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Abstract In this work, we elaborate the correspondence
phenomenon in the scenario of modified Horava-Lifshitz
F(R) gravity and pilgrim dark energy. We assume Hubble
as well as event horizons of pilgrim dark energy and recon-
struct the F(R̃) models in the present context which satisfy
the realistic condition of modified gravities. The equation
of state parameter shows quintom-like behavior for most of
cases of m in both Hubble as well as event horizons cases.
The squared speed of sound provides stability of F(R̃) mod-
els for all cases of m and u. The ωDE − ω′

DE analysis in this
scenario corresponds to freezing as well as thawing regions
which is consistent with accelerated expansion of the uni-
verse. It is also interesting to mention here that the statefind-
ers approaches to ΛCDM limit for all cases of m and u. It is
concluded that all the cosmological parameters correspond-
ing to reconstructed F(R̃) models consistent with present
day observations.

Keywords Modified Horava-Lifshitz F(R) gravity ·
Pilgrim dark energy · Equation of state parameter ·
�CDM · Cosmological analysis

1 Introduction

It has been confirmed through various well-known cos-
mological tests (Riess et al. 1998; Perlmutter et al. 1999;
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Miller et al. 1999; Astier et al. 2006) that our universe cur-
rently undergoes accelerated expansion. In order to under-
stand the nature of this accelerated expansion phenomenon,
various approaches have been adopted. The first approach
consists of the presence of dark energy (DE) which con-
tains the repulsive force to push the matter apart in the uni-
verse. In this respect, many reviews have been presented
(Copeland et al. 2006; Sami 2009; Frieman et al. 2008;
Bamba et al. 2012). The second approach is the modifica-
tion of Einstein’s gravity into different theories. The basic
idea behind this way is to present the gravitational descrip-
tion of DE (Brevik et al. 2005).

These modified gravities has some important features.
One of them is that it has ability to explains both scenar-
ios i.e., early inflation and late time accelerated expansion
(Caramsa and de Mellob 2009). Different classes of mod-
ified gravity have been reviewed in the references (Nojiri
and Odintsov 2005, 2011; Olmo 2011). Nojiri and Odintsov
(2011) have given a detailed discussion on different well-
known modified gravity models. Nojiri and Odintsov (2011)
investigated the unified scenario of the universe through
modified gravity background evolution for flat FRW uni-
verse. The popular modified gravity models include: f (R)

gravity, f (G) gravity, f (T ) gravity and Horava-Lifshitz
gravity. A review on f (T ) gravity is available in Myrza-
kulov (2011).

There is another well-known modified gravity introduced
by Chaichian (2010) through a general approach which
is invariant under foliation-preserving diffeomorphisms.
Elizalde et al. (2005) investigated the early time inflation,
late time acceleration phenomenon as well as finite time fu-
ture singularities in detail and suggested a higher order term
to cure these singularities in this gravity. It was also explored
(Carloni et al. 2010) FRW cosmology for finite time singu-
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larities and explained reductions of this gravity by taking
power-law MFRHL F(R̃) model.

The correspondence scenario between dynamical DE
models and modified theories of gravity has got much at-
traction nowadays. Various works has been done by choos-
ing reconstruction scheme of many scenarios in modified
theories of gravity (Nojiri and Odintsov 2006a, 2006b; No-
jiri and Odintsov 2007a, 2007b, 2007c). Chattopadhyay has
explored this phenomenon by using F(T ) and F(G) gravi-
ties and QCD ghost DE and found interesting results (Chat-
topadhyay 2014a, 2014b). Chattopadhyay and Ghosh (2012)
have analyzed the behavior of generalized second law of
thermodynamics in this gravity and argued that it remains
valid in quintessence phase. We have also explored dif-
ferent cosmological parameters through reconstruction sce-
nario via different modified theories of gravity as well as
dynamical DE models (Jawad et al. 2013a, 2013b, 2013c,
2013d, 2014; Jawad 2014a, 2014b).

