2 + 4

) − (
√

γ )3
(

(1 − μ)

ρ3
1

+ μ

ρ3
2

)]
η, (21b)

Wζ =
[

1

4
α2 − (

√
γ )3

(
(1 − μ)

ρ3
1

+ μ

ρ3
2

)]
ζ. (21c)

Equation (19a), (19b), (19c) are different from the classical
equations by the extra terms 1

4α2ξ , 1
4α2η, and 1

4α2ζ due to
the variation in the mass of the third body.

4 Out of plane equilibrium points locations

In general, the locations of equilibrium points are given by
Wξ = Wη = Wζ = 0, but the solutions of these equations
when (η = 0, ζ �= 0) represent the locations of the out-of-
orbital plane (ξ0, ζ0). Therefore, Eqs. (21a), (21b), (21c)
and (18a), (18b) can be rewritten in the form

1

4

(
α2 + 4

)
ξ0 − (

√
γ )3

×
(

(1 − μ)(ξ0 − √
γμ)

ρ3
1

+ μ[ξ0 − √
γ (μ − 1)]

ρ3
2

)
= 0

(22a)

and

1

4
α2 − (

√
γ )3

(
(1 − μ)

ρ3
1

+ μ

ρ3
2

)
= 0, (22b)

where

ρ2
1 = (ξ0 − √

γμ)2 + ζ 2
0 , (23)

ρ2
2 = (

ξ0 − √
γ (μ − 1)

)2 + ζ 2
0 . (24)

After elimination of ζ0 from Eqs. (23) and (24), the value
of ξ0 will be controlled by the following equation:

2ξ0 + √
γ (1 − 2μ) =

[
4γ 2μ

4ξ0 + α2√γμ

]2/3

−
[

4γ 2(1 − μ)

4ξ0 − α2√γ (1 − μ)

]2/3

, (25)

while the value of ζ0 which is associated to the value of ξ0

is given by

ζ0 = ±
([

4γ 2μ

4ξ0 + α2√γμ

]2/3

− (
ξ0 + √

γ (1 − μ)
)2

)1/2

,

(26)

or

ζ0 = ±
([

4γ 2(1 − μ)

4ξ0 − α2√γ (1 − μ)

]2/3

− (ξ0 − √
γμ)2

)1/2

.

(27)

Equations (25)–(27) represent the locations of the out-of-
plane equilibrium points when the third body has variable
mass. It seems from a first look that Eqs. (25)–(26) can be
used to find the locations of the out-of-plane equilibrium
points in the classical case if the parameters γ and α are
set to one and zero, respectively. But this is not realistic and
makes the situation paradoxical, because this consideration
will lead us to use Eq. (22b) with γ = 1 and α = 0. The
quantities μ, (1 −μ), ρ1, and ρ2 are positive, so there are no
real values for these quantities such that Eq. (22b) is satisfied
in the classical case. Consequently it is unreasonable to use
Eqs. (25)–(27) to find the out-of-plane equilibrium points in
the classical case, which does not exist in reality.

5 Some analysis for the out-of-plane equilibrium
points locations

In general, Eqs. (25), (26), and (27) indicate that there are
four out-of-plane equilibrium points. These points can be
denoted by L6,7 and L8,9 in the plane ξζ where the two
points L6,7(L8,9) are symmetrical with respect to the ξ -axis,
which joins the primaries. They lie on a plane perpendicu-
lar to the orbital plane. But the most important point here
is that Eq. (25) represents no explicit relation for the ξ0-
coordinates of the out-of-plane equilibrium points. Further-
more, this equation has a singularity when ξ0 = − 1

4α2√γμ

and ξ0 = 1
4α2√γ (1−μ). In addition, these singularities will
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also appear in Eqs. (26), (27), which enable us to calculate
the ζ0-coordinates of the out-of-plane equilibrium points.
The aforementioned reasons motivated us to find an appro-
priate approximation and explicit relations to obtain the co-
ordinates of these points in an easy way. Therefore we will
find an appropriate approximation for Eqs. (25), (26), and
(27) in the form of a power series in the mass ratio μ. These
series will be more powerful for calculating the locations of
these points than the relations in Eqs. (25), (26), and (27),
because the series can be considered a series of functions
of the parameter of the mass ratio μ with constant coeffi-
cients which include the parameters α and γ , which charac-
terize the properties of the mass variation. Hence we obtain
the locations of these points by an analytical approximation
expression and by graphical investigation as in the follow-
ing subsections, by using a commercial symbolic package
for computations and neglecting all terms of powers higher
than o[μ]2.

