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Abstract In this paper, we discuss dynamical properties
of dissipative collapsing cylindrical self-gravitating systems
with account of f (R) = R + γR2 + β1R

3 gravity model. In
this perspective, we see effects of higher curvature terms in
the formulations of structure scalars already obtained from
the orthogonal decomposition of Weyl curvature scalar in
general relativity. We compute mass function by general-
izing Misner-Sharp formalism and discuss the contribution
of relaxation time in the radiating collapsing process. The
contribution of scalar functions in the modeling of static
anisotropic as well as isotropic fluid configurations are ex-
plored. We conclude that all static anisotropic cylindrical so-
lutions of f (R) field equations can be written explicitly by
means of triplet of these scalar functions.

Keywords Dissipative systems · Relativistic systems ·
Modified gravity

1 Introduction

The general relativistic anisotropic as well as isotropic stel-
lar bodies has always been a subject of great interest for
astrophysicists. Among widely consented constraints in the
analysis of compacts systems, one is that the pressure of
some relativistic systems, like neutron star, is isotropic in na-
ture. However, after the leading work of Bowers and Liang
(1974) there is an immense literature for the analysis of
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spherically compact system with anisotropic fluid distribu-
tion. Herrera and Santos (1997) showed the relevance of
anisotropic pressure and their importance in the study of col-
lapsing compact stars with and without dissipation effects.
Mak and Harko (2003) found some exact models of spher-
ically symmetric stars coupled with anisotropic fluid distri-
bution. Di Prisco et al. (2007) explored that anisotropic pres-
sure increases the active gravitational mass of the collapsing
spherical stellar body. Cipolletta and Giambó (2012) exam-
ined the contribution of pressure anisotropy on the spherical
gravitational collapse in cosmos.

Penrose and Hawking (1979) found Weyl curvature
scalar as a key figure for discussing energy density inho-
mogeneities of spherical stars. Herrera et al. (1998) deter-
mined inhomogeneity factor that may lead to naked singu-
larities. Mena et al. (2000) investigated the contribution of
irregularities and shearing motion on the final phases of the
collapsing dust cloud. Herrera et al. (2004) found density
irregularity constraint for a radiating star by means of a rela-
tion that correspond to anisotropic pressure, shear and Weyl
scalars. Sharif and Bhatti extended their results and found
inhomogeneity parameters for conformally flat (Sharif and
Bhatti 2014a), non-tilted (Sharif and Bhatti 2014b) and tilted
charged (Sharif and Bhatti 2014c) plane relativistic systems.

Fátima et al. (1991) studied the dynamics of cylindri-
cal collapsing systems with non-adiabatic matter distribu-
tion. Wang (2003) explored the cylindrical collapse and
found constraint under which collapse may lead to black
holes. Herrera and Santos (2005) concluded that cylindri-
cal system with collapsing source will always emit gravi-
tational radiations from the source. Di Prisco et al. (2009)
obtained analytical models for cylindrical collapsing sys-
tem coupled with anisotropic fluid which may help to study
the phenomenon of gravitational radiation during collaps-
ing process. Ziaie et al. (2011) studied stellar collapse with
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f (R) = αRn corrections and found that for some specific
values of energy density as well as α and n, collapse may
lead to a naked singularity.

Debnath et al. (2012) explored the nature of singulari-
ties in the collapse of stellar system coupled with isotropic
matter distribution. Capozziello et al. (2012) studied perfect
fluid collapse through Jeans investigation in the presence of
f (R) corrections. Sebastiani et al. (2013) investigated the
evolution of Nariai black holes by means of cosmological
patch scheme with a specific f (R) formalism and concluded
that evolutionary stages of collapsing system is controlled
by particular choice of f (R) model. Brito et al. (2013) found
some exact cylindrically symmetric models with anisotropic
pressure in the presence of cosmological constant. Guha and
Banerji (2014) analyzed the contribution of several physical
parameters to determine the possible solution of cylindrical
collapse. We have explored the collapse of spherical (Sharif
and Yousaf 2013) as well as cylindrical (Sharif and Yousaf
2014d) and restricted axial (Sharif and Yousaf 2014c) sys-
tems in f (R) gravity and found that matter variables along
with f (R) corrections in the field equations occupy key role
in the dynamics of collapsing system.

Bel (1961) was the first who performed orthogonal de-
composition of the curvature tensor. Herrera et al. (2009)
put forward this notion and introduced scalar functions, XT ,
XTF , YT , YTF , and relate them with the Weyl tensor. Herrera
et al. (2010a, 2010b) discussed the formation and evolution
of stellar dissipative stars by evaluating five distinct structure
scalars. Sharif and Bhatti extended their results in the pres-
ence of electromagnetic field for planar (Sharif and Bhatti
2012a) and cylindrical (Sharif and Bhatti 2012b) celestial
bodies. Herrera et al. (2012) studied dynamical properties of
cylindrically symmetric metric and analyzed thermo-inertial
effects in collapsing mechanism by evaluating eight dis-
tinct structure scalars. Recently, we have analyzed the ef-
fects of polynomial (Sharif and Yousaf 2014a) and gener-
alized Carrol-Duvvuri-Trodden-Turner (Sharif and Yousaf
2014b) f (R) models on energy density irregularities in rel-
ativistic self-gravitating fluids by evaluating modified struc-
ture scalars.

In the present paper, we explore the effects of fluid vari-
ables as well as f (R) corrections on the structure and evo-
lution of radiating cylindrical compact object. The paper
is outlined as follows. Section 2 is devoted to describe
the basic formalism for our study. In Sect. 3, we evaluate
eight distinct f (R) structure scalars as well as conserva-
tions laws. We also develop two important equations relat-
ing Weyl scalar, matter variables and scalar quantities. Sec-
tion 4 is devoted to calculate generalized mass function and
dynamical-transport equation. We also discuss their role on
the evolutionary phases of gravitational collapse. In Sect. 5,
we present static anisotropic as well as isotropic cylindri-
cal models in terms of these scalars functions. Finally, we
provide a summary of the results.

