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Abstract The neutral particle motion around rotating regu-
lar black hole that was derived from the Ayón-Beato-García
(ABG) black hole solution by the Newman-Janis algorithm
in the preceding paper (Toshmatov et al., Phys. Rev. D,
89:104017, 2014) has been studied. The dependencies of the
ISCO (innermost stable circular orbits along geodesics) and
unstable orbits on the value of the electric charge of the ro-
tating regular black hole have been shown. Energy extrac-
tion from the rotating regular black hole through various
processes has been examined. We have found expression
of the center of mass energy for the colliding neutral par-
ticles coming from infinity, based on the BSW (Baňados-
Silk-West) mechanism. The electric charge Q of rotating
regular black hole decreases the potential of the gravita-
tional field as compared to the Kerr black hole and the parti-
cles demonstrate less bound energy at the circular geodesics.
This causes an increase of efficiency of the energy extrac-
tion through BSW process in the presence of the electric
charge Q from rotating regular black hole. Furthermore, we
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have studied the particle emission due to the BSW effect as-
suming that two neutral particles collide near the horizon of
the rotating regular extremal black hole and produce another
two particles. We have shown that efficiency of the energy
extraction is less than the value 146.6 % being valid for the
Kerr black hole. It has been also demonstrated that the ef-
ficiency of the energy extraction from the rotating regular
black hole via the Penrose process decreases with the in-
crease of the electric charge Q and is smaller in comparison
to 20.7 % which is the value for the extreme Kerr black hole
with the specific angular momentum a = M .

Keywords Particle motion · Penrose process · Regular
black hole

1 Introduction

Recently, Baňados et al. (2009) (BSW) have shown that free
particles falling from rest at infinity outside an extreme Kerr
black hole may collide with arbitrarily high center-of-mass
(CM) energy and hence the maximally rotating black hole
with the specific angular momentum a = 1 might be re-
garded as a Planck-energy-scale collider. They have pro-
posed that this might lead to observable signals from the
ultra high energy collisions of the particles around the black
holes.

In fact, near to extreme rotation is sufficient to achieve the
unlimited energy for the center of the mass through the par-
ticle acceleration around rotating black holes. In the papers
by Frolov (2012), Abdujabbarov et al. (2014) it has been
shown that static black hole can be also particle accelerator
when the black hole is immersed in the external magnetic
field. Amplification of the particle acceleration by the mag-
netic field has been shown also for Kehagias-Sfetsos naked
singularities (Stuchlík et al. 2014).
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In the papers by Stuchlík and Schee (2010, 2012, 2013),
Stuchlík et al. (2011), Patil and Joshi (2011a,b), Shayma-
tov et al. (2013) it has been shown that the center-of-mass
energy of the collisions between two particles can be arbi-
trarily large in the field of near-extremal Kerr and Kehagias-
Sfetsos naked singularities, Randall-Sundrum brane with a
cosmological constant and superspinars even without need
of fine turning the motion constants of colliding particles
that is necessary for collisions near the black hole horizon.

Finally, it has been demonstrated by Stuchlík and Schee
(2013) that ultra-high-energy radiations near the equato-
rial plane of near-extreme Kerr naked singularities can give
strong observational signals.

One peculiar feature of string theory, which may play a
role of one of the candidates for a theory of quantum grav-
ity, is the presence of extra dimensions of space. The ex-
istence of the extra dimensions amplifies the gravity of the
central object significantly. For example, in the preceding
paper by Tursunov et al. (2013) we have studied particle ac-
celeration around black strings in S2 × R1 topology which
are produced based on the string theory by adding extra di-
mension to the Schwarzschild and Kerr black hole space-
times allowing enhancement of particle accelerator due to
the extra dimension.

In 1969 Roger Penrose has developed and formulated
new original mechanism of the energy extraction from the
rotating black hole. According to the Penrose process in-
cident particle splits into pieces in the ergosphere: one of
them falls down to the black hole with negative energy, the
another one goes out to infinity with positive energy (Pen-
rose 2002). Maximum efficiency of the Penrose process for
the Kerr black hole is 20.7 % (Ghosh and Sheoran 2014;
Nozawa and Maeda 2005; Liu et al. 2012). In our preceding
paper (Abdujabbarov et al. 2011) energy extraction by the
Penrose process and its efficiency for the Kerr-Taub-NUT
spacetime have been calculated.

Indeed, BSW and Penrose processes both are very rele-
vant to each other. BSW effect occurs when the collision of
the particles is happened near or on the horizon of the ro-
tating black hole while the Penrose process occurs when the
decay of the particle is happened in the ergosphere of the
black hole and the value of the extracted energy increases
as process occurance approaches the horizon of the black
hole. In order to connect these two processes Piran, Sha-
ham and Katz suggested collisional Penrose process (Piran
et al. 1975; Piran and Shaham 1977a,b). However, in the
paper by Bejger et al. (2012) it has been shown that in the
collisional Penrose process energy of the extracted photon
cannot be high. Zaslavskii has shown that having infinite
amount of center-of-mass energy on the collision of parti-
cles near the horizon of the black hole is the generic prop-

erty of the black hole (Zaslavskii 2010). Grib and Pavlov
(2010) has shown that even non-extremal Kerr black hole
can be particle accelerator. In the papers by Grib and Pavlov
(2010), Zaslavskii (2011), Harada and Kimura (2011a,b,c),
Harada et al. (2012) Kerr black hole has been investigated
in different respects as a particle accelerator. Energy ex-
traction from the extremal charged non-rotating black hole
due to the BSW effect has been studied in different scenar-
ios (Zaslavskii 2012a,b). The particle acceleration mecha-
nism around Reissner-Nordström black hole has been stud-
ied by Nemoto et al. (2013).