5.1 The locations with the initial approximation from
the center of the smaller primary

To examine the motion in the vicinity of the smaller primary,
we have to start by the initial approximation ξ0 = √

γ (μ −
1); the coordinates of out-of-plane equilibrium points are
governed by the following parametric equations:

ξ0 =
[(

−1

2
√

γ − 3
√

2
(
γ 3/2/

(
4 + α2))2/3

)

+ 1

2
γ 13/3μ2/3 + √

γμ + 1

12
γ 13/3(4 + α2)μ5/3

]

(28)

and

ζ0 = ±γ 13/6
[
μ1/3 + 1

12

(
4 + α2)μ4/3

]
. (29)

Or we could write

ζ0 = ±√
γ

√(
1 + (α/2)2

)−2/3 − 1. (30)

It is clear from Eq. (27) with the initial approximation ξ0 =√
γ (μ − 1), that Eq. (30) does not depend on the critical

mass value μ for any power, while it depends on the parame-
ters of variable mass α and γ . On the other hand, (α/2)2 > 0
for any real value of α, therefore Eq. (30) does not represent
real values for ζ0. Consequently Eqs. (28) and (29) represent
the coordinates of the out-of-plane equilibrium points L6,7

in the case of the initial approximation ξ0 = √
γ (μ − 1).

There is no real existence for the points L8,9. Indeed we
present some graphical investigations for the locations of
L6,7 as follows.

The variations of the coordinates ξ and ζversus mass ra-
tio for the points L6,7 are presented in Figs. 1, 2, 3. The ef-
fects of the parameters α and γ (which characterize the vari-

Fig. 1 The coordinates of out-of-plane equilibrium points (L6,7) ver-
sus mass ratio μ when α = 0.2 and γ = 0.9

Fig. 2 The coordinates of out-of-plane equilibrium points (L6,7) ver-
sus mass ratio μ when α = 0.2 and γ = 0.5

Fig. 3 The coordinates of out-of-plane equilibrium points (L6,7) ver-
sus mass ratio μ when α = 0.2 and γ = 0.1

able mass of the third body) on the coordinates of L6,7 are
shown in Figs. 1–3. It is observed that the points L6,7 will
approach the connecting line between the primaries with de-
creasing values of γ and may be coincident for some very
small values of γ ; this means that the third body will be
closer to the primaries and the bigger primary may swallow
it. In addition, the positions of L6 and L7 are symmetric
with respect to the connecting line axes.

In Figs. 4, 5, 6 the changes in the locations of the out-
of-plane equilibrium points are investigated as regards the
parameter effects of the variable mass. We found that these
locations will be closer to the more massive body with de-
creasing value of γ as well as the points L6 and L7 be-
coming nearer to each other with increasing the value of α.
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Fig. 4 The locations of out-of-plane equilibrium points (L6,7) when
γ = 0.9, α = 0.2, α = 1.2, and α = 2.2

Fig. 5 The locations of out-of-plane equilibrium points (L6,7) when
γ = 0.5, α = 0.2, α = 1.2, and α = 2.2

Fig. 6 The locations of out-of-plane equilibrium points when γ = 0.1,
α = 0.2, α = 1.2, and α = 2.2

But this behavior may change for very small values of
the parameter γ in some intervals and the two points may
grow farther from each other whatever the increase of α as
in Fig. 6.