2 Radiating anisotropic fluid cylinders

In f (R) gravity, the gravitational portion of the Einstein-
Hilbert action is modified as

Sf (R) = 1

2κ

∫
d4x

√−gf (R), (1)

where κ is the coupling constant and f (R) is a non-linear
generic function of the Ricci curvature. Notice that limit,
i.e., f (R) → R provides the usual Einstein-Hilbert. Upon
variation of the above equation with respect to gαβ , the met-
ric f (R) field equations are obtained as

fR(R)Rαβ − 1

2
f (R)gαβ + (gαβ�− ∇α∇β)fR(R)

= κTαβ, (2)

where � is the d’Alembert operator while ∇α symbolizes
for covariant derivative. We can write Eq. (2) in the fabric of
Einstein field equations as

Gαβ = κ

fR

( (D)

Tαβ +Tαβ

)
, (3)

where

(D)

Tαβ = 1

κ

{
∇α∇βfR −�fRgαβ + (f − RfR)

gαβ

2

}

describes gravitational interaction due to f (R) gravity
which disappears identically in f (R) → R limit. We model
the system with general non-rotating cylindrically symmet-
ric spacetime (Herrera et al. 2012)

ds2 = −A2(t, r)
(
dt2 − dr2) + B2(t, r)dz2

+ C2(t, r)dφ2, (4)

filled with radiating anisotropic fluid. In order to achieve
cylindrical symmetry of the above spacetime, we require va-
lidity of the following relations

−∞ ≤ t ≤ ∞, 0 ≤ r, −∞ < z < ∞,

0 ≤ φ ≤ 2π.

We also suppose that C = 0 at null radial distance, r , which
shows non-singular axis. The fluid distribution is bounded
by a timelike hypersurface Σ described by the following
energy-momentum tensor

Tαβ = (μ + P)VαVβ + qαVβ + Pgαβ + qβVα + Παβ, (5)

where μ, Pr , Pz, Pφ , qα are fluid energy density, princi-
pal stresses and heat conducting vector, respectively, while
Παβ = (Pφ − Pr)(KαKβ − hαβ

3 ) + (Pz − Pr)(SαSβ − hαβ

3 ).
The quantities, Sα , Kα and Lα , are unitary vectors con-
figuring canonical orthonormal tetrad. Under comoving
coordinate system, the vectors Vα = (−A,0,0,0), Lα =
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(0,A,0,0), Sα = (0,0,B,0) and Kα = (0,0,0,C) satisfy
the following equations

SαSα = LαLα = KαKα = 1, V αVα = −1,

V αSα = V αLα = KαV α = KαSα = 0.

The metric f (R) field equations for the spacetime (4) are
given as follows

ĊḂ

BC
− C′′

C
− B ′C′

BC
− B ′′

B
+ α

= κ

fR

[
μA2 + A2

κ

{
f ′′

R

A2
− A′f ′

R

A3
− ȦḟR

A3
− γ

}]
, (6)

(
C′

C
+ B ′

B

)
Ȧ

A
− Ċ′

C
+

(
Ċ

C
+ Ḃ

B

)
A′

A
− Ḃ ′

B

= κ

fR

[
−qA2 + 1

κ

(
ḟ ′

R − A′

A
ḟR − Ȧ

A
f ′

R

)]
, (7)

B ′C′

BC
− ḂĊ

BC
− B̈

B
− C̈

C
+ α

= κ

fR

[
PrA

2 + A2

κ

{
f̈R

A2
− ȦḟR

A3
− A′f ′

R

A3
+ γ

}]
, (8)

(
B

A

)2[
β − C̈

C
+ C′′

C

]

= κ

fR

[
PzB

2 + B2

κ

{
δ − 1

A2

C′f ′
R

C

}]
, (9)

(
C

A

)2[
β − B̈

B
+ B ′′

B

]

= κ

fR

[
PφC2 + C2

κ

{
δ − 1

A2

B ′f ′
R

B

}]
, (10)

where

α = Ȧ

A

(
Ḃ

B
+ Ċ

C

)
+ A′

A

(
B ′

B
+ C′

C

)
,

β = Ȧ2

A2
− Ä

A
− A′2

A2
+ A′′

A
,

γ = f − RfR

2
−

(
B ′

B
+ C′

C

)
f ′

R

A2
+

(
Ḃ

B
+ Ċ

C

)
ḟR

A2
,

δ = f − RfR

2
+ 1

A2

(
f̈R − f ′′

R + ĊḟR

C

)
,

where prime and dot symbolize for ∂
∂r

and ∂
∂t

operators, re-
spectively. The tensor σαβ controlling the shearing motion
of the fluid can be written in terms of σs and σk scalars as

σαβ =
(

KαKβ − 1

3
hαβ

)
σk +

(
SαSβ − 1

3
hαβ

)
σs,

σαβσαβ = (
σ 2

k + σ 2
s − σkσs

)2

3
,

where

σk = −
(

Ȧ

A
− Ċ

C

)
1

A
, σs = −

(
Ȧ

A
− Ḃ

B

)
1

A
.

The Weyl tensor C
ρ
αβμ can be splitted into its magnetic and

electric parts that can be written with the help of unitary
vectors Sα , Kα and some scalars functions Es , Ek and H as

Hαβ = (KβSα + KαSβ)H,

Eαβ =
(

SαSβ − hαβ

3

)
Es +

(
KαKβ − hαβ

3

)
Ek,

(11)

where

H = −C0313

C2A2
,

Es = − 1

A2

(
C0101 − C0202

B2

)
,

Ek = − 1

A2

(
C0101 − C0303

C2

)
.

(12)

The components of the Weyl tensor C0202, C0101, C0303,
C0313 are given in a recent paper (Herrera et al. 2012).