It is well known that there are so-called regular black
holes which do not have curvature singularity, see e.g. Tosh-
matov et al. (2014), Ayón-Beato and García (1998, 1999).
After derivation of the Kerr solution from the Schwarzschild
one by applying the Newman-Janis algorithm (NJA) (Drake
and Szekeres 2000), this algorithm has been widely used
to get rotational solutions of black holes, see e.g. Bambi
and Modesto (2013). In our preceding research (Toshmatov
et al. 2014) the rotational solution of the ABG static regular
black hole (Garcia et al. 2013) has been found by using the
Newman-Janis algorithm.

Static regular ABG black hole solution has been criti-
cally analyzed by Bronnikov (2000) arguing that this solu-
tion does not have the regular center with the Lagrangian
L(F ) where F = FμνF

μν , Fμν is tensor of electromag-
netic field. In other words in the Maxwell weak-field-limit
static spherically symmetric general relativistic configura-
tions with a nonzero electric charge cannot have a regu-
lar center. However, it has been pointed out by Bronnikov
(2000) that Ayón-Beato-García solution can be found by us-
ing the alternative form of the electrodynamics in so-called
P formulation (Bronnikov 2000, 2001). Afterwards, it has
been shown by Burinskii and Hildebrandt (2002) that the-
orem described by Bronnikov (2000) on the nonexistence
of regular electrically charged black holes can be circum-
vented and exact regular black hole solutions can be of a
hybrid type that is a dual core confining a polarization of
magnetic charges. It has been already shown by Toshmatov
et al. (2014) that rotating regular ABG black hole solution
is described by three parameters: mass M , spin parameter a

and electric charge Q and it reduces to the Kerr one in the
case of the absence of charge Q = 0. Deducing the above
statement one can assume that the Kerr solution can be con-
sidered to be the special case of the rotating ABG one. In or-
der to study the astrophysical processes around black holes
it is useful to consider more general black hole solution. In
this paper we study the dynamics and the BSW and espe-
cially the Penrose processes in the gravitational field of the
rotating ABG black hole as introduced by Toshmatov et al.
(2014). For an alternative approach see the work of Azreg-
Aïnou (2014).

The paper is organized in the following way. In Sect. 2
we study the effective potential and types of particle orbits
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around rotating regular black hole. The innermost stable cir-
cular geodesics around rotating regular black hole are dis-
cussed in Sect. 3. Section 4 is devoted to the energy extrac-
tion from the rotating regular black hole through the BSW
mechanism. Section 5 is based on the extension of the re-
sults of study of Zaslavskii (2012b) where efficiency of the
energy extraction due to the collisional version of the Pen-
rose process for the rotating regular ABG black hole has
been studied. In Sect. 6 efficiency of the energy extraction
through the Penrose process from the rotating regular ABG
black hole has been calculated. In Sect. 7 we summarize our
main results.

In the paper, we use a spacetime signature as (−,+,

+,+) and a system of geometric units in which G = 1 = c.
Greek indices are taken to run from 0 to 3.

2 The particle orbits around rotating regular
black hole

The line element in the space-time of the rotating regular
black hole in the Boyer-Lindquist coordinates is given by
Toshmatov et al. (2014) as

ds2 = gttdt2 + grrdr2 + 2gtφdφdt + gθθdθ2

+ gφφdφ2, (1)

with

gtt = −f (r, θ),

grr = Σ

Σf (r, θ) + a2 sin2 θ
,

gtφ = −a sin2 θ
(
1 − f (r, θ)

)
,

gθθ = Σ,

gφφ = [
Σ − a2(f (r, θ) − 2

)
sin2 θ

]
sin2 θ,

(2)

where

f (r, θ) = 1 − 2Mr
√

Σ

(Σ + Q2)3/2
+ Q2Σ

(Σ + Q2)2
, (3)

Σ = r2 + a2 cos2 θ, (4)

and M , a and Q are the total mass, the specific angular mo-
mentum and the electric charge of the black hole, respec-
tively. The space-time metric (1) is identical to the ABG one
when the specific angular momentum a = 0 (Garcia et al.
2013), to the Schwarzschild one when the specific angular
momentum a = 0, the electric charge Q = 0 and to the Kerr
black hole when Q = 0 (see Fig. 1). In the following we put
for simplicity M = 1, i.e., equivalently, we express r and t

coordinates in units of mass M .

Fig. 1 Relationship between the rotation parameters of the Kerr
aKerr and regular aABG black holes for the different values of the
electric charge Q when the radii of their event horizons coincide
(rKerr+ = rABG+ )

In order to compute the trajectories of the geodesic mo-
tion of a test particle in the equatorial plane (θ = π/2) one
needs the Lagrangian for this motion:

L = 1

2

[
gtt ṫ

2 + 2gtφ ṫ φ̇ + grr ṙ
2 + gφφφ̇2], (5)

where an overdot denotes the derivative with respect to
proper time τ . Since the Lagrangian (5) does not depend
on the coordinates t and φ, associated momenta pt and pφ

are conserved and they are called energy E and angular mo-
mentum L of a test particle, respectively:

pt = ξ
μ

(t)uμ = gtt ṫ + gtφφ̇ = −E

m
= −E = const, (6)

pφ = ξ
μ

(φ)uμ = gtφ ṫ + gφφφ̇ = L

m
= L = const, (7)

pr = grr ṙ, (8)

pθ = 0, (9)

where m is mass of the test particle. E and L are the specific
energy and angular momentum of the test particle per unit
mass m.