In the present work, we re-investigate the correspondence
phenomenon by choosing the scenario of modified Horava-
Lifshitz F(R) gravity (MFRHL) gravity (Chaichian 2010)
and pilgrim DE (PDE) (Wei 2012). We construct the F(R̃)

models by assuming the Hubble and event horizons as well
as different values of PDE parameter. We also make the cos-
mological analysis of these models through EoS and squared
speed of sound parameters, ωDE − ω′

DE and r − s planes.
Rest of the paper has been arranged as follows. In the next
section, we provide basic scenario of MFRHL gravity in the
flat FRW universe. Section 3 elaborates the cosmological
discussion on reconstructed F(R̃) models. We summarize
these outcomes in the last section.

2 F(R̃) gravity

The action of MFRHL gravity (F(R̃) gravity) is defined as
follows (Carloni et al. 2010; Chaichian 2010)

S
F(R̃)

=
∫

d4
√

g(3)NF(R̃)

with

R̃ = KijKij − λK2

+ 2μ∇μ

(
nμ∇νn

ν − nν∇νn
μ
) − EijGijklE

kl,

appears as modified Ricci scalar. In flat universe, it becomes

R̃ = (3 − 9λ)H 2

N2
+ 6μ

a3N

d

dt

(
Ha3

N

)

= (3 − 9λ + 18μ)H 2

N2
+ 6μ

N

d

dt

(
H

N

)
.

The f (R) gravity can be recovered by setting λ = μ = 1.
For the action stated earlier, we get by variation over g

(3)
ij

and by setting N = 1:

0 = F(R̃) − 2(1 − 3λ + 3μ)
(
Ḣ + 3H 2)F ′(R̃)

− 2(1 − 3λ)H
dF ′(R̃)

dt
+ 2μ

d2F ′(R̃)

dt2
+ p. (1)

Here, prime shows the differentiation with respect to its ar-
gument and also the matter contribution is involved as pres-
sure p. The conservation equation with respect to matter
density becomes

ρ̇ + 3H(ρ + p) = 0. (2)

Using Eqs. (1) and (2), we get

0 = F(R̃) − 6
[
(1 − 3λ + 3ν)H 2 + μḢ

]
F ′(R̃)

+ 6μH
dF ′(R̃)

dt
− ρ − Ca−3, (3)

where C is an integration constant. Thus, the density corre-
sponding to MFRHL gravity with C = 0 turns out to be

ρ
R̃

= F(R̃) − 6
[
(1 − 3λ + 3μ)H 2 + μḢ

]
F ′(R̃)

+ 6μH
dF ′(R̃)

dt
. (4)

Here, we assume a power-law form of the scale factor for
obtaining the analytical solutions of F(R̃) as follows

a(t) = a0t
m (5)

where the constant a0 represents the present day value of the
scale factor.

3 Reconstruction of pilgrim dark energy F(R̃)
models and their cosmological analysis

The PDE model is defined as (Wei 2012)

ρDE = 3n2m4−u
p L−u, (6)

here L, u, n, mp indicate the IR cutoff and size of the
system, PDE parameter, conventional constant and reduced
Planck mass, respectively. Wei (2012) analyzed the PDE
model through different possible theoretical and observa-
tional ways to make the BH free phantom universe with
Hubble horizon through PDE parameter. Moreover, this
model has been analyzed this proposal by choosing different
IR cutoffs through well-known cosmological parameters in
flat and non-flat universes (Sharif and Jawad 2013a, 2013b,
2014; Jawad 2014d). This model has also been in different
modified gravities (Sharif and Rani 2014; Chattopadhyay
et al. 2014).
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Here, we make correspondence between PDE and F(R̃)

model by equating their energy densities, i.e. ρ
R̃

= ρDE ,
which gives

6μH
˙̃
RF ′′(R̃) − 6

[
(1 − 3λ + 3μ)H 2 + μḢ

]
F ′(R̃) + F(R̃)

= 3n2m4−u
p L−u. (7)

Further, we choose two IR cutoffs such Hubble and event
horizons.

3.1 With Hubble horizon

The Hubble horizon is defined as follows

L = 1

H
(8)

By using Eqs. (5) and (8) in (7), we obtain

R̃2 d2F(R̃)

dR̃2
+ m(1 − 3λ + 3μ) − μ

2μ
R̃

dF(R̃)

dR̃

− m(3 − 9λ + 12μ)

12μ
F(R̃)

= n2

4μ(3 − 9λ + 12μ)
u−2

2

R̃
u
2 , (9)

which gives

F(R̃) = AR̃ξ− + BR̃ξ+ + (3 − 9λ + 12μ)1−u/2R̃u/2n2

μ(ξ+ − u)(ξ− − u)
R̃u.