5.2 The locations with the initial approximation from
the center of the bigger primary

Here we start by the initial approximation ξ0 = √
γμ. Hence

the coordinates of out-of-plane equilibrium points will be
controlled by the below parametric equations

ξ0 =
(

−
√

γ

2
− 3

√
2γ α−4/3 + 3

√
2γ 13/3(4 + α2)−2/3

)

+ √
γ

(
1 − 8 3

√
2

3
√

γα−10/3
)

μ

− 8

9
3
√

2γ α−14/3(10 + 3α2)μ2 (31)

and

ζ0 = ±√
γ

√
γ 10/3

(
1 + (α/2)2

)−2/3 − 1. (32)

Or we could write

ζ0 = ±√
γ

(
2

α

)2/3[
1 + 4

3α2
μ + 4

9

(
8 + 3α2

α4

)
μ2

]
. (33)

It is supposed that Eqs. (31), (32), and (33) give the loca-
tions of the out-of-plane equilibrium points with the initial
approximation ξ0 = √

γμ when the third body has a vari-
able mass. But Eq. (32) does not represent any real values
for ζ0 when α are assigned any real values. Therefore, the
locations of the out-of-plane equilibrium points L6,7will be
governed by the parametric Eqs. (31) and (33). Finally, we
emphasize that there are two out-of-plane equilibrium points
L6,7 with the initial approximation from the centers of the
primaries when the mass of the third body is variable.

6 Regions of possible and forbidden motion

Multiplying Eqs. (19a), (19b), and (19c) by ξ̇ , η̇, and ζ̇ , re-
spectively, and adding as well as integrating with respect to
t we obtain a Jacobian quasi-integral or an invariant integral
relation in the form

V 2 − V 2
0 = 2W − 2W0 − 2

∫ t

t0

∂W

∂t
dt. (34)

Here W0 = W(t0, ξ0, η0, ζ0).
Equation (34) can be rewritten in the form

V 2 − V 2
0 = 2W − 2W0 − 2

∫ γ

γ0

∂W

∂γ
dγ. (35)

But in this case W0 = W0(γ0, ξ0, η0, ζ0).
By using the methodology of Lukyanov, the non-integrable

part of Eq. (35) satisfies the following inequalities:

∫ γ

γ0

∂W

∂γ
dγ ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂γ

∣∣∣∣
γ0

(γ − γ0) for
∂W

∂γ
≥ 0

∂W

∂γ

∣∣∣∣
γ

(γ − γ0) for
∂W

∂γ
≤ 0

(36)
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For the motion to be possible, we should have V 2 ≥ 0. Using
Eq. (35), we get the condition for possible motion in the
form

2W + V 2
0 − 2W0 − 2

∫ γ

γ0

∂W

∂γ
dγ ≥ 0. (37)

Substituting inequality (36) into (37), we obtain

W ≥ −V 2
0

2
+ W0 + ∂W

∂γ

∣∣∣∣
γ0

(γ − γ0) for
∂W

∂γ
≥ 0, (38a)

W ≥ −V 2
0

2
+ W0 + ∂W

∂γ

∣∣∣∣
γ

(γ − γ0) for
∂W

∂γ
≤ 0, (38b)

where W = W(γ, ξ, η, ζ ) and W0 = W0(γ0, ξ0, η0, ζ0), con-
sequently inequalities (38a), (38b) could be rewritten

W(γ, ξ, η, ζ ) ≥ −V 2
0

2
+ W0(γ, ξ0, η0, ζ0)

for
∂W

∂γ
≥ 0, (39a)

W(γ0, ξ, η, ζ ) ≥ −V 2
0

2
+ W0(γ0, ξ0, η0, ζ0)

for
∂W

∂γ
≤ 0. (39b)

It is clear that the conditions of motion (39a) and (39b) can
be written in a more compact form as

W(γ ) ≥ C(γ ) for
∂W

∂γ
≥ 0, (40a)

W(γ0) ≥ C(γ0) for
∂W

∂γ
≤ 0, (40b)

where

C(γ ) = −V 2
0

2
+ W(γ, ξ0, η0, ζ0). (41)

Equation (41) shows that the energy constant C depends
on the parameter γ and the initial conditions; then, in this
case, the Jacobi energy constant C can be called the mass
ratio energy function. The variation of the energy of the sys-
tem which determines the regions of possible motions de-
pends on the value of the mass ratio parameter γ . This vari-
ation is shown in Fig. 7 when μ = 0.3 and α = 0.2 with
initial position (0.1,0,0.1) and zero initial velocity.