The Hamiltonian is given by H = pt ṫ + pr ṙ + pφφ̇ − L.
In terms of the components of the metric tensor the Hamil-
tonian reads

2H = (gtt ṫ + gtφφ̇)ṫ + grr ṙ
2 + (gtφ ṫ + gφφφ̇)φ̇

= −E ṫ +Lφ̇ + grr ṙ
2 = ε = const. (10)

Here parameter ε is equal to either −1, 0 or +1 for time-
like, light-like (null) and spacelike geodesics, respectively.
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Fig. 2 The radial dependence of the effective potential of the particle
moving around rotating regular black hole for the different typical val-
ues of the electric charge Q (left panel) and the rotation of black hole

(right panel). Q = 0 (solid line in the left panel) corresponds to the
effective potential of the Kerr black hole

By solving Eqs. (6) and (7) simultaneously, one can find

ṫ = gφφE + gtφL
g2

tφ − gttgφφ

, φ̇ = − gtφE + gttL
g2

tφ − gttgφφ

, (11)

where, the event horizon r+ is given by the larger root of
denominator of the expressions (11) g2

tφ − gttgφφ = 0. It

can be easily verified that g2
tφ − gttgφφ = 0 ⇔ Σf (r) +

a2 sin2 θ = 0.
By inserting (11) into (10) and considering the particle

as moving along the time-like geodesics (ε = −1), one can
obtain the expression for the radial velocity of the particle
around rotating regular black hole as

ṙ2 = E2 − (Q2 − 2
√

r2 + Q2)(aE −L)2

(r2 + Q2)2

+ a2E2 −L2

r2
− r2(Q2 − 2

√
r2 + Q2)

(r2 + Q2)2

− a2

r2
− 1. (12)

By introducing the notion of effective potential

Veff = (Q2 − 2
√

r2 + Q2)(aE −L)2

(r2 + Q2)2
− a2E2 −L2

r2

+ r2(Q2 − 2
√

r2 + Q2)

(r2 + Q2)2
+ a2

r2
+ 1, (13)

one can write (12) as

ṙ2 = E2 − Veff . (14)

One can see from the expression (13) for the effective po-
tential that the motion of the particle around rotating regular
black hole is invariant under r ←→ −r and Q ←→ −Q

transformations. In the flat spacetime limit (r → ∞) effec-
tive potential Veff tends to 1 (Veff → 1). In the opposite

limiting case r → 0, effective potential of the motion of the
particle Veff tends to infinity (Veff → ∞).

The radial dependences of the effective potential of the
particle moving around rotating regular black hole for the
different typical values of the electric charge Q and the ro-
tation parameter a are presented in Fig. 2.

As it has been shown in our preceding research (Toshma-
tov et al. 2014) that with the increase of the value of the elec-
tric charge Q, the horizon of the black hole decreases and
eventually, for the value of the charge Q > 0.633M event
horizon vanishes.

It is known that there are three types of particle orbits
around central compact gravitating object: terminating or-
bit, bound orbit and escape orbit. These orbits are character-
ized by the angular momentum L of the particle. In Figs. 3
and 4 examples of the particle orbits around black hole are
given in the cases of presence and absence of the horizon of
the black hole, respectively.

3 Circular geodesic and innermost stable circular
orbits

From the astrophysical point of view one of the most mo-
mentous type of orbits of the particle is innermost stable cir-
cular orbit (ISCO). The ISCO can be found by solving the
second derivative of the effective potential Veff with respect
to the radial coordinate r , i.e.

d2Veff

dr2
= 0. (15)

This equation has to be satisfied simultaneously with the
equations governing the circular geodesics:

ṙ = 0,
dVeff

dr
= 0. (16)

Equations (16) determine the energy E and angular momen-
tum L of the particle following circular geodesic orbit at
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Fig. 3 Examples of particle trajectories moving in the equatorial plane
(θ = π/2) around Kerr (solid, Q = 0) and rotating regular (dashed,
Q = 0.6) spacetimes in the presence of the event horizon of (no-
horizon rotating regular ABG spacetimes) when the rotation parameter

a = 0.2: terminating orbit, bound orbit and escape orbit (from left to
right). Particle starts motion from the initial position r0 = 11 with the
different values of the specific angular momentum L = 2.6, L = 3.5
and L = 4.5

Fig. 4 Examples of particle trajectories moving in the equatorial
plane (θ = π/2) around Kerr (solid, Q = 0) and rotating regular
(dashed, Q = 0.6) spacetimes in the absence of the event horizon (no-
horizon rotating regular ABG spacetimes) when the rotation param-

eter a = 0.99. Particle starts motion from the initial position r0 = 11
with the different values of the specific angular momentum L = 2.6,
L = 3.5 and L = 4.5

a given radius r . Solving (15) and (16), we determine the
ISCO radius rISCO , energy EISCO and angular momentum
LISCO . The stable orbits are located at r > rISCO , EISCO

determines efficiency of Keplerian accreation discs.
The radial profiles of the energy EC and angular mo-

mentum LC of both corotating and counter-rotating circular
geodesics of the regular rotating ABG black hole spacetimes
are represented in Figs. 5 and 6. The minima of the radial
profiles correspond to the ISCO. The loci of stable and un-
stable orbits in dependence on a are given for characteristic
values of Q in Fig. 7, where also the no-horizon spacetimes
are taken into consideration.

As already pointed out in the previous section, when
Q = 0 the spacetime metric (1) coincides with the Kerr one
and Q = 0, a = 0 with the Schwarzschild one. From the first
graph of Fig. 7 one can see the following remarks:

• In the case of extreme BH (inner and outer horizons
merge into one) the radius of ISCO coincides with one
of the event horizon of the BH.

