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Abstract Obliquely propagating positron-acoustic soli-
tary waves (PASWs) in a magnetized electron-positron-
ion plasma (containing nonthermal hot positrons and elec-
trons, inertial cold positrons, and immobile positive ions) are
precisely investigated by deriving the Zakharov-Kuznetsov
equation. It is found that the characteristics of the PASWs
are significantly modified by the effects of external magnetic
field, obliqueness, nonthermality of hot positrons and elec-
trons, temperature ratio of hot positrons and electrons, and
respective number densities of hot positrons and electrons.
The findings of our results can be employed in understand-
ing the localized electrostatic structures and the characteris-
tics of PASWs in various space and laboratory plasmas.

Keywords Positron-acoustic solitary waves · Magnetized
electron-positron-ion plasmas · Zakharov-Kuznetsov
equation · Nonthermality

1 Introduction

During the last three decades, the investigation of the differ-
ent nonlinear phenomena (viz. solitary waves, shock waves,
and double layers) has been made by numerous authors in
electron-positron-ion (e-p-i) plasmas (Shukla et al. 1986,
2004; Tajima and Taniuti 1990; Berezhiani et al. 1994;
Popel et al. 1995; Nejoh 1996; Moslem et al. 2007; Tiwari
et al. 2007; Tribeche et al. 2009; Tribeche 2010; Sahu 2010;
Mottaghizadeh and Eslami 2012; Pakzad and Javidan 2013).
The propagation of nonlinear waves in e-p-i plasmas has
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a considerable importance in understanding the behaviour
of the astrophysical environments viz. cluster explosions
(Tribeche et al. 2009), active galactic nuclei (Miller and
Witta 1987), supernovas (Begelman et al. 1984), and pul-
sar magnetospheres (Michel 1982). These e-p-i plasmas are
usually characterized as a fully ionized gas consisting of
electrons and positrons, the masses of which are equal with
positive ions. Therefore, study of the nonlinear wave propa-
gation in e-p-i plasmas is a subject of appreciable interest.

Recently, the nonlinear phenomena associated with posi-
tron-acoustic (PA) waves in e-p-i plasmas have been stud-
ied by several authors (Nejoh 1996; Tribeche et al. 2009;
Tribeche 2010; El-Shamy et al. 2012; Rahman et al. 2014a,
2014b, 2014c). PA waves are acoustic type of waves in
which, the thermal pressure of electrons and hot positrons
provides the necessary restoring force, and the cold positron
mass gives the inertia. Nejoh (1996) studied the large am-
plitude PASWs in an electron-positron plasma with an elec-
tron beam. In order to study the small amplitude PA dou-
ble layers, Tribeche (2010) considered a four component
e-p-i plasma consisting of Maxwellian distributed electrons
and positrons, inertial cold positrons, and stationary ions.
Sahu (2010) investigated the PA shock waves in both planar
and nonplanar geometries by considering the same plasma
model of Tribeche (2010). However, Tribeche et al. (2009),
Tribeche (2010), Sahu (2010) considered Maxwellian elec-
trons and positrons to study the nonlinear propagation of
PASWs or PA shock waves or PA double layers in e-p-i plas-
mas.

Space plasmas are often characterized by a particle dis-
tribution function with high energy tail and they may deviate
from the Maxwellian (Alam et al. 2013). In a number of he-
liospheric environments, the plasma contains nonthermally
distributed ions (Tasnim et al. 2013; Shuchy et al. 2013) or
electrons (Mamun et al. 1996; Shukla and Mamun 2002;
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Verheest and Pillay 2008). So these energetic nonthermal
particles and their distribution have achieved an impressive
attention in understanding the nature of nonlinear waves in
astrophysical plasmas, especially in the upper Martian iono-
sphere (Lundin et al. 1989), in the auroral acceleration re-
gion (Temerin et al. 1982), in/around the Earth’s bow shock
(Matsumoto et al. 1994), etc. Nonthermal distributed elec-
trons and positrons are predicted to exist in the expansion
phenomenon of laser induced plasmas (Doumaz and Djebli
2010). Cairns et al. (1995) used nonthermal distribution for
electrons to study the ion-acoustic solitary waves (IASWs)
and showed that it is possible to obtain both positive and
negative solitary waves. Chatterjee et al. (2012) investigated
the planar and nonplanar IASWs in e-p-i plasma system
consisting of nonthermal distributed electrons and positrons,
and singly charged adiabatically hot positive ions. Rahman
et al. (2014c) studied the PA shock waves in e-p-i plasmas
comprising of nonthermal distributed hot positrons and elec-
trons, inertial cold positrons, and immobile positive ions.