3 Modified structure scalars

The orthogonal decomposition of the Riemann curvature
tensor provides three tensors, i.e., Xαβ , Yαβ and Zαβ which
are further divided into trace (denoted with subscript T ) and
traceless (denoted by Xs , Xk , Ys , Yk , ZH , Zq ) parts known
as structure scalars. The three tensors are given as follows
(Herrera et al. 2010a, 2010b)

Zαβ = Hαβ + κ

2fR

(
q −

(D)

T01

A2

)ρ

εαβρ, (13)

Yαβ =
(

SαSβ − hαβ

3

)
Ys +

(
KαKβ − hαβ

3

)
Yk + hαβ

3
YT ,

(14)

Xαβ =
(

SαSβ − hαβ

3

)
Xs +

(
KαKβ − hαβ

3

)
Xk + hαβ

3
XT .

(15)

The f (R) structure scalars for cylindrical symmetry by
means of fluid variables can be written using Eqs. (6)–(10)
and (12) as

YT = κ

2fR

(
μ + Pz + Pr + Pφ +

(D)

T00

A2

+
(D)

T11

A2
+

(D)

T22

B2
+

(D)

T33

C2

)
, (16)
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XT = κ

fR

(
μ +

(D)

T00

A2

)
,

Ys = Es − κ

2fR

(
Pz − Pr +

(D)

T22

B2
−

(D)

T11

A2

)
,

(17)

Yk = Ek − κ

2fR

(
Pφ − Pr +

(D)

T33

C2
−

(D)

T11

A2

)
,

Zq = κ

2fR

(
q −

(D)

T01

A2

)
,

(18)

Xs = −Es − κ

2fR

(
Pz − Pr +

(D)

T22

B2
−

(D)

T11

A2

)
,

ZH = 2H,

(19)

Xk = −Ek − κ

2

(
Pφ − Pr +

(D)

T33

C2
−

(D)

T11

A2

)
. (20)

This clearly indicates that scalar functions associated in the
modeling of collapsing cylindrical celestial body in f (R)

gravity are eight in number. These f (R) structure scalars in
spherical relativistic system were found to be five in number
in our previous paper (Sharif and Yousaf 2014a). All struc-
ture scalars of general relativity (Herrera et al. 2012) can be
retrieved, when we take f (R) = R in the above equations.

The law of conservation of effective and usual energy-
momentum tensors gives

μ∗ + (μ + Pr)Θ + qαaα + qα
;α + Παβσαβ

+ 1

3
Πα

αΘ + D0 = 0, (21)

hαβ
(
Π

μ

β;μ + Pr;β + q∗
β

) + aα(μ + Pr)

+ 4

3
qαΘ + qμσα

μ + D1 = 0, (22)

while D0 and D1 are f (R) dark source terms mentioned in
Appendix. Equation (22) can be rewritten in the following
manner as

P †
r + a(μ + Pr) + q∗ − 1

A

[
(Pz − Pr)

B ′

B
+ (Pφ − Pr)

C′

C

]

− q

3
(σs − 4Θ + σk) + D1 = 0, (23)

where the operators g† = g,αLα and g∗ = g,αV α . The cou-
ple of important equations required to discuss the dynamics
of relativistic system can be obtained by using Eqs. (6)–(10)
and (16)–(23). These equations were computed in general
relativity by Herrera et al. (2012) which in modified gravity
turns out to be

κ

fR

(
2μ + Pz + Pr + Pφ + 2

(D)

T00

A2
+

(D)

T11

A2
+

(D)

T22

B2
+

(D)

T33

C2

)†

+ 3κ

fR

(
μ + Pr +

(D)

T00

A2
+

(D)

T11

A2

)
a

− 2κ

fR

(
q −

(D)

T01

A2

)
(σs − Θ + σk) + 3κ

fR

(
q −

(D)

T01

A2

)∗

= 3(Xk − Yk)
C′

AC
− (Ys + Yk − Xs − Xk)

†

+ 3(Xs − Ys)
B ′

AB
− 6H(σs − σk), (24)

− κ

fR

(
μ − Pr − Pz + 2Pφ +

(D)

T00

A2
−

(D)

T11

A2
−

(D)

T22

B2
+ 2

(D)

T22

B2

)†

− κ

fR

(σs − Θ − 2σk)

(
q −

(D)

T01

A2

)

− 3κ

fR

(
Pφ − Pr −

(D)

T11

A2
+

(D)

T33

C2

)
C′

AC

= 6H ∗ + (2Ys − 2Xs − Yk + Xk)
† + 3(Ys − Xs)

B ′

AB
+ 3a(Xk − Xs − Yk + Ys) + 6H(Θ − σk). (25)

These equations peculiarly relates fluid parameters, f (R)

dark source terms with modified structure scalars.

4 Viable f (R) model, modified
dynamical-transport equation and mass
function

The f (R) gravity can be considered as a way to explore
several unknown aspects of gravitational physics at large
scales. In this realm, one needs to take well-consistent
f (R) model satisfying experimental tests and conform to
cosmological constraints. Thus, the choice of f (R) model
holds significant importance in f (R) gravity. Here, we are
interested to investigate the effects of R2 model along-
with cubic corrections given as (Nojiri and Odintsov 2011;
Capozziello and De Laurentis 2011)

f (R) = R + γR2 + β1R
3, (26)

where γ and β1 are constants. It is well-known that the in-
clusion of quadratic corrections is an attempt to renormalize
general relativity thereby representing straightforward mod-
ification. The existence of such terms holds potential rele-
vance in cosmology as they assist to understand dynamical
analysis of celestial system with self-consistent inflationary
universe. These corrections can be regarded as beginning ap-
proximations in particular dark energy models in extended
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theories of gravity. Amendola et al. (2007) presented via-
bility conditions of f (R) dark energy models. Another im-
portant issue is the stability of the f (R) models which are
well discussed in the literature (Faraoni and Nadeau 2005;
Böhmer et al. 2007). This f (R) model is a viable cosmolog-
ical model with account of modified gravity that has broadly
been examined in the last decade in several cosmological
and astrophysical scenarios. More recent, Huang (2014) dis-
cussed inflationary mechanism of cosmos with polynomial
f (R) model.

