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Abstract Vector particles’ Hawking radiation from a four-
dimensional Schwarzschild black hole is investigated. By
applying the WKB approximation and the Hamilton-Jacobi
ansatz to the Proca equation, we obtain the tunneling spec-
trum of vector particles and the expected Hawking tempera-
ture.
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1 Introduction

When Stephen Hawking found Hawking radiation (Hawk-
ing 1974, 1975), he described it as a tunneling process trig-
gered by vacuum fluctuations near the horizon. When a vir-
tual particle pair is created inside the horizon, the positive
energy virtual particle can tunnel out, and materializes as
a real particle, appearing as Hawking radiation. Later on,
several derivations of the Hawking radiation were proposed,
mostly relying on quantum field theory on a fixed back-
ground (Birrel and Davies 1982; Fulling 1989; Frolov and
Novikov 1998; Wald 1994). However, in the above calcula-
tions, we could not see the tunneling mechanism.

The first semi-classical method-null geodesic method,
which models Hawking radiation as a tunneling process,
was used by Parikh and Wilczek (Parikh and Wilczek 2000;
Parikh 2004) which followed from the work of Kraus and
Wilczek (Kraus and Wilczek 1995a, 1995b; Kraus and
Keski-Vakkuri 1997). This method uses WKB approxima-
tion to calculate the imaginary part of the action for the
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classically forbidden trajectory across the horizon. The part
of the action that contributes an imaginary term is ImS0 =∫ rout

rin
prdr , where pr is the momentum of the emitted null

s-wave. One can use Hamilton’s equation and knowledge
of the null geodesics to calculate the imaginary part of
the action. The other tunneling method is the Hamilton-
Jacobi ansatz used by Angheben et al. (2005), Kerner and
Mann (2006), which is an extension of the complex path
analysis by Padmanabhan et al. (Srinivasan and Padmanab-
han 1999; Shankaranarayanan et al. 2001, 2002; Shankara-
narayanan 2003). This method applies the WKB approx-
imation to the Klein-Gordon equation, and the lowest or-
der is the Hamilton-Jacobi equation. Then according to the
symmetry of the metric, one can pick an appropriate ansatz
for the action and put it into the Hamilton-Jacobi equa-
tion to solve. This method is often called Hamilton-Jacobi
method. The two tunneling methods are both based on the
WKB approximation, so the tunneling probability is given
by Γ ∝ exp(− 2

�
ImS0), where S0 is the classical action

of the trajectory at the leading order in �, and the differ-
ence is the way to calculate the imaginary part of the ac-
tion for the classically forbidden trajectory across the hori-
zon. These two methods have been successfully applied to
a wide variety of interesting and exotic spacetimes, includ-
ing Kerr and Kerr-Newman black holes (Jiang et al. 2006;
Zhang and Zhao 2005, 2006), Gödel black holes (Kerner
and Mann 2007), hot NUT-Kerr-Newman-Kasuya space-
times (Ali 2007), squashed Kaluza-Klein black holes (Mat-
suno and Umetsu 2011), rotating AdS black holes in con-
formal gravity (Wu et al. 2014; Deng 2014), as well as
generic weakly isolated horizons (Wu and Gao 2007). In
2008, Kerner and Mann (2008a, 2008b) applied Hamilton-
Jacobi method to the Dirac Equation to calculate Dirac par-
ticles’ Hawking radiation. Then many spacetimes were ex-
plored in this way: Kerr black holes (Li et al. 2008), BTZ
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black holes (Li and Ren 2008), charged dilatonic black holes
(Chen et al. 2008a), rotating black holes in de Sitter spaces
(Chen et al. 2008b), GHS and non-extremal D1–D5 black
holes (Jiang 2008a), higher-dimensional black holes (Lin
and Yang 2009a), higher-dimensional Kerr-Anti-de Sitter
black holes (Lin and Yang 2009b), dynamical horizons (Cri-
scienzo and Vanzo 2008), black rings (Jiang 2008b), Vaidya
black holes (Li et al. 2008), Reissner-Nordström black holes
(Zeng and Yang 2008), accelerating and rotating black holes
(Rehman and Saifullah 2011) and so on.