It is clear from Fig. 7 that the value of energy constant
C corresponds with the value of parameter γ . This is clear
also from Eqs. (18a), (18b), (20), and (41). Furthermore,
Eqs. (40a) and (40b) can be combined to simply give the
condition for possible motion of

W(γ ) ≥ C(γ ). (42)

Comparing the condition (42) with the classical case of
a constant mass, we note that the conditions are very close.

Fig. 7 The variation of C with γ when μ = 0.3, α = 0.2 with initial
position (0.1,0,0.1) and zero initial velocity

Fig. 8 The regions of possible motions (dark) in the 3-dimensional
space ξζγ when μ = 0.3, α = 0.2 with initial position (0.1,0,0.1),
and zero initial velocity

The only difference is the existence of the variable parame-
ter γ . So, we will get different conditions for different mass
ratios m/m0, which coincides in the limit case γ = 1 (equiv-
alently, m = m0 = constant) with the condition of the possi-
ble region for a third body with constant mass.

Sometimes it is reasonable to consider the variation in
mass in a discrete manner rather than in a continuous scale,
especially when the rate of change of mass is small. Fol-
lowing this approach, condition (42) can be thought of as
a sequence of conditions for the regions of possible motion
associated with the different mass ratio values γ .

Now we are interested in finding the regions of possible
and forbidden motion in the ξζ -plane. We draw the surfaces
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Fig. 9 Section of the region of forbidden motion at γ = 0.8

Fig. 10 Section of the region of forbidden motion at γ = 0.6

of possible and forbidden regions in the 3-dimensional space
ξζγ for values of γ varying from 1 to 0, which is the case of
a third body losing its mass up to the limit case m = 0. The
initial position and velocity are taken (0.1,0,0.1) and zero,
respectively, and the mass ratio of the primaries μ = 0.3,
while α is taken 0.2.

Next, we draw the intersections of the surface of possible
motion in Fig. 8 with different values of the mass ratio pa-
rameter γ . In Figs. 9–14 the dark regions are the forbidden
regions for the motion.

Fig. 11 Section of the region of forbidden motion at γ = 0.4

Fig. 12 Section of the region of forbidden motion at γ = 0.2

Figures 9–14 illustrate the sections of the region of for-
bidden motion at different values of γ for the same numer-
ical values as used in the 3-dimensional Fig. 8. It is clear
that the regions of possible motion shrink with the increase
of γ , while the region of forbidden motion expands with its
increase. This reflects the situation that the more the third
body loses its mass, the wider the possible region of motion
it has. Since C is increasing with γ , we see also that the
regions of possible motion shrink with the increase of the
mass ratio energy function C.
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Fig. 13 Section of the region of forbidden motion at γ = 0.01

Fig. 14 Section of the region of forbidden motion at γ = 0.005

7 Conclusion

In the framework of restricted three-body problem, we made
an analytical study of the dynamics of the third body in the
context of this body having variable mass changes accord-
ing to Jeans’ law. The equation of motion is derived when
the loss of mass is non-isotropic. In addition the appropriate
approximation for the locations of the out-of-plane equilib-
rium points in the special case for a non-isotropic variation
of the mass are also found. Some graphical investigations
for the parameter effects of the variable mass on the loca-

tions of the out-of-plane equilibrium points as well as the
regions of possible and forbidden motions for the third body
are investigated.

An analytical condition for the regions of possible mo-
tion has been derived. It will not give an invariant of motion
like the Jacobi integral in the classical case of constant mass,
but it will give a sequence of values for the energy C(γ ),
which is similar to the case of the restricted three-body prob-
lem with variable-mass parameter μ described by Lukyanov
(2009). In Fig. 7, C is plotted against γ at μ = 0.3, α = 0.2
with initial position (0.1,0,0.1) and zero initial velocity.

The forbidden and possible regions of motion of the
third body with variable mass are investigated graphically
in Figs. 8–14. First, a 3D-graph has been plotted in the
ξζγ space at μ = 0.3 and α = 0.2 with initial position
(0.1,0,0.1) and zero initial velocity. Then the sections of
this surface at different values of the mass parameter γ have
been plotted. It is found that the regions of possible motions
shrink with the increase of C.
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