Capozziello et al. (2011) derived modified Lané-Emden
equation in metric f (R) gravity through Newtonian limit.
They obtained density and pressure relation to analyze the
hydrostatic phases of stellar systems. Astashenok et al.
(2013) studied effects of several f (R) models on the evolu-
tion of compact objects and found that f (R) theory likely to
host comparatively huge and massive matter distributions in
cosmos. Astashenok et al. (2013) discussed dynamical col-
lapse of neutron stars in the presence of strong gravitational
fields related to power law corrections. Astashenok et al.
(2015a) explored the existence of several compact objects
like neutron stars with quark cores through numerical tech-
nique by evaluating modified Tolman-Oppenheimer-Volkoff
equations equipped with several realistic equations of state.
They found that comparatively with general relativity, more
supermassive celestial system can obtained through correc-
tion coming out from cubic f (R) model. The same authors
extended their results and studied the consequences of in-
tensive magnetic field on the evolutionary stages of com-
pact objects (e.g. neutron stars) with cubic and quadratic
f (R) models through numerical approach (Astashenok et al.
2015b).

Now, we discuss the role of dissipative parameters in
gravitational collapse within the realm of extra degrees of
freedom allowed due to R2 models with cubic corrections.
In this perspective, we compute dynamical-transport equa-
tion and mass function for cylindrical self-gravitating sys-
tem. The variation of areal radius in cylindrical metric with
proper time gives its velocity and is found to be

U = Ċ

A
= C∗ < 0 (for collapsing system), (27)

which after using Eqs. (8) and (26) provides

U∗ = C′

A
a − κC

1 + 2γR + 3β1R2

(
Pr + 2γ

κ
φγ 1 + 6β

κ
φβ1

)

− C

A2

[
B̈

B
+ Ḃ

B

(
Ċ

C
− Ȧ

A

)
− B ′

B

(
C′

C
+ A′

A

)]
, (28)

where φγ i and φβi are mentioned in the Appendix. This
equation can be recast in terms of Riemann curvature ten-

sor as

U∗ = C′

A
a − κC

1 + 2γR + 3β1R2

(
Pr + 2γ

κ
φγ 1 + 6β

κ
φβ1

)

− C

B2

(
R2323

C2
− R0202

A2

)
.

Using the value of a from above equation in Eq. (23), we
have

U∗(μ + Pr) = −
[{

D3C
′

A
+ κ(μ + Pr)

1 + 2γR + 3β1R2

×
(

Pr + 2γ

κ
φγ 1 + 6β

κ
φβ1

)}

− A

B2
(μ + Pr)

(
R0202

A2
− R2323

C2

)
C′

C

]

+
[
−q∗ + 1

3
(σk + σs − 4Θ)q

]
C′

A
− C′

A

×
[
P †

r − 1

A

(
B ′

B
(Pz − Pr)

+ C′

C
(Pφ − Pr)

)]
, (29)

where D3 indicates dark source terms incorporating quadra-
tic and cubic f (R) corrections and can be evaluated by using
Eq. (26) and Eq. (A.2). We see that the above equation con-
tains terms of four types. First is on the left hand side which
is a product of time derivative of fluid velocity and inertial
mass (density), while other three terms are on the other side
in three different square brackets. The first and second terms
encapsulate effects of effective gravitational force and dissi-
pative phenomena, respectively while the last term is enti-
tled as hydrodynamic force since it includes pressure and
anisotropic gradient entities. Thus the above equation em-
bodies Newtonian configuration of the type

Acceleration × Mass density = Force.

Now we proceed to evaluate mass function in f (R) grav-
ity with cylindrically symmetric background. In this context,
the combination of structure parameters can be written as

B2

3
(2Ys + YT − XT + Xs + Yk − Xk) = R0202

A2
− R2323

C2
,

using Eqs. (16)–(20), this yields

R0202

A2
− R2323

C2

= B2

3
(Es − 2Ek) + κB2

3(1 + 2γR + 3β1R2)

×
[

2Pr − Pz − μ

2
+ Pφ

2
+ γ

κ
(−φγ 0 − 2φγ 2

+ 4φγ 1 + φγ 3) + 3β

κ
(φβ3 − φβ0 − 2φβ2 + 4φβ1)

]
.

(30)
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Using the above relation, we obtain

κC

1 + 2γR + 3β1R2

(
Pr + 2γ

κ
φγ 1 + 6β

κ
φβ1

)

− C

B2

(
R0202

A2
− R2323

C2

)

=
(

Pr + 2γ

κ
φγ 1 + 6β

κ
φβ1

)
κC

2(1 + 2γR + 3β1R2)

+
{
μ − Pφ − Pr + 2Pz + 2γ

κ

× (φγ 0 − φγ 1 + 2φγ 2 − φγ 3)

+ 2β

κ
(φβ0 − φβ1 + 2φβ2 − φβ3)

}

× κC

6(1 + 2γR + 3β1R2)
− C

3
(Es − 2Ek). (31)

In order to evaluate the expression for mass function, we
use the general relativity technique mentioned in Di Prisco
et al. (2009) for spherically symmetric case. This provides
the possible generalization of Misner-Sharp mass function
for cylindrically symmetric relativistic system with f (R)

corrections and is found to be

m = κC3

6(1 + 2γR + 3β1R2)

{
μ − Pr + 2Pz − Pφ

+ 6β

κ
(φβ0 − φβ1 + 2φβ2 − φβ3) + 2γ

κ
(φγ 0 − φγ 1

+ 2φγ 2 − φγ 3)