Black holes may radiate different spin particles, not only
particles with spin: 0, 1/2. Later on, Yale and Mann inves-
tigated the gravitinos tunneling using the tunneling method
(Yale and Mann 2009). Recently, Kruglov (2014a, 2014b)
applies the WKB approximation and the Hamilton-Jacobi
ansatz to the Proca equation for the emission of vector par-
ticles from (1 + 1) and (1 + 2) dimensional black holes.
Vector particles (e.g. Z,W±) play important role in Stan-
dard Model, so it is interesting to study the radiation of vec-
tor particles. We extend Kruglov’s (2014a, 2014b) method
to investigate the vector particles’ Hawking radiation from
a four-dimensional Schwarzschild black hole which is the
most important spacetime in general relativity and astro-
physics. We obtain the radiation spectrum of vector parti-
cles from a Schwarzschild black hole and the corresponding
Hawking temperature. The results show that vector particles
radiate with the same Hawking temperature as that of scalar
particles, fermions and gravitinos. Like Kerner and Mann
(2008a, 2008b), we assume that the change of black hole
angular momentum due to the spin of the emitted particle is
negligible, which is a good approximation for the black hole
with mass much larger than the Planck mass.

The remainder of this paper is organized as follows. In
Sect. 2, we calculate the tunneling spectrum of vector par-
ticles from four-dimensional Schwarzschild black holes. In
Sect. 3, we give some discussions and conclusions.

2 Vector particles tunneling from
four-dimensional Schwarzschild black holes

The metric of the Schwarzschild black hole is

ds2 = −
(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2

+ r2(dθ2 + sin2 θdϕ2), (1)

where M is the ADM mass of the spacetime. The event hori-
zon is given by rh = 2M . We define the following notations
for convenience

A = 1 − 2M

r
, B = r2, C = sin2 θ, (2)

so the metric becomes

ds2 = −Adt2 + 1

A
dr2 + Bdθ2 + BCdϕ2. (3)

The determinant of the metric is
√−g = B

√
C. (4)

The Proca equations for vector particles are (Kruglov
2014a, 2014b)

Dμψνμ + m2

�2
ψν = 0, (5)

ψνμ = Dνψμ − Dμψν = ∂νψμ − ∂μψν, (6)

where Dμ is the covariant derivative, and ψν = (ψ0,ψ1,

ψ2,ψ3). From the definition, ψνμ is an anti-symmetrical
tensor, so using the equation

Dμψνμ = 1√−g
∂μ

(√−gψνμ
)
, (7)

the Proca equations become

1√−g
∂μ

(√−gψνμ
) + m2

�2
ψν = 0. (8)

From the metric (3) and the following relationship

ψ0 = ψ0g00 = −Aψ0 ⇒ ψ0 = −ψ0

A
,

ψ1 = Aψ1, ψ2 = ψ2

B
, ψ3 = ψ3

BC
,

ψ10 = ψ10g
11g00 = −ψ10, ψ12 = ψ12

A

B
,

ψ13 = A

BC
ψ13, ψ20 = −ψ20

AB
,

ψ23 = 1

B2C
ψ23, ψ30 = − ψ30

ABC
,

(9)

we obtain the Proca equations in the following explicit form

1

B
√

C

{

∂r

[
B

√
C(∂tψ1 − ∂rψ0)

] + ∂θ

[√
C

A
(∂tψ2 − ∂θψ0)

]

+ ∂ϕ

[
1

A
√

C
(∂tψ3 − ∂ϕψ0)

]}

+ m2ψ0

�2A
= 0,

1

B
√

C

{

∂t

[
B

√
C(∂tψ1 − ∂rψ0)

]

+ ∂θ

[
A

√
C(∂rψ2 − ∂θψ1)

]

+ ∂ϕ

[
A√
C

(∂rψ3 − ∂ϕψ1)

]}

+ m2Aψ1

�2
= 0,

1