At present, the properties of PASWs have a great impor-
tance in understanding the characteristics of the localized
electrostatic structures in both space and laboratory plas-
mas as new sources of cold positrons are now available
and well developed (Abdullah et al. 1995; Kurz et al. 1998;
Greaves et al. 2002). The nonlinear propagation of PASWs
in e-p-i plasmas have been thoroughly studied by several
authors (Tribeche et al. 2009; El-Shamy et al. 2012; Rah-
man et al. 2014a, 2014b). Tribeche et al. (2009) investi-
gated the small amplitude PASWs in a four component e-p-i
plasma consisting of Maxwellian distributed electrons and
hot positrons, inertial cold positrons, and stationary ions. El-
Shamy et al. (2012) considered the same plasma model of
Tribeche et al. (2009) and investigated the characteristics
of the head-on collision between two PASWs. Moreover,
using the well-known reductive perturbation method, Rah-
man et al. (2014a, 2014b) studied either planar or nonpla-
nar PA Gardner solitons in e-p-i plasmas by considering the
same plasma model of Rahman et al. (2014c). However, all
of these theoretical works (Tribeche et al. 2009; El-Shamy
et al. 2012; Rahman et al. 2014a, 2014b) are either limited to
a finite value of A (A is the nonlinear coefficient) or under-
standable to describe the models in an unmagnetized e-p-i
plasma system and the authors of these papers have not con-
sidered the effects of magnetic field or obliqueness on those
solitary waves (SWs). Thus, to obtain a more generalized
work on an e-p-i plasma [containing nonthermal (Cairns dis-
tributed) hot positrons and electrons, inertial cold positrons,
and immobile positive ions], we have derived and solved the
Zakharov-Kuznetsov (ZK) equation, and analyzed the SWs
both numerically and analytically in this manuscript.

The manuscript is arranged as follows: The governing
equations are given in Sect. 2. The derivation and solution
of the ZK equation are provided in Sect. 3. Finally, a brief
discussion is presented in Sect. 4.

2 Governing equations

We consider the nonlinear propagation of collisionless PA
waves in a magnetized e-p-i plasma consisting of nonther-
mal (Cairns distributed) hot positrons and electrons, inertial
cold positrons, and immobile positive ions. Hence, at equi-
librium, ne0 = npc0 + nph0 + ni0, where ni0 and ne0 are the
number densities of the unperturbed ions and electrons, re-
spectively. npc0 (nph0) is the unperturbed number density
of cold (hot) positrons. The electrons and the hot positrons
follow the nonthermal distribution of Cairns et al. (1995),
which is given by the following expressions:

ne = ne0
(
1 − βφ + βφ2) exp

(
eφ

Te

)
,

nph = nph0
(
1 + βφ + βφ2) exp

(
− eφ

Tph

)
,

where β is the nonthermal parameter, ne and nph are
the number densities of the perturbed electrons and hot
positrons, Te and Tph are the temperatures of electrons and
hot positrons (in the energy units), respectively. The range
of the nonthermal parameter β is 0 ≤ β ≤ 4/3 (El-Taibany
et al. 2010; El-Labany et al. 2012). When β → 0, the above
two equations give the Boltzmann distribution of electrons
and hot positrons respectively.

The normalized basic equations governing the dynamics
of the obliquely propagating PA waves in such a plasma sys-
tem are given as follows:

∂npc

∂t
+ ∇ · (npcupc) = 0, (1)

∂upc

∂t
+ (upc · ∇)upc = −∇φ + α(upc × ẑ), (2)

∇2φ = −npc − μ1
(
1 + βσφ + βσ 2φ2) exp (−σφ)

+ μ2
(
1 − βφ + βφ2) exp (φ) − μ3, (3)

where npc is the cold positron number density normalized
by its equilibrium value npc0, upc is the cold positron fluid
speed normalized by Cpc = (kBTe/mp)1/2, φ is the elec-
trostatic wave potential normalized by kBTe/e, kB is the
Boltzmann constant, mp is the positron mass, e is the mag-
nitude of the electron charge, σ = Te/Tph, α = ωc/ωp ,
μ1 = nph0/npc0, μ2 = ne0/npc0, and μ3 = ni0/npc0. The
time variable t is normalized by ω−1

p = (mp/4πnpc0e
2)1/2,

and the space variable x is normalized by the Debye length
λD = (kBTe/4πnpc0e

2)1/2.