}
− C3

3
(Es − 2Ek), (32)

which after using Eqs. (17)–(20) can be written as

3m

C3
= κ

2(1 + 2γR + 3β1R2)

{
μ + Pφ − 2Pr

+ Pz + 2γ

κ
(φγ 0 − 2φγ 1 + φγ 2 + φγ 3)

+ 6β

κ
(φβ0 − 2φβ1 + φβ2 + φβ3)

}
− (Ys − 2Yk),

(33)

3m

C3
= κ

2(1 + 2γR + 3β1R2)

{
μ + 3Pz − 3Pφ

+ 2γ

κ
(φγ 0 − 3φγ 3 + 2φγ 2)

+ 6β

κ
(φβ0 − 3φβ3 + 2φβ2)

}
+ (Xs − 2Xk). (34)

The alternative relation of mass function in terms of
f (R) scalars functions can be obtained with the help of
Eqs. (17)–(20) and (23)–(25) as follows

(Xs + 3Ys + Xk − 3Yk)
†

−
[

κ

1 + 2γR + 3β1R2

(
μ + 2γ

κ
φγ 0 + 6β

κ
φβ0

)]†

= κ

1 + 2γR + 3β1R2

(
q − 2γ

κ
φγq − 2β

κ
φβq

)

× (σk − Θ − 2σs) − (Ys + Xs)
3B ′

AB

+ (Yk − Xk)
3C′

AC
− 6H ∗ + 6H(σs − Θ)

− 3a(Ys − Yk − Xs + Xk). (35)

Making use of Eqs. (33) and (34), we obtain

6m

C3
= κ

1 + 2γR + 3β1R2

(
μ + 2γ

κ
φγ 0 + 6β

κ
φβ0

)

− Xk − 3Ys − Xs + 3Yk.

Next, we apply an operator † on the above equation and use
Eq. (35), it follows that
(

6m

C3

)†

= 6H ∗ + 3

A
(Ys + Xs)

B ′

B
− 6H(σs − Θ)

+ 3

A
(Xk − Yk)

C′

C
+

(
q − 2γ

κ
φγq − 2β

κ
φβq

)

× κ(2σs − σk + Θ)

1 + 2γR + 3β1R2

+ 3a(Xk + Ys − Xs − Yk),

whose integration provides

m = C3

2

∫ [
(Ys + Xs)

B ′

B
− 2AH(σs − Θ)

+ 2AH ∗ + (Xk − Yk)
C′

C
+

(
q − 2γ

κ
φγq − 2β

κ
φβq

)

× Aκ(2σs − σk + Θ)

3(1 + 2γR + 3β1R2)
(2σs + Θ − σk)

+ aA(Ys − Xs − Yk + Xk)

]
dr + C3λ(t)

6
, (36)

where λ is an integration function. It is obvious that the
f (R) dark source quantities, modified structure scalars and
other physical variables affect the mass function. Feeding
the values of Xs , Yk , Ys , Xk from Eqs. (17)–(20) in the above
relation, we obtain

m = C3

2

∫ [
− κ

1 + 2γR + 3β1R2

×
{
Pz − Pr + 2γ

κ
(φγ 2 − φγ 1) + 6β

κ
(φβ2 − φβ1)

}
B ′

B

− 2AH(σs − Θ) + 2AH ∗ − 2Ek

C′

C

+ κA

3(1 + 2γR + 3β1R2)

(
q + 2γ

κ
φγq + 2β

κ
φβq

)

× (2σs + Θ − σk)

+ aA(Ys − Xs − Yk + Xk)

]
dr + C3λ(t)

6
. (37)
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This yields that how Weyl tensor and fluid parameters
like, dissipative quantities, pressure anisotropy, shear, ex-
pansion and modified structure scalars affect the existence
of mass of cylindrical self-gravitating body with f (R)

corrections. The above relation describes the contribution
of modified structure scalars (which were originally ob-
tained through orthogonal splitting of the Riemann curva-
ture tensor) in developing the cylindrical dissipative self-
gravitating system. Here we take an account R2 model
with cubic corrections in Ricci scalar. The R2 terms are
controlled by the parameter γ while the cubic corrections
are ensured through the existence of β1. These may spark
the tendency of f (R) models to develop gravitational at-
traction at early times. It is worthy to stress that signif-
icant massive compact objects can be found with f (R)

extra degrees of freedom coming out from cubic f (R)

higher curvature terms (Astashenok et al. 2015a). This pro-
vides the realistic signature of the presence of more mas-
sive and huge self-gravitating stellar systems which do
have direct correspondence with the observational cosmol-
ogy.

In the analysis of collapsing phenomenon of celestial
objects, the study of radiating variables in the fluid con-
figurations occupies enticing interest. In this context, ef-
fects of thermal conduction on the dynamical analysis of
a spherical collapsing stars were first investigated by Her-
rera et al. (1997) in general relativity. Herrera extended
their results for shear-free anisotropic (Herrera 2006) and
isotropic (Herrera 2002) collapsing self-gravitating systems
and discovered thermoinertial effects associated with the
inertia of thermal energy and hyperbolic character of the
transport equation. Herrera et al. (2006) described decreas-
ing behavior of inertial mass density of the conformally flat
shear-free spherical relativistic star and discussed bounc-
ing phenomenon through numerical technique. To under-
stand the contribution of relaxation time and radiating phe-
nomena in the evolutionary stages of collapsing system,
we develop transport equation from casual radiating theory
(Müller 1967; Israel 1976; Israel and Stewart 1976, 1979)

qα + τhαβV γ qβ;γ

= −1

2
ξqαK2

(
τV β

ξK2

)
;β

− ξhαβ(K,β + Ka),

where τ , ξ and K indicate relaxation time, thermal conduc-
tivity and temperature, respectively. The choice of τ = 0 in
the above equation results the Eckart-Landau (Eckart 1940)
equation. The only one independent component is

τq∗ + q = −ξ
(
K† + Ka

) − 1

2
ξK2q

(
τ

ξK2

)∗
− 1

2
qτΘ.