(10)

Here, A and B are integration constants while ξ∓ is given
by

ξ∓ = 1 − (−μ + m − 3λm + 3μm)

(2μ)

∓
(

1 − (−μ + m − 3λm + 3μm)

μ

+ (−μ + m − 3λm + 3μm)2

4μ2

− (m − 3λm + 4μm)

μ

) 1
2

.

The above reconstructed model (10) with u = 2 charac-
terizes as a realistic one because it satisfies the following
sufficient condition

lim
R̃→0

F(R̃) = 0. (11)

To analyze the behavior of constructed model F(R̃), we plot
it against its argument R̃ as shown in Figs. 1 and 2. It shows
decreasing behavior in both cases of u = ±2.

Fig. 1 Plot of f (R̃) versus R̃ for PDE parameter u = 2 with m = 2
(red), m = 2.2 (green) and m = 2.4 (blue) for Hubble horizon

Fig. 2 Plot of f (R̃) versus R̃ for PDE parameter u = −2 with m = 2
(red), m = 2.2 (green) and m = 2.4 (blue) for Hubble horizon

3.2 With event horizon

The event horizon is defined as follows

L = a(t)

∫ ∞

t

d t̃

a(t̃)
, (12)

and the corresponding reconstructed model is given by

F(R̃) = 31− u
2 (−1 + m)um− u

2 (−2μ + (1 − 3λ + 6μ)m)1− u
2 n2

μ(δ+ − u)(δ− − u)
R̃

u
2

+ CR̃δ− + DR̃δ+ , (13)
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Fig. 3 Plot of F(R̃) versus R̃ for PDE parameter u = 2 with m = 2
(red), m = 2.2 (green) and m = 2.4 (blue) for event horizon

Fig. 4 Plot of F(R̃) versus R̃ for PDE parameter u = −2 with m = 2
(red), m = 2.2 (green) and m = 2.4 (blue) for event horizon

where C and D are integrating constants while δ∓ are

δ∓ = 1 − (−μ + m − 3λm + 3μm)

(2μ)

∓
(

1 + (−2μ + m − 3λm + 6μm)

μ

+ (−μ + m − 3λm + 3μm)2

4μ2

− (−μm − 3λm + 3μm)

μ

) 1
2

.

Fig. 5 Plot of wDE versus t for PDE parameter u = 2 with Hubble
horizon

The model F(R̃) against its arguments is shown in Figs. 3
and 4 for two values of u = ±2, respectively. In first case
(u = +2), the function decreases and approaches to mini-
mum positive value. However, the function decreases and
approaches to zero in all three cases of m in the second case
(u = −2).

4 Cosmological analysis for both horizons

4.1 Equation of state parameter

The EoS parameter is defined as follows

wDE = pDE

ρDE
.

Through reconstruction scenario, i.e., ρ
R̃

= ρDE and p
R̃

=
pDE , we can get EoS parameter whose plots are shown in
Figs. 5–8, with respect to Hubble and event horizons with
u = ±2, respectively. For Hubble horizon (with u = +2),
the EoS parameter evolutes the universe in the quintessence
region always for m = 2.2. However, it shows transition
from dust like matter to phantom region by crossing phan-
tom divide line and then goes towards quintessence region in
the latter epoch for other two cases of m as shown in Fig. 5.
Figure 6 (u = −2 for Hubble horizon) shows quintom-like
behavior for all cases of m. In case of event horizon (Figs. 7
and 8), we can attain quintom-like behavior (transition from
matter dominated era towards phantom and then goes to
quintessence era in the latter epoch) for u = −2. In case of
u = +2, we only attain the quintessence and vacuum DE
eras as shown in Fig. 7.
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Fig. 6 Plot of wDE versus t for PDE parameter u = −2 with Hubble
Horizon