• When Q = 0, a = 0 the spacetime metric (1) is identi-
cal to the Schwarzschild one and the radius of ISCO is
rISCO = 6 (M = 1).

• When Q = 0 the spacetime metric (1) is identical to the
Kerr one. The radius of ISCO of the extreme (a = 1) Kerr
BH is at rISCO = 1.

4 Center of mass energy of particles in collision

Now, based on the BSW (Baňados-Silk-West) mechanism in
the field of rotating black holes, we calculate center of mass
energy ECM for collision of the two neutral identical par-
ticles with mass m1 = m2 = m0. We assume that particles
are coming from infinity with E1/m0 = E2/m0 = 1 and ap-
proaching the black hole with the different angular momenta
L1 and L2. The particles motion and their collisions occur
in the equatorial plane θ = π/2.
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Fig. 5 Radial dependence of the specific energy and angular momentum of co-rotating (left, top and bottom) and counter-rotating (right, top and
bottom) particle at the circular geodesics around black hole for the different values of the electric charge Q from left to right, respectively

The center of mass energy can be found by using the stan-
dard formula (Baňados et al. 2009):

E2
CM

2m2
0

= 1 − gμνu
μ
1 uν

2, (17)

where u
μ
1 and uν

2 are four velocities of the first and second
particles, respectively. The four velocity of the particle that
is moving around rotating black hole in the equatorial plane
is given by the expressions (11) and (12). For simplicity,
considering E1 = E2 = 1 and inserting the expressions (11)
and (12) into (17), we get the center of mass energy as

E2
CM

2m2
0

= 1

ρ4(r2 + a2) − r4(2ρ − Q2)

× {
2
(
r2 + a2)ρ4 − ar2(L1 +L2)

(
2ρ − Q2)

−L1L2
[
ρ4 − r2(2ρ − Q2)]

− r2(r2 − a2)(2ρ − Q2) − √
R1

√
R2

}
, (18)

where

ρ2 = r2 + Q2

Ri(r) = r2(2ρ − Q2)(a −Li )
2 −L2

i ρ
4 + r4(2ρ − Q2),

(19)

and i = 1,2. In absence of the electric charge Q = 0 the
expressions (18) and (19) will reduce to the ones for the Kerr
black hole (Baňados et al. 2009).

The horizon of the black hole is determined by equation
(r2 + a2)(r2 + Q2)2 − r4(−Q2 + 2

√
r2 + Q2) = 0. There-

fore, at the one sight it seems that the center of mass energy
diverges at the horizon of the black hole. However, at this
point numerator of Eq. (18) also vanishes and in order to
eliminate this uncertainty one has to use L’Hopital’s rule.
The radial profiles of the E2

CM/2m2
0 are given in Fig. 8.

At the next step we study how much energy could be ex-
tracted from a particle slowly spiraling toward the rotating
regular black hole?s horizon. For this purpose it is necessary
to consider what the energy of the particle at the innermost
stable circular orbit is around the rotating regular black hole.
First we calculate the energy of a test particle moving along
the innermost stable circular orbit. Then we use the defi-
nition of the coefficient of total amount of released energy
of the test particle shifting from the outward stable circular
orbit with the radius rc to the innermost stable circular or-
bit. Then coefficient of the energy release efficiency can be
found as

ηc = 100 × E(rc) − E(rISCO)

E(rc)
. (20)
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Fig. 6 Radial dependence of the specific energy and angular momentum of co-rotating (left, top and bottom) and counter-rotating (right, top and
bottom) particle at the circular geodesics around black hole for the different values of the rotation parameter a from left to right, respectively

The efficiency coefficient η in dependence on the values
of the rotation parameter a and electric charge Q is shown
in Table 1. The energy extraction is essentially amplified
with the increase of the electric charge of the rotating regu-
lar black hole. In the limiting case when the extreme rotat-
ing black hole is uncharged one has the maximal efficiency
42 %. For the rotating black hole with smaller rotation pa-
rameter a the presence of the electric charge Q substitutes
the effect of rotation of the black hole and increases the
energy extraction efficiency. Physically this means that the
electric charge decreases the potential of the gravitational
field and particle needs less bound energy at the circular
geodesics.

5 Energy extraction from extremal rotating
Ayón-Beato-García black hole due to the
collisional Penrose process

5.1 Escape to infinity

First we discuss escape of the massless particles (photons)
from the rotating regular black hole to infinity. In order to
escape to infinity particle coming from infinity towards the

black hole must have particular values of the angular mo-
mentum L and energy E. Combining these two conserva-
tive quantities one can introduce so-called impact parameter
b = L/E. Incoming particle with large value of the impact
parameter b turns back to infinity at turning point. Turning
point is determined by zero radial velocity of the particle
(ṙ = 0). Then solving expression (12) at the turning point
for the massless particle with respect to the impact parame-
ter b, we obtain

b± = ar2(Q2 − 2Mρ) ± ρ2
√

(r2 + a2)ρ4 + r4(Q2 − 2Mρ)