(38)

Substituting Eqs. (31), (32) and (38) in (29), it follows that

(μ + Pr)

{
1 − ξK

τ(μ + Pr)

}
U∗

= − (μ + Pr)

C2

{
κC3

2(1 + 2γR + 3β1R2)

×
(

Pr + 2γ

κ
φγ 1 + 6β

κ
φβ1

)
+ m

}{
1 − ξK

τ(μ + Pr)

}

+ C′

A

[
−P †

r + 1

A

{
(Pφ − Pr)

C′

C

+ (Pz − Pr)
B ′

B

}
− D3

]
+ C′

A

[
q

τ
+ ξqK2

2τ

(
τ

ξK2

)∗

+ ξK†

τ
+ (σs + σk)

3q
− 5

6
qΘ

]
,

which can be rewritten as

(μ + Pr)(1 − a)U∗

= Fgrav(1 − a) + C′

A

[
−P †

r + 1

A

{
(Pφ − Pr)

C′

C

+ (Pz − Pr)
B ′

B

}
− D3

]
+ C′

A

[
q

τ
+ ξqK2

2τ

(
τ

ξK2

)∗

+ ξK†

τ
+ (σs + σk)

3q
− 5

6
qΘ

]
, (39)

where

Fgrav = − (μ + Pr)

C2

{
κC3

2(1 + 2γR + 3β1R2)

×
(

Pr + 2γ

κ
φγ 1 + 6β

κ
φβ1

)
+ m

}
,

a = ξK

τ(μ + Pr)
.

This provides the thermoinertial contribution on the in-
ertial mass (density) in f (R) gravity. It is noticed that the
above obtained relation invokes corrections to the general
relativity expression (Herrera et al. 2012) thereby modify-
ing the dynamics of cylindrical gravitational collapse. Fgrav

encapsulates the terms of quadratic as well as cubic Ricci
scalar corrections controlled by γ and β1 parameters, re-
spectively. If we take β1 = 0, then the above expression de-
scribes the gravitational force alongwith dynamics permit-
ted due to γR2 gravity. This describes the evolution of grav-
itational collapse in Starobinsky model (Starobinsky 1980)
which is viable inflationary model compatible with temper-
ature anisotropies in cosmic microwave background. Apart
from this, if one takes γ = 0, then the above equation de-
scribes the thermoinertial effects associated to the inertia
of the thermal energy of the transport equation with cu-
bic correction in metric f (R) gravity. It is well-known that
Astashenok et al. (2013) for sufficiently large and negative
values of β1, one can achieve even more massive compact
objects thereby indicating interesting results about the dy-
namics of self-gravitating objects. Moreover, for R2 gravity
alongwith cubic correction, one can get even more stable
stellar distributions in cosmos.
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5 Static anisotropic cylinders

Here, we explore the importance of modified structure func-
tions in the likely solutions of metric f (R) field equations.
We shall denote integration functions/constants with λi ’s.
We consider the case of static anisotropic cylindrical system
for which the field equations (6)–(10) lead to

B ′

B

(
A′

A
− B ′

B

)
+ A′C′

AC
− C′′

C
− B ′′

B

= κ

fR

[
μA2 + A2

κ

{
RfR − f

2
+ f ′′

R

A2

+
(

B ′

B
− A′

A
+ C′

C

)
f ′

R

A2

}]
, (40)

B ′

B

(
A′

A
+ B ′

B

)
+ A′C′

AC

= κ

fR

[
PrA

2 + A2

κ

{
−

(
B ′

B
+ A′

A
+ C′

C

)
f ′

R

A2

+ f − RfR

2

}]
, (41)

(
C′′

C
+ A′′

A
− A′2

A2

)
B2

A2

= κ

fR

[
PzB

2 + B2

κ

{
f − RfR

2
−

(
f ′′

R + C′f ′
R

C

)
1

A2

}]
,

(42)

(
B ′′

B
+ A′′

A
− A′2

A2

)
C2

A2

= κ

fR

[
PφC2 + C2

κ

{
f − RfR

2
−

(
f ′′

R + B ′f ′
R

B

)
1

A2

}]
.

(43)

Let us define some auxiliary entities, η1 = A′
A

, η2 = B ′
B

, η3 =
C′
C

, η4 = f ′
R

fR
so that the above equations as well as scalars Es

and Ek can be recast as

−η′
2 − η2

2 − η′
3 − η2

3 + η1η2 + η1η3 − η2η3

= κA2

fR

(
μ +

(D)

T00

A2

)
, (44)

η1η2 + η1η3 + η2η3 = κA2

fR

(
Pr +

(D)

T11

A2

)
, (45)

η′
1 + η′

3 + η2
3 = κA2

fR

(
Pz +

(D)

T22
A2

)
,

η′
1 + η′

2 + η2
2 = κA2

fR

(
Pφ +

(D)

T33
A2

)
,

(46)

Es = 1

2A2

(−η′
1 + η′

3 + η2
3 + η1η2 − η2η3 − η2η3

)
, (47)

Ek = 1

2A2

(−η′
1 + η′

2 + η2
2 − η1η2 + η1η3 − η2η3

)
, (48)

where terms
(D)

Tαβ stand for dark source terms evaluated for
static cylindrical system.