3 Derivation of Zakharov-Kuznetsov equation

To study small but finite amplitude electrostatic PASWs in
the e-p-i plasma system under consideration, one can use a
scaling of the independent variables through the stretched
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coordinates (Washimi and Taniuti 1966; Kundu et al. 2013):

X = ε1/2x, (4)

Y = ε1/2y, (5)

Z = ε1/2(z − Vpt), (6)

τ = ε3/2t, (7)

where Vp is the phase speed normalized by the positron-
acoustic speed (Cpc) and ε is a smallness parameter mea-
suring the weakness of the dispersion (0 < ε < 1). It may be
noted here that X, Y , and Z are all normalized by the De-
bye radius λD , and τ is normalized by the ion plasma period
(ω−1

p ). The perturbed quantities npc, upcx , upcy , upcz, and
φ can be expanded along with their equilibrium values as
(Washimi and Taniuti 1966; Shukla et al. 1991)

npc = 1 + εn(1)
pc + ε2n(2)

pc + · · · , (8)

upcx = ε3/2u(1)
pcx + ε2u(2)

pcx + · · · , (9)

upcy = ε3/2u(1)
pcy + ε2u(2)

pcy + · · · , (10)

upcz = εu(1)
pcz + ε2u(2)

pcz + · · · , (11)

φ = εφ(1) + ε2φ(2) + · · · . (12)

Now, using Eqs. (4)–(7) and substituting Eqs. (8)–(12) into
Eqs. (1)–(3), one can obtain the first order continuity equa-
tion, the z component of the momentum equation, and Pois-
son’s equation which, after some simplification, produce

n(1)
pc = ψ

V 2
p

, (13)

u(1)
pcz = ψ

Vp

, (14)

Vp = 1√
(1 − β)(μ1σ + μ2)

, (15)

where ψ = φ(1). Equation (15) indicates the phase speed of
the PA waves propagating in the magnetized e-p-i plasma.
It is important to note that Vp becomes infinity at β → 1.
To validate Vp , we have taken the range of the nonthermal
parameter β as 0.1 ≤ β ≤ 0.9 (Jilani et al. 2013). The first
order x and y components of the momentum equation can
be represented as

u(1)
pcx = − 1

α

∂ψ

∂Y
, (16)

u(1)
pcy = 1

α

∂ψ

∂X
. (17)

Equations (16) and (17) represent the x and y-components
of the cold positron electric field drifts respectively. These
equations are also satisfied by the second order continuity
equation.

Again, using Eqs. (4)–(7) and Eqs. (8)–(12) into
Eqs. (1)–(3), and eliminating u

(1)
pcx,y , the next higher order

x and y-components of the momentum equation, and Pois-

son’s equation can be found as

u(2)
pcx = Vp

α2

∂2ψ

∂Z∂X
, (18)

u(2)
pcy = Vp

α2

∂2ψ

∂Z∂Y
, (19)

∂2ψ

∂X2
+ ∂2ψ

∂Y 2
+ ∂2ψ

∂Z2
= Mψ2 + Nφ(2) − n(2)

pc . (20)

Where M = 1
2 (μ2 − μ1σ

2) and N = (1 − β)(μ1σ + μ2).
Equations (18) and (19) indicate the x and y-components

of the cold positron polarization drifts respectively. Follow-
ing the same procedure as before we can get the next higher
order continuity equation, and z-component of the momen-
tum equation. Now employing these new higher order equa-
tions along with Eqs. (13)–(20), one can easily eliminate
n

(2)
pc , u

(2)
pcz, and φ(2), and can finally obtain

∂ψ

∂τ
+ ABψ

∂ψ

∂Z
+ 1

2
A

∂

∂Z

×
[

∂2

∂Z2
+ D

(
∂2

∂X2
+ ∂2

∂Y 2

)]
ψ = 0, (21)

where

A = V 3
p , (22)

B = 1

2

[
μ1σ

2 − μ2 − 3

V 4
p

]
, (23)

D = 1 + 1

α2
. (24)

Equation (21) is the ZK equation describing the nonlinear
propagation of the PA waves in a magnetized e-p-i plasma
with nonthermal distributed hot positrons and electrons.