(ρ4 + r2(Q2 − 2Mρ)
,

(21)

where we recall the notation ρ2 = r2 + Q2, + and − signs
denote the infalling and outgoing photons, respectively. In
the case when Q = 0 and a = M the expression (21) re-
duces to one for the extremal Kerr black hole (Harada and
Kimura 2011a). In Fig. 9 the escape conditions of the ini-
tially infalling and outgoing photons for the several values
of the electric charge Q and spin parameter a of the extremal
ABG black hole are given. One can see from the last plot in
Fig. 9 for the case M = 1, a = 0.99 and Q ≈ 0.07 that the
initially outgoing photons escape to infinity when the val-
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Fig. 7 The regions of the
circular geodesics of the particle
around rotating regular BH for
the different values of the
electric charge Q. Gray and
light gray regions represent
unstable and stable orbits,
respectively. Solid line
represents event horizon of the
BH

ues of the impact parameter in the range −7 � b � 2. For
the values of the impact parameter in the range b � −7 or
b � 2 any photon can escape to infinity irrespective of sign
of the initial velocity. This case nearly coincides with the
extremal Kerr black hole case (Bejger et al. 2012; Harada
et al. 2012). From the first and second plots in Fig. 9 one
can see that for the extremal cases with a = 0.5, Q ≈ 0.51
and a = 0.1, Q ≈ 0.63 escape conditions of initially outgo-
ing and any (both initially infalling and outgoing) photons
are −5.9 � b � 2.7, −4.3 � b � 4 and b � 2.7, b � −5.9
and b � 4, b � −4.3, respectively.

5.2 Equations of motion and conservation laws

For the convenience we write the spacetime metric (1) in the
following form:

ds2 = −N2dt2 + gφφ(dφ − ωdt)2 + r2dθ2 + grrdr2, (22)

where

N2 = (r2 + a2)ρ4 + r4(Q2 − 2Mρ)

(r2 + a2)ρ4 − a2r2(Q2 − 2Mρ)
, (23)

ω = − ar2(Q2 − 2Mρ)

(r2 + a2)ρ4 − a2r2(Q2 − 2Mρ)
, (24)

gφφ = (r2 + a2)ρ4 − a2r2(Q2 − 2Mρ)

ρ4
. (25)

Now we rewrite the equations of motion for the timelike
geodesics (11) and (12) at the equatorial plane (θ = π/2) by
introducing new notations as follows:

mṫ = X

N2
, (26)

mṙ = σ
Z

N
, (27)

mφ̇ = L

gφφ

+ ωX

N2
, (28)

where

X = E − ωL, Z =
√

X2 − N2

(
m2 + L2

gφφ

)
. (29)

Here parameter σ can take +1 or −1 value for outgoing or
ingoing particles, respectively. One can see from the sec-
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Fig. 8 Radial dependence of the center of mass energy for few typical values of the rotation parameter a, electric charge Q and angular momenta
of the particles L1 and L2. Vertical line represents the location of event horizon of the BH

Table 1 The efficiency of the energy extraction ηc (%) from the black
hole through the particle acceleration mechanism for several values of
the rotation parameter a and charge Q

a Q = 0 0.1 0.2 0.3 0.4 0.5 0.6

0 5.75 6.04 6.40 6.85 7.48 8.51 9.78

0.1 6.06 6.41 6.84 7.42 8.28 9.72 11.62

0.2 6.46 6.89 7.44 8.23 9.66 11.61 13.64

0.3 6.94 7.47 8.21 9.41 11.56 13.82

0.4 7.51 8.21 9.27 11.5 13.76 14.12

0.5 8.21 9.18 10.9 12.54 13.98 15.01

0.6 9.12 10.58 14.44 17.1 19.32

0.7 10.36 12.92 14.44 16.17 18.12

0.8 12.21 20.14 26.2 29.12

0.9 15.58 19.12 24.31

1 42

ond expression of (29) that the allowed region for the parti-
cle motion is Z ≥ 0. Condition Z = 0 provides the turning
points.

Assume that particles 1 and 2 collide near the black hole
and produce particles 3 and 4. In this process total energy,
angular momenta and radial momenta of particles are con-

served:

E1 + E2 = E3 + E4, (30)

X1 + X2 = X3 + X4, (31)

σ1Z1 + σ2Z2 = σ3Z3 + σ4Z4. (32)

5.3 Near horizon expansions

It is known that at the horizon the lapse function N = 0 and
in the near horizon region N is very small, namely N 	 1.
Then near to horizon area the angular velocity of the black
hole ω and gφφ component of the metric tensor cam be con-
sidered as functions of small parameter N , and we can ex-
pand them in powers of N as

ω = ωH − B1N − B2N
2 + O

(
N3), (33)

gφφ = (gφφ)H + (gφφ)1N + (gφφ)2N
2 + O

(
N3). (34)

Now following to Zaslavskii (2012b) we can introduce the
following notations:

b = B1
√

(gφφ)H , h = ωH

√
(gφφ)H ,

b2 = B2
√

(gφφ)H .
(35)
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Fig. 9 Conditions of the photon impact parameter b = L/E in case of
the extreme rotating regular ABG black hole are plotted as b+ (solid,
black curve) and b− (solid, red curve). In order to escape the ergo-

sphere, initially outgoing photons must have (b−)max < b < (b+)min;
any photon can escape to infinity with b > (b+)min or b < (b−)max
impact parameters. Gray region represents the ergosphere

5.3.1 Critical particle

It is known that the first quantity in (29) for the critical par-
ticle on the horizon tends to zero:

XH = 0. (36)

Then one can derive from the expression (29) that

L = E

ωH

. (37)

The forward-in-time condition ṫ > 0 gives that B1 > 0. For
the critical particle near the horizon expression (29), with
the help of expansion (33), takes the form:

X = EN

h
(b − b2N) + O

(
N3),

Z =
√

E2(b2 − 1)

h2
− m2N + E2

2(gφφ)H h2

× (gφφ)1 − 2bb2(gφφ)H√
E2(b2−1)

h2 − m2
N2 + O

(
N3).