One of the f (R) structure scalars can be found by spe-
cific combination of all the above equations as

η′
1 + η1η2 + η1η3 = YT A2. (49)

Equations (45) and (46) provide

η′
1 + η′

2 + η2
2 − η1η2 − η1η3 − η2η3

= κ

fRA2

(
Pφ − Pr +

(D)

T33

C2
−

(D)

T11

A2

)
, (50)

η′
1 + η′

3 + η2
3 − η1η2 − η1η3 − η2η3

= κA2

fR

(
Pz − Pr +

(D)

T22

B2
−

(D)

T11

A2

)
, (51)

η′
2 + η2

2 − η′
3 + η2

3 = κ

fR

(
Pφ − Pz +

(D)

T33

C2
−

(D)

T22

B2

)
. (52)

Using Eqs. (17), (18), (47), (48), (50) and (51), we obtain

η′
1 − η1η2 = −YsA

2, η′
1 + η1η3 = −YkA

2. (53)

The first of above equations, on integration, yields

A = λ1e
∫
B(

∫ −YsA2
B

dr)dr ,

which implies that B = B(A) or η1 = η1(η2), ∀Ys . Further,
the second of Eq. (53) gives

A = λ2e
∫
C(

∫ −YkA2

C
dr)dr ,

which yields C = C(A) or η1 = η1(η3), ∀Yk . Thus, we can
write any of the auxiliary variable in terms of the others. For
instance, one can find the expressions of η2 and η3 (depend-
ing upon η1) for some values of right hand side of Eq. (52).
Equations (18) and (20) give

κ

fR

(
Pφ − Pr +

(D)

T33

C2
−

(D)

T11

A2

)
= −(Xk + Yk). (54)

Equations (17) and (19) yield

κ

fR

(
Pz − Pr +

(D)

T22

B2
−

(D)

T11

A2

)
= −(Xs + Ys). (55)

This suggests that any static cylindrical anisotropic solution
in f (R) gravity can be determined through a triplet of struc-
ture scalars (Yk,Ys,Xs) or (Yk,Ys,Xk).

Now, we investigate models for static cylindrical celestial
body coupled with perfect fluid. Thus we take Pφ = Pz =
Pr = P and the corresponding field equations (40)–(43) re-
duce to
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B ′

B

(
A′

A
− B ′

B

)
+ A′C′

AC
− C′′

C
− B ′′

B

= κ

fR

[
μA2 + A2

κ

{
RfR − f

2
+ f ′′

R

A2

+
(

B ′

B
− A′

A
+ C′

C

)
f ′

R

A2

}]
, (56)

B ′

B

(
A′

A
+ B ′

B

)
+ A′C′

AC

= κ

fR

[
PA2 + A2

κ

{
−

(
B ′

B
+ A′

A
+ C′

C

)
f ′

R

A2

+ f − RfR

2

}]
, (57)

(
C′′

C
+ A′′

A
− A′2

A2

)
B2

A2

= κ

fR

[
PB2 + B2

κ

{
f − RfR

2
−

(
f ′′

R + C′f ′
R

C

)
1

A2

}]
,

(58)

(
B ′′

B
+ A′′

A
− A′2

A2

)
C2

A2

= κ

fR

[
PC2 + C2

κ

{
f − RfR

2
−

(
f ′′

R + B ′f ′
R

B

)
1

A2

}]
.

(59)

Equations (58) and (59) yield

C′′

C
+ C′f ′

R

CfR

= B ′′

B
+ B ′f ′

R

BfR

, (60)

which can be rewritten in the form of Ricatti equation as

η′
3 + η2

3 + η3η4 = η′
2 + η2

2 + η2η4. (61)

The general solution of the above equation is expressed as

η3 = η2 + 1

k(r)
, (62)

where

k(r) = e
∫
(2η2+η4)dr

[∫
e
∫ −(2η2+η4)drdr + λ3

]
. (63)

Using the value of k in Eq. (62), we obtain the following
form of metric function

C = Bγ exp

[
B2fR

(∫
dr

B2fR

+ λ3

)]
, (64)

where we have used regularity constraint, i.e., C(t,0) = 0.

6 Conclusion

In this paper, we have computed set of leading relations reg-
ulating the structure and evolution of cylindrical collapsing

relativistic body and highlighted the effects of f (R) struc-
ture scalars in building these equations. For this purpose,
we have coupled the cylindrically symmetric spacetime with
imperfect matter configuration by invoking f (R) correc-
tions. The modified form of structure scalars are investi-
gated from the general relativity generic formula of scalar
functions (Herrera et al. 2012). We have also developed rela-
tionship between Weyl scalar and matter parameters for the
usual and effective fluid distributions. In order to analyze the
effects of relaxation time in the evolution of collapsing sys-
tem, we have computed the dynamical-transport equation.
We have also analyzed the role of f (R) scalar functions
for anisotropic as well as isotropic cylindrical solutions. The
main results are summarized as follows.

1. Unlike spherical system, we have found eight modified
scalar functions (XT ,YT ,Xs,Ys,Xk,Yk,ZH ,Zq) along
with two shear scalars (σs, σk) and three Weyl scalars
(H,Es,Ek) that are required to discuss the dynamics of
cylindrically symmetric metric.

2. The f (R) structure scalars, XT , ZH , Zq , have a very
clear interpretation as these measure energy density, heat
radiation and magnetic portion of curvature effects aris-
ing from Weyl tensor along with f (R) dark source ef-
fects.

3. In general relativity, the structure scalars, Ys , Yk and YT ,
hold fundamental importance in governing the contribu-
tion of shear and expansion scalars in the dynamics of
compact objects. We have evaluated these scalars by in-
voking f (R) corrections and noticed that dark source
terms tend to disturb the contribution of these scalars in
the evolution of the stellar system.

4. Equation (37) shows that f (R) high curvature quantities
try to complicate the expression of mass function due to
its non-attractive nature.

5. In the static case of cylinders, we have found that any
possible static solutions can be expressed by a set of
(Yk,Xk,Ys) and (Yk,Xs,Ys) structure functions. We
have also obtained particular constraints required for
isotropic cylindrical models obeying regular conditions.