Fig. 7 Plot of wDE versus t for PDE parameter u = 2 with event hori-
zon

4.2 Squared speed of sound

The squared speed of sound is used for analyzing the stabil-
ity of a give model. The sign of v2

s is very important to see
the stability of background evolution of the model. A posi-
tive value indicates a stable model whereas instability of a
given perturbation corresponds to the negative value of v2

s .
The squared speed of sound takes the form in the present
scenario

υ2
s = ṗDE

ρ̇DE
. (14)

Fig. 8 Plot of wDE versus t for PDE parameter u = −2 with event
horizon

Fig. 9 Plot of v2
s versus t for PDE parameter u = 2 with m = 2 (red),

m = 2.2 (green) and m = 2.4 (blue)

The plot of squared speed of sound with respect to time for
two values of PDE parameter is shown in Figs. 9–12 for two
horizons of PDE, respectively. For u = +2 in the Hubble
horizon case (Fig. 9), the square speed of sound exhibits the
instability of the model at the present as well as near present
epochs (0 ≤ t ≤ 2.8), while it shows stability of the model in
the later epoch. For u = −2, the squared speed of sound rep-
resents the stability of the present models forever (Fig. 10).
The similar behavior has been observed in the event horizon
case for u = ± (Figs. 11 and 12).



Page 6 of 10 Astrophys Space Sci (2015) 357:37

Fig. 10 Plot of v2
s versus t for PDE parameter u = −2 with m = 2

(red), m = 2.2 (green) and m = 2.4 (blue)

Fig. 11 Plot of v2
s versus t for PDE parameter u = 2 with m = 2 (red),

m = 2.2 (green) and m = 2.4 (blue)

4.3 wDE − w′
DE plane

Caldwell and Linder (2005) tested the behavior of quintes-
sence scalar field DE model through wDE −w′

DE Plane. This
plane is being divided into two regions such as thawing
and freezing. The thawing region is described as (ω′

Λ > 0,
ωΛ < 0) while freezing region as (ω′

Λ < 0,ωΛ < 0). Here,
we develop the ωPDE − ω′

PDE plane for reconstructed DE
F(R̃) models corresponding to u = ±2 as shown in Figs. 13
and 16, respectively, for three different values of m =
2,2.2,2.4. It can be observed that the plot corresponds to

Fig. 12 Plot of v2
s versus t for PDE parameter u = −2 with m = 2

(red), m = 2.2 (green) and m = 2.4 (blue)

Fig. 13 Trajectories of wPDE − w′
PDE for reconstructed PDE f (R̃)

model for u = 2 with m = 2 (red), m = 2.2 (green), m = 2.4 (blue)

freezing as well as thawing regions for u = +2 only, in case
of Hubble horizon (Fig. 13). However, we have obtained
freezing region only for all other cases (Figs. 14 and 15).

4.4 r − s plane

Sahni et al. (2003) introduced the statefinder parameters as
follows

r =
...
a

aH 3
, s = r − 1

3(q − 1
2 )

, (15)
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Fig. 14 Trajectories of wPDE − w′
PDE for reconstructed PDE f (R̃)

model for u = −2 with m = 2 (red), m = 2.2 (green), m = 2.4 (blue)

Fig. 15 Trajectories of wPDE − w′
PDE for reconstructed PDE f (R̃)

model for u = 2 with m = 2 (red), m = 2.2 (green), m = 2.4 (blue)

q = − ä

aH 2
= −

(
1 + Ḣ

H 2

)
.

These parameters are useful which provide the distance of
a given DE model from ΛCDM limit. These parameters
can describe some useful regions as follows: (r, s) = (1,0)

indicates ΛCDM limit, (r, s) = (1,1) shows CDM limit,
while s > 0 and r < 1 represents the region of phantom and
quintessence DE eras.

The r − s planes corresponding to Hubble and event hori-
zons for reconstructed PDE F(R̃) models with u = 2,−2
for three different values of m = 2,2.2,2.4 as shown in
Figs. 17, 18, 19, 20. It can be observed that r − s planes cor-

Fig. 16 Trajectories of wPDE − w′
PDE for reconstructed PDE f (R̃)

model for u = −2 with m = 2 (red), m = 2.2 (green), m = 2.4 (blue)

Fig. 17 Trajectories of r − s for reconstructed PDE f (R̃) model for
u = 2 with m = 2 (red), m = 2.2 (green), m = 2.4 (blue)

respond to ΛCDM for all possible cases. Moreover, the r −s

planes (Hubble and event horizons) correspond to DE re-
gions (quintessence and phantom) for u = 2 and correspond
to Chaplygin gas for u = −2, respectively.