(38)

5.3.2 Near critical particle

The near critical particle has the angular momentum

L = E

ωH

(1 + ε), (39)

where ε 	 1. Considering the parameter ε as a function
of N , we expand it near the horizon in powers of N as

ε = C1N + C2N
2 + O

(
N3). (40)

Then the expressions (33) and (34) for the near critical par-
ticle can be written in the following form:

X =
(

b

h
− C1

)
EN +

(
C1b − b2

h
− C2

)
EN2 + O

(
N3),

(41)

Z =
√[(

b

h
− C1

)2

− 1

h2

]
E2 − m2N + O

(
N2). (42)
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5.3.3 Standard particle

For the standard particle

XH 
= 0. (43)

Therefore the expressions (33) and (34) for the standard par-
ticle are

X = XH + B1LN − B2LN2 + O
(
N3), (44)

Z = X − 1

2X

(
m2 + L2

(gφφ)H

)
N2 + O

(
N3). (45)

5.4 Particle collision and reaction

In this subsection based on the work of Zaslavskii (2012b)
we will briefly discuss the main assumptions and possible
cases. We suppose that the critical particle 1 and the stan-
dard one 2 are coming towards the horizon of the black hole
from outside and therefore σ1 = σ2 = −1. As a result of the
reaction occurred near horizon, a near critical particle 3 and
a standard one 4 that falls into the black hole σ4 = −1 are
produced. Hereafter we are interested in the energy of the
particle 3 that escapes from the black hole with particular
energy. By using conservation laws (31) and (32) for this
collision one can get

F ≡ A1 + E3

(
C1 − b

h

)
=

σ3

√

E2
3

[(
b

h
− C1

)2

− 1

h2

]
− m2

3,

(46)

where

A1 =
E1b −

√
E2

1(b2 − 1) − m2
1h

2

h
. (47)

5.5 Maximum efficiency of the energy extraction

There are several possible scenarios: IN+, OUT+, IN−
and OUT− according to Zaslavskii (2010, 2011, 2012a,b).
Where IN and OUT denote coming σ = −1, and outgoing
σ = +1, particles, respectively. “+” and “−” signs denote
ε > 0 and ε < 0, respectively. In IN− scenario there is no
energy extraction since it represents the infalling particle to
the black hole. Therefore we do not consider this case. Effi-
ciency of the extracted energy from the black hole due to the
particles collision is defined by the ratio of the escaping par-
ticle’s energy E3 and total energy of pre-reaction particles
E1 + E2 (Zaslavskii 2012a,b) as

η = E3

E1 + E2
× 100 %. (48)

Table 2 Maximum efficiency of the energy extraction from the ex-
tremal rotating ABG black hole through the BSW effect in the IN+
scenario. rH is the event horizon radius of the extremal black hole

a Q rH b h ηmax %

0.70 0.40 1.09 1.25 0.64 129.5

0.80 0.33 1.08 1.42 0.74 132.2

0.85 0.28 1.07 1.52 0.79 134.7

0.90 0.23 1.05 1.64 0.85 137.9

0.95 0.16 1.03 1.79 0.92 141.8

0.99 0.07 1.00 1.95 0.98 145.5

1.00 0.00 1.00 2.00 1.00 146.6

5.5.1 Scenario IN+

IN+ scenario means that after collision the near critical par-
ticle 3 moves towards the black hole (σ = −1) and at the
turning point it turns back and escapes to infinity. One can
see from (48) that in order to achieve the highest efficiency
of the energy extraction from the black hole energy of the
escaping particle E3 must be as high as possible:

ηmax = q(
√

h2 + 1 + 1)

q + √
h2 + 1

× 100 %, (49)

where

q = (
b +

√
b2 − 1

)(
b −

√
b2 − h2 − 1

)
. (50)

It is known that rotating regular ABG black hole solution
has three independent parameters: mass M , spin parameter
a and the electric charge Q of the black hole. Extremality
condition requires that inner and outer horizons merge into
one for the corresponding values of the parameters. For the
Kerr black hole the condition a = M is enough to be ex-
tremal. However for the rotating regular Ayón-Beato-García
black hole it is difficult to solve grr → ∞ with respect to r

analytically. One can see from (Toshmatov et al. 2014) that
infinite number of values of Q and a can satisfy extremality
condition. In Table 2 several values of the maximum effi-
ciency ηmax of the energy extraction through the collisional
Penrose process for the extreme rotating Ayón-Beato-García
black hole are given.

5.5.2 Scenario OUT+

As it has been shown by Zaslavskii (2012b) for the extremal
Kerr black hole, the maximum efficiency can be achieved if
the mass of the pre-collisional particles E1 = m1, m2 = 0
and m3 = 0 (Zaslavskii 2012b). Then

ηmax = b −
√

b2 − 1 − h2 × 100 %. (51)

It has been shown by Zaslavskii (2012a,b) that in the OUT+
scenario there is no energy extraction for the Kerr black
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Table 3 Maximum efficiency of the energy extraction from the ex-
tremal rotating ABG black hole through the BSW effect in the OUT+
scenario. rH is the event horizon radius of the extremal black hole

a Q rH b h ηmax %

0.643 0.437 1.096 1.160 0.587 112.6

0.644 0.436 1.096 1.161 0.588 110.2

0.645 0.436 1.096 1.163 0.589 108.6

0.646 0.435 1.096 1.164 0.590 107.4

hole. Expression (51) is suitable if the following condition
is satisfied:

√
1 + h2 < b < 1 + h2

2
. (52)

However the region of the values of b and h that satis-
fies (52) is very narrow and the efficiency is also smaller
with compare to one in the IN+ scenario. In Table 3 some
of the possible values of the maximum efficiency of the en-
ergy extraction ηmax in OUT+ scenario are given.