We can use linear wave theory to derive the linearized ZK
Equation. By linearizing Eq. (21) we have,

∂ψ

∂t
+ 1

2
A

∂

∂Z

[
∂2

∂Z2
+ D

(
∂2

∂X2
+ ∂2

∂Y 2

)]
ψ = 0. (25)

We assume that the variation of the dispersion equation (ω
k
)

in the transverse dimensions (the X and Y directions) is
much slower than that of the Z direction, then we can ne-
glect the transverse dimensions, i.e., ∂

∂X
= ∂

∂Y
→ 0. Then

from Eq. (25),

∂ψ

∂t
+ 1

2
A

∂3

∂Z3
ψ = 0. (26)

Let us consider, ψ ∝ exp[−i(ωt +kZ)]. Then from Eq. (26),
we have

− iωψ + 1

2
Aik3ψ = 0,

(
ω − 1

2
Ak3

)
ψ = 0,

(
ω − 1

2
Ak3

)
= 0, ψ �= 0

ω = 1

2
Ak3.

(27)
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Where, A = V 3
p . Equation (27) indicates the linear disper-

sion relation of PA waves propagating in the plasma system
under consideration. The linear dispersion relation graph has
been shown in Fig. 1.

To study the properties of the SWs propagating in a direc-
tion making an angle δ with the Z-axis, i.e. with the exter-
nal magnetic field and lying in the (Z–X) plane, the coordi-
nate axes (X,Z) are rotated through an angle δ, keeping the
Y -axis fixed. Thus, we transform our independent variables
to

ρ = X cos δ − Z sin δ, η = Y,

ξ = X sin δ + Z cos δ, τ = t.
(28)

The transformation of these independent variables (Washimi
and Taniuti 1966; Shukla et al. 1991) helps us to write the
ZK equation in the form

∂ψ

∂t
+ δ1ψ

∂ψ

∂ξ
+ δ2

∂3ψ

∂ξ3
+ δ3ψ

∂ψ

∂ρ
+ δ4

∂3ψ

∂ρ3

+ δ5
∂3ψ

∂ξ2∂ρ
+ δ6

∂3ψ

∂ξ∂ρ2
+ δ7

∂3ψ

∂ξ∂η2
+ δ8

∂3ψ

∂ρ∂η2
= 0,

(29)

where

δ1 = AB cos δ,

δ2 = 1

2
A

(
cos3 δ + D sin2 δ cos δ

)
,

δ3 = −AB sin δ,

δ4 = −1

2
A

(
sin3 δ + D sin δ cos2 δ

)
,

δ5 = A

[
D

(
sin δ cos2 δ − 1

2
sin3 δ

)
− 3

2
sin δ cos2 δ

]
,

δ6 = −A

[
D

(
sin2 δ cos δ − 1

2
cos3 δ

)
− 3

2
sin2 δ cos δ

]
,

δ7 = 1

2
AD cos δ,

δ8 = −1

2
AD sin δ.

(30)

The steady state solution of this ZK equation can be written
in the form

ψ = ψ0(Z), (31)

where

Z = ξ − U0t,

here U0 is a constant speed normalized by the positive
positron-acoustic speed (Cpc). Using this transformation,
the ZK equation can be written in steady state form as

−U0
dψ0

dZ
+ δ1ψ0

dψ0

dZ
+ δ2

d3ψ0

dZ3
= 0. (32)

Now, applying the appropriate boundary conditions, viz.
ψ → 0, (dψ/dZ) → 0, (d2ψ/dZ2) → 0 as Z → ±∞, the

Fig. 1 Variation of the angular frequency (ω) with wave number (k)

for different values of the nonthermal parameter β . Here μ1 = 0.25,
μ2 = 1.5, and σ = 2

Fig. 2 Variation of the amplitudes of the SWs with nonthermal param-
eter β for μ1 = 0.25, μ2 = 1.5, δ = 18◦, and σ = 2

solitary wave solution of this equation is given by

ψ0(Z) = ψmsech2(kZ), (33)

where ψm = 3U0/δ1 is the amplitude and k =
√

U0
4δ2

is the
inverse of the width of the SWs. As U0 > 0, it is clear from
Eqs. (21), (23), and (29) that depending on the sign of B , the
SWs will exist with only positive potential (ψm > 0).

We have considered the steady state solution of the ZK
Eq. (21) in one dimension in which all δ’s except δ1 and
δ2 are disappeared. This means that only δ1 and δ2 which
are functions of δ appear in the solution (Emamuddin et al.
2014). Therefore, we have shown how the width of the SWs
vary with δ (displayed in Fig. 5).