5 Unifying the inflation with DE and Newton law
corrections in f (R̃) gravity

The unification scenario of inflation with DE was firstly dis-
cussed in Nojiri-Odintsov model (Nojiri and Odintsov 2003)
in f (R) gravity and then it was generalized to more realistic
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Fig. 18 Trajectories of r − s for reconstructed PDE f (R̃) model for
u = −2 with m = 2 (red), m = 2.2 (green), m = 2.4 (blue)

Fig. 19 Trajectories of r − s for reconstructed PDE f (R̃) model for
u = 2 with m = 2 (red), m = 2.2 (green), m = 2.4 (blue)

versions (Nojiri and Odintsov 2007b; Cognola et al. 2008).
The singularity has also remained an important problem in
describing the early universe which is discussed by Nojiri
and Odintsov (2008). Indeed, it has been shown that there
exists a class of non-singular exponential gravity to unify
the early and late-time accelerated expansion of the Uni-
verse (Elizalde et al. 2011). The detailed analysis is given
in Nojiri and Odintsov (2011). The inflationary solution is
given by

H = H1

t

Fig. 20 Trajectories of r − s for reconstructed PDE f (R̃) model for
u = −2 with m = 2 (red), m = 2.2 (green), m = 2.4 (blue)

The following two cases has been considered for this as-
sumption.

5.1 Hubble horizon

In view of above assumption of H and at the inflationary
(early) Universe, when t � t0, the dominant part of the
f (R̃) model turns out to be

f (R̃) ∼ C1R̃
ξ− . (16)

Hence, f (R̃) produces also the inflationary (phantom) solu-
tion. Here, C1 and C2 are integration constants while ξ∓ is
given by

ξ− = 1 − (−μ + H1 − 3λH1 + 3μH1)

(2μ)

−
(

1 − (−μ + H1 − 3λH1 + 3μH1)

μ

+ (−μ + H1 − 3λH1 + 3μH1)
2

4μ2

− (H1 − 3λH1 + 4μH1)

μ

) 1
2

.

It is well-known that modified gravity may cause violations
of local tests. It was shown by Elizalde et al. (2011) that
these violations could be avoided in F(R̃) through New-
ton’s corrections. Also, it is well known that F(R̃) theory
include scalar particle which could give rise to a fifth force
and to variations of the Newton law. This can be avoided
with the help of chameleon mechanism (Khoury and Welt-
man 2004a, 2004b). Also, scalars with time-dependent mass
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were also considered in Mota and Barrow (2004). The cor-
rections to the Newton law has come from the coupling ap-
pears between the scalar field and matter, which makes a test
particle to deviate from its geodesic path, unless the mass of
the scalar field is large enough (since then the effect could
be very small). The detailed about this topic is given in the
references (Nojiri and Odintsov 2003, 2007c; Elizalde et al.
2010). The precise value of scalar mass is given by

m2
φ = 1

2

d2V (φ)

dφ2

= 1 + f ′(Ã)

f ′′(Ã)
− Ã + f (Ã)

1 + f ′(Ã)
, (17)

where, Ã = R̃ and from this relation, one can analyze the
models. Here, we are interested to analyze the behavior of
the models at the local scales, as on earth, where the scalar
curvature is around Ã = R̃ ∼ 10−50 eV2, or in the solar sys-
tem, where Ã = R̃ ∼ 10−61 eV2. The function (36) and its
derivatives can be approximated around these points as

f (R̃) ∼ C1R̃
ξ− , f ′(R̃) ∼ C1ξ−R̃ξ− ,

f ′′(R̃) ∼ C1ξ−(ξ− − 1)R̃ξ−
(18)

Inserting the above function and its derivatives in scaler
mass and we may get

m2
φ ∼ 1

C1ξ−(ξ− − 1)
R̃2−ξ− .

It can be seen that m2
φ is approximately equal to 1050ξ−−100

and 1061ξ−−122 on Earth and solar system, respectively. It
can be observed from these relations that the scalar mass
would be sufficiently large in order to avoid corrections to
the Newton law for the case ξ− > 2. Also, for limiting case
ξ− = 2, the constant C1 can be chosen to be large enough so
that any violation of the local tests is avoided.