5.5.3 Scenario OUT−

Zaslavskii has shown that in order to extract energy with
ηmax > 100 % OUT− scenario requires that b must sat-
isfy (52), as well as b <

√
2, h < 1 conditions (Zaslavskii

2012b). One can see from Table 3 that the allowed region
for the condition (52) cannot satisfy b <

√
2. Consequently

we may consider that in OUT− scenario there is no energy
extraction.

6 Energy extraction from rotating regular black
hole through Penrose process

It is well known, e.g. from Penrose (2002), Ghosh and Sheo-
ran (2014) that energy can be extracted from a rotating black
hole. Energy extraction occurs not inside the event horizon
of the black hole, it occurs in the region of ergosphere on ac-
count of rotational energy of the black hole. In this process
massive particle enters into the ergosphere and splits into
two pieces: one of them escapes from the black hole to in-
finity while the other one falls into the black hole. The escap-
ing piece can possibly have greater energy than the infalling
one, if the infalling piece has negative energy. As a result of
this process the black hole reduces its angular momentum
and consequently energy of the black hole is extracted. It
derives from signature of energies of two pieces that the es-
caping particle has more energy than the one which entered
the ergosphere.

Assume a particle enters into ergosphere of the black hole
and is splitted into two labeled as 1 and 2 pieces. The first
piece 1 has more energy (E1) than the incident particle 0

and exits ergosphere while the second piece 2 is falling into
the black hole with negative energy E2 (Nozawa and Maeda
2005), i.e. according to the law of conservation of energy

E0 = E1 + E2, (53)

where E2 < 0, then E1 > E0. For simplicity we assume that
motion of all particles is confined to the equatorial plane
(θ = π/2)

υ = dr

dt
, Ω = dφ

dt
, (54)

where υ and Ω are the radial and angular velocity of the
particle with respect to an observer at asymptotic infinity.

It is known that in the Penrose process energy of rotating
black hole is extracted on account of decreasing black holes
angular momentum. From the conservation laws of energy
and angular momentum we have

E = −ptA, L = ptΩ, A ≡ gtt + Ωgtφ. (55)

From the Hamilton-Jacobi equation for the timelike geo-
desics, namely pμpμ = −m2, one can obtain

gtt ṫ
2 + grr ṙ

2 + gφφφ̇2 + 2gtφ ṫ φ̇ = −m2. (56)

Dividing both sides of (56) by ṫ2 and using (54) and (55)
one can get

gtt + grrυ
2 + gφφΩ2 + 2gtφΩ = −m2

(
A

E

)2

. (57)

As one can see the right hand side of the expression (57) is
negative or equals to zero and the second term in the left
hand side of the expression (57) is always positive. Due
to this one can write the expression (57) in the following
form (Nozawa and Maeda 2005):

gφφΩ2 + 2gtφΩ + gtt = −m2
(

A

E

)2

− grrυ
2 ≤ 0. (58)

From the inequality (58) it follows that the value of Ω is
in the range of Ω− ≤ Ω ≤ Ω+ (Nozawa and Maeda 2005).
Here Ω± is

Ω± = − gtφ

gφφ

±
√√√√ g2

tφ

g2
φφ

− gtt

gφφ

. (59)

Using the expression (55), the equations of the conserva-
tion of energy (53) and angular momentum can be written
as (Nozawa and Maeda 2005)

pt
(0)A(0) = pt

(1)A(1) + pt
(2)A(2), (60)

pt
(0)Ω(0) = pt

(1)Ω(1) + pt
(2)Ω(2). (61)
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The energy extraction from black holes and its efficiency
is the momentous problem of the general relativity, see
e.g. Liu et al. (2012) for its discussion. There are several
means and processes which are dedicated to the determina-
tion of the efficiency of the energy extraction from the rotat-
ing black holes. One of these processes is the Penrose one
and one can obtain its efficiency

η = |E(2)|
E(0)

= E(1) − E(0)

E(0)

= χ − 1, (62)

using the expression (53) and taking into account E(2) < 0
(Nozawa and Maeda 2005) where χ = E(1)/E(0) and χ > 1.
With the help of the expressions (55), (60) and (61) we find

χ = E(1)

E(0)

= (Ω(0) − Ω(2))A(1)

(Ω(1) − Ω(2))A(0)

. (63)

Following to work Nozawa and Maeda (2005) we as-
sume that the incident particle has initial energy E(0) = 1
and is splitted into a pair of two photons in the black hole
ergosphere, namely their momenta are equal to zero (p(1) =
p(2) = 0). As one can see from the expression (63), the max-
imum value of the efficiency of the Penrose process in this
case corresponds to the maximum value of Ω(2) and the min-
imum value of Ω(1) at the same time. At this moment the
radial velocities of both pieces will vanish (υ(1) = υ(2) = 0),
namely

Ω(1) = Ω+,

Ω(2) = Ω−,
(64)

and the corresponding values of the parameter A are

A(0) = gtt + Ω(0)gtφ, A(2) = gtt + Ω−gtφ. (65)

Consequently, the four momenta of the pieces are (Liu et al.
2012)

pα = pt(1,0,0,Ωα), α = 1,2. (66)

Due to the zero radial velocity υ(α) = 0, Eq. (57) takes a
form
(
gφφ + g2

tφ

)
Ω2 + 2gtφ(1 + gtt )Ω + gtt (1 + gtt ) = 0. (67)

Angular velocity of the incident particle can be derived from
(67) as in work of Nozawa and Maeda (2005)

Ω(0) =
−gtφ(1 + gtt ) +

√
(1 + gtt )(g

2
tφ − gttgφφ)

gφφ + g2
tφ

. (68)