6. It is seen from Eq. (39) that both Fgrav and effective
inertial mass density are multiplied by the same factor
(1 − a). This indicates the null nature of inertial mass as
a → 1. Thus the effective gravitational attraction on dis-
sipative relativistic fluid declines at the same rate as the
effective mass density. This sparks the validity of equiv-
alence principle.

7. The system would receive gravitational attraction, if dur-
ing fluctuations, a imparts negative value to the right
hand side of Eq. (39).

8. Let us now study the evolution of cylindrical collapse
by analyzing the value fluctuations of the factor a. Sup-
pose that in some region of cylinder, the entity a first
increases and then approaches towards 1. This leads to
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small value of effective inertial mass which eventually
diminishes Fgrav thereby giving opposite sign to the right
hand side of Eq. (39). Since such kind of system devel-
opment is accompanied with small values of the inertial
mass density, therefore this entails vigorous bouncing off
of that cylindrical part of the collapsing system. Thus the
cylindrical system with dissipative source begins to emit
gravitational radiations. These results are well-consistent
with (Herrera et al. 2006) under the limit γ = β1 = 0.

9. It is worthy to stress that all results of general relativ-
ity can be obtained by taking f (R) → R (Herrera et al.
2012).

It is worthy to stress that our investigation provides dy-
namical behavior of self-gravitating cylindrical system with
general and f (R) = R + γR2 + β1R

3 gravity models. The
obtained results may correspond to early-time inflationary
cosmos where extra curvature terms appear into dynam-
ics. This paper provides the dynamical collapse process and
can be taken as a toy model of localized systems. Finally,
we remark that this approach can be extended by consider-
ing strange stars (Staykov et al. 2014), compact stars (As-
tashenok et al. 2015b) or its interpretation as scalar-tensor
stars (Fiziev 2014).
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Appendix

The f (R) corrections in Eqs. (21) and (22) are

D0 = 1

κ

[{(
ḟR

A′

A
+ f ′

R

Ȧ

A
− ḟ ′

R

)
1

A4

}
,1

+ 1

A2

{(
RfR − f

2

)
+ f ′

R

A2

(
B ′

B
− A′

A
+ C′

C

)

−
(

Ċ

C
+ Ȧ

A
+ Ḃ

B

)
ḟR

A2
+ f ′′

R

A2

}
,0

+ Ȧ

A

{
f̈R

A2
+ f ′′

R

A2
− 2

A′f ′
R

A3
− 2

ȦḟR

A3

}
1

A2

+ Ḃ

B

{
f̈R

A2
−

(
Ḃ

B
+ Ȧ

A

)
ḟR

A2
+ f ′

R

B2

(
B ′

B
− A′

A

)}
1

A2

+
(

Ȧ

A
f ′

R − ḟ ′
R + A′

A
ḟR

)(
4A′

A
+ C′

C
+ B ′

B

)
1

A4

+ 2

A2

{
−

(
A′

A
− C′

C

)
f ′

R

B2
+ f̈R

A2

− ḟR

A2

(
Ċ

C
+ Ȧ

A

)}
Ċ

C

]
, (A.1)

D1 = 1

κ

[{
1

A4

(
A′

A
ḟR − ḟ ′

R + Ȧ

A
f ′

R

)}
,0

+ 1

A2

{
f̈R

A2
+ f − RfR

2
− f ′

R

B2

(
B ′

B
+ A′

A
+ C′

C

)

− ḟR

A2

(
Ḃ

B
− Ȧ

A
+ Ċ

C

)}
,1

+ 1

A2

{
f ′′

R

A2
−

(
A′

A
+ B ′

B

)

× f ′
R

B2
+

(
Ḃ

B
− Ȧ

A

)
ḟR

A2

}
B ′

B
+

{
f ′′

R

A2
+ f̈R

A2
− 2

A′f ′
R

A3

− 2
ȦḟR

A3

}
A′

A3
+ 1

A2

{
f ′′

R

A2
− f ′

R

A2

(
A′

A
+ C′

C

)

− ḟR

A2

(
Ċ

C
− Ȧ

A

)}
C′

C
− 1

A4

(
ḟ ′

R − Ȧ

A
f ′

R − A′

A
ḟR

)

×
(

Ḃ

B
+ Ċ

C
+ 4Ȧ

A

)]
. (A.2)

The quantities φγ i and φβi mentioned in Eqs. (28) and (30)
are

φγ 0 = R2

4
+ R′′

A2
− R′

A2

(
B ′

B
− A′

A
+ C′

C

)

− Ṙ

A2

(
Ḃ

B
+ Ċ

C
+ Ȧ

A

)
,

φγ 1 = −R2

4
+ R̈

A2
+ Ṙ

A2

(
Ḃ

B
− Ȧ

A
+ Ċ

C

)

− R′

A2

(
B ′

B
+ C′

C
− A′

A

)
,

φγ 2 = −R2

4
+ 1

A2

(
R̈ − R′′ + ĊṘ

C
− C′R′

C

)
,

φγ 3 = −R2

4
+ 1

A2

(
R̈ − R′′ + ĊṘ

C
− B ′R′

B

)
,

φβ0 = R3

6
+ RR′′ + R′2

A2
− RR′

A2

(
B ′

B
− A′

A
+ C′

C

)

− RṘ

A2

(
Ḃ

B
+ Ċ

C
+ Ȧ

A

)
,

φβ1 = −R3

6
+ RR̈ + Ṙ2

A2
+ RṘ

A2

(
Ḃ

B
− Ȧ

A
+ Ċ

C

)

− RR′

A2

(
B ′

B
+ C′

C
− A′

A

)
,

φβ2 = −R3

6
+ 1

A2

(
Ṙ2 + RR̈ − RR′′ − R′2

+ RĊṘ

C
− RC′R′

C

)
,

φβ3 = −R3

6
+ 1

A2

(
Ṙ2 + RR̈ − RR′′ − R′2

+ RĊṘ

C
− RB ′R′

B

)
.
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