Figure 1 represents the variation of the angular frequency
(ω) with wave number (k) for different values of the non-
thermal parameter β . Figure 2 represents the variation of
the amplitudes of the positive SWs for different values of β ,
and Fig. 3 also displays the variation of the amplitudes of
the positive SWs with the temperature ratio σ for different
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Fig. 3 Variation of the amplitudes of the SWs with σ for different
values of μ2. The values of other parameters are μ1 = 0.25, δ = 18◦,
and β = 0.6

Fig. 4 Variation of the amplitudes of the SWs with μ1 for different
values of nonthermal parameter β . The values of other parameters are
μ2 = 1.5, δ = 18◦, and σ = 2

values of the number density ratio μ2. Figure 4 indicates
the variation of the amplitudes of the positive SWs with the
number density ratio μ1 for different values of β , and Fig. 5
describes the variation of the widths of the SWs with oblique
angle δ for different values of the frequency ratio α.

4 Discussion

We have considered a magnetized e-p-i plasma (contain-
ing nonthermal hot positrons and electrons, inertial cold
positrons, and immobile positive ions) and investigated the
oblique propagation of PASWs. By using the reductive per-
turbation method, we have derived the ZK equation which
is valid for small and finite amplitude limit but not valid
for large oblique angle δ that makes the wave amplitude
infinitely large. Then we have solved the ZK equation and
investigated in brief, the effects of the obliqueness, the mag-
netic field, the nonthermality effect on electrostatic SWs ex-

Fig. 5 Variation of the widths of the SWs with δ for different values
of α. The values of other parameters are μ1 = 0.25, μ2 = 1.5, β = 0.6,
and σ = 2

isting in a magnetized e-p-i plasma. The analysis of our re-
sults can be summarized as follows:

1. The angular frequency ω does not change up to the lower
value of the wave number k (up to k ∼ 0.375) as depicted
in Fig. 1. After that value of k, ω increases significantly
with the increase in k. ω is found to increase with in-
creasing nonthermal parameter β . Thus, we can say that
the phase speed of PA waves increases with increasing β .

2. The amplitude of the positive potential SWs increases
steeply with the increase of β as shown in Fig. 2. Thus
the nonthermality has a positive effect on the amplitude,
i.e., the amplitude increases with increasing the nonther-
mality (Fig. 2).

3. Figure 3 indicates that the amplitude of the positive
potential SWs decreases almost exponentially with the
increase of the temperature ratio of electron and hot
positron σ but increases with the increase of the number
density ratio of electron and cold positron μ2.

4. The amplitude of the positive potential SWs decreases
with the increase of the number density ratio of hot
positron and cold positron μ1 but increases with the in-
crease of β as depicted in Fig. 4.

5. The effect of variation of the oblique angle δ on the
widths of the SWs is that the width of these SWs in-
creases with δ for its lower range (0◦ to 45◦) and de-
creases for its higher range (45◦ to 90◦). It should be
pointed out that for very large value of angle δ (δ ∼ 90◦),
the width −→ 0 and the amplitude becomes ∞, thus the
assumption of electrostatic wave will no longer be valid
and the electromagnetic structure will be dominant. Our
present work is only valid for small value of δ but in-
valid for arbitrary large value of δ. In case of larger values
of δ, the wave amplitude becomes large enough to break
the validity of the reductive perturbation method (Aline-
jad 2012). Consequently, it is also marked that with the
increase in frequency ratio α (cold positron cyclotron
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frequency to cold positron plasma frequency ratio), the
amplitudes become almost spiky as displayed in Fig. 5.

6. It is found that α increases due to the increase of the
external magnetic field causes the width of the SWs
to decrease (Fig. 5) supporting some of the published
articles of Mamun (1998, 1999), Anowar and Mamun
(2008a, 2008b).

To conclude, we have studied and analyzed the basic prop-
erties of the obliquely propagating PASWs in a magnetized
e-p-i plasma system containing nonthermal hot positrons
and electrons, inertial cold positrons, and immobile positive
ions. The results of our present investigation can be effec-
tive for explaining the various localized structures and the
basic features of PASWs in magnetized e-p-i plasmas, and
can also be applied to space plasma environments [viz. star
formation, auroral acceleration regions (Ergun et al. 1998;
Franz et al. 1998), supernovae explosion, cluster explosions,
active galactic nuclei, etc.] as well as laboratory plasmas
[viz. semiconductor plasmas (Shukla et al. 1986), intense
laser fields (Berezhiani et al. 1992)] where nonthermal hot
positrons and electrons, inertial cold positrons, and immo-
bile positive ions can be the major plasma components. Fi-
nally, it should be mentioned that the time evolution and sta-
bility analysis of these solitary structures are problems of
great interest but beyond the scope of our present work.
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