Putting the expressions (64) and (65) into (63) we obtain the
expression for the efficiency of the energy extraction in the
form (Nozawa and Maeda 2005)

η = (Ω(0) − Ω−)(gtt + Ω+gtφ)

(Ω+ − Ω−)(gtt + Ω(0)gtφ)
− 1. (69)

Table 4 The values of the maximum efficiency of the energy extrac-
tion ηmax (%) from the black hole through the Penrose process for sev-
eral values of the rotation parameter a and charge Q

a Q = 0 0.1 0.2 0.3 0.4 0.5 0.6

0.1 0.06 0.06 0.06 0.07 0.08 0.10 0.15

0.2 0.25 0.26 0.27 0.29 0.33 0.40 0.66

0.3 0.59 0.60 0.62 0.67 0.76 0.96

0.4 1.08 1.09 1.14 1.24 1.44 1.91

0.5 1.77 1.80 1.90 2.07 2.47 3.80

0.6 2.70 2.75 2.92 3.28 4.13

0.7 4.01 4.10 4.41 5.13 8.82

0.8 5.90 6.08 6.73 8.86

0.9 9.01 9.45 11.75

1.0 20.71

In order to achieve the maximum value of the efficiency the
incident particle must be splitted into two pieces at the hori-
zon of the black hole (Liu et al. 2012) and in this case the
expression (69) takes a form

ηmax =
√

1 + gtt − 1

2

∣
∣∣∣
r=r+

. (70)

In Table 4 the values of the maximum efficiency of the
energy extraction from the regular black hole by the Penrose
process is given for several typical values of the rotation pa-
rameter a and the electric charge Q. According to Table 4
the maximum value of the efficiency of the energy extrac-
tion from the black hole is smaller than the one related to
the Kerr black hole. When the ergosphere of the black hole
vanishes, the energy extraction does not occur.

One of consequences of the energy extraction from the
black hole is irreducible mass of the black hole. As a re-
sult of a big number of particles infalling into the black hole
with negative energy, the mass of the black hole changes by
δM = E (Abdujabbarov et al. 2011). There is no upper limit
on change of the mass of the black hole. However, each in-
falling particle with negative energy decreases the mass of
the black hole until its irreducible mass. This is why there is
a lower limit on the mass of the black hole.

In order to find the lower limit on δM we rewrite (10)
using the expressions (6) and (7) in the form

αE2 + 2βE + γ + grrp
2
r + m2 = 0, (71)

where

α = − gφφ

g2
tφ − gttgφφ

, (72)

β = − gtφL

g2
tφ − gttgφφ

, (73)
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γ = − gttL
2

g2
tφ − gttgφφ

. (74)

Assuming that at the horizon pr = 0, m = 0 and solving
Eq. (71) with respect to E we get

E = −β

α
±

√
β2 − αγ

α2
. (75)

At the horizon r = r+ the discriminant of Eq. (75) is
equal to zero and consequently the lower limit of δM is

δM = aL

r2+ + a2
. (76)

The derived limit (76) formally coincides with the ex-
pression derived for the Kerr black but in reality it is differ-
ent and larger due to the different value of r+ for the regular
black hole.

7 Conclusion

In this paper we have studied the neutral particle motion and
the energy extraction from the rotating regular ABG black
hole. The dependence of the ISCO (innermost stable circu-
lar geodesics) and unstable orbits on the value of the electric
charge of the rotating regular black hole is studied. In par-
ticular we have shown that with the increase of the value of
the electric charge Q the radius of the ISCO decreases.

Energy extraction from the rotating regular black hole
through the different processes has been examined. We have
found expression of the center of mass energy for the collid-
ing neutral particles coming from infinity, based on the BSW
(Baňados-Silk-West) mechanism. In particular we have cal-
culated the center-of-mass frame energy of two neutral par-
ticles of the same mass parameter colliding around rotating
regular black hole. It has been shown that two colliding neu-
tral particles which are at rest at infinity with different angu-
lar momenta can give arbitrarily large value of the center of
mass energy. The electric charge Q of rotating regular black
hole decreases the potential of the gravitational field and the
particle needs less bound energy at the circular geodesics.
This causes increase of efficiency of the energy extraction
from rotating regular black hole through BSW process in
the presence of the electric charge Q.

Efficiency of the energy extraction due to the BSW ef-
fect has been investigated based on the formalism devel-
oped by Zaslavskii (2012b). Our calculations show that en-
ergy extraction occurs from the extreme rotating ABG black
hole through the collisional Penrose process with smaller ef-
ficiency than the one from the Kerr black hole. Moreover we
have shown that it occurs not only in IN+ scenario but also

in OUT+ one. However, as it has been pointed out by Za-
slavskii (2012b), the IN+ scenario is the most favorite one
to extract energy with high efficiency. OUT+ scenario has
maximum efficiency with ∼ 112.6 %, that is smaller than
for IN+ with ∼ 145.5 %, and it occurs in a very narrow re-
stricted region of the values of the charge Q and the spin pa-
rameter a of the extremal rotating Ayón-Beato-García black
hole.

It has been also shown that the efficiency of the energy
extraction from the rotating regular black hole via the Pen-
rose process decreases with increase of the electric charge
Q and is smaller in comparison to 20.7 % which is the ef-
ficiency for the extreme Kerr black hole with the specific
angular momentum a = 1. It is due to the fact that on ac-
count of the nonvanishing electric charge Q the ergosphere
of the black hole decreases and for the limiting value of the
electric charge Q > 0.634 ergoregion vanishes. After disap-
pearance of the ergosphere, the energy extraction does not
occur.
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