5.2 Event horizon

For this horizon, the f (R̃) model becomes

f (R̃) ∼ C3R̃
δ− , (19)

at inflationary (early) Universe, when t � t0. Also,

δ− = 1 − (−μ + H1 − 3λH1 + 3μH1)

(2μ)

∓
(

1 + (−2μ + H1 − 3λH1 + 6μH1)

μ

+ (−μ + H1 − 3λH1 + 3μH1)
2

4μ2

− (−μH1 − 3λH1 + 3μH1)

μ

) 1
2

.

In the similar way, we can obtain

m2
φ ∼ 1

C3δ−(δ− − 1)
R̃2−δ− .

It can be seen that m2
φ is approximately equal to 1050δ−−100

and 1061δ−−122 on Earth and solar system, respectively. It
can be observed from these relations that the scalar mass
would be sufficiently large in order to avoid corrections to
the Newton law for the case δ− > 2. Also, for limiting case
δ− = 2, the constant C3 can be chosen to be large enough so
that any violation of the local tests is avoided.

6 Concluding remarks

In this paper, we have investigated the reconstruction sce-
nario of MFRHL gravity with newly proposed PDE model in
the presence of power law scale factor. We have constructed
the F(R̃) models with the help of Hubble and event hori-
zons of PDE models and PDE parameter. The reconstructed
models shows decreasing behavior in all cases and validated
the realistic condition of modify gravity. In order to analyze
its cosmological significance of these models, we have de-
veloped EoS and squared speed of sound parameters as well
as cosmological planes.

The EoS parameter evolutes the universe in the quintes-
sence region always for m = 2.2 for Hubble horizon with
u = +2 (Fig. 5). However, it shows transition from dust
like matter to phantom region by crossing phantom divide
line and then goes towards quintessence region in the lat-
ter epoch for other two cases of m as shown in Fig. 5. Fig-
ure 6 (u = −2 for Hubble horizon) shows quintom-like be-
havior for all cases of m. In case of event horizon (Figs. 7
and 8), we can attain quintom-like behavior (transition from
matter dominated era towards phantom and then goes to
quintessence era in the latter epoch) for u = −2. In case of
u = +2, we only attain the quintessence and vacuum DE
eras as shown in Fig. 7.

The square speed of sound exhibits the instability of
the model at the present as well as near present epochs
(0 ≤ t ≤ 2.8), while it shows stability of the model in the
later epoch for u = +2 in the Hubble horizon case (Fig. 9).
For u = −2, the squared speed of sound represents the sta-
bility of the present models forever (Fig. 10). The similar
behavior has been observed in the event horizon case for
u = ± (Figs. 11 and 12). The plots of ωDE − ω′

DE corre-
sponds to freezing as well as thawing regions for u = +2
only, in case of Hubble horizon (Fig. 13). However, we have
obtained freezing region only for all other cases. It can be
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observed that r − s planes correspond to ΛCDM for all pos-
sible cases. Moreover, the r − s planes (Hubble and event
horizons) correspond to DE regions (quintessence and phan-
tom) for u = 2 and correspond to Chaplygin gas for u = −2,
respectively.

Since, we have considered the DE universe model which
possesses finite-time as well as future-like singularities.
However, such singularities may behave in different ways
depending on the content of the model. Hence, it would be
useful to classify the future singularities in the following
way (Nojiri and Odintsov 2005):

• Type I: for t → ts , a → ∞, ρ, |p| → ∞, this singularity
corresponds to Big Rip singularity.

• Type II: for t → ts , a → as , ρ → ρs , |p| → ∞, this sin-
gularity corresponds to sudden future singularity.

• Type III: for t → ts , a → as , ρ, |p| → ∞.
• Type IV: for t → ts , a → as , ρ, |p| → 0.

Our scenario correspond to Type I singularity because the
EoS parameter attains phantom-like universe which de-
scribes the Big Rip singularity in future. It is strongly be-
lieved that universe undergoes the big rip singularity, where
all the gravitationally bounded objects dispersed due to
phantom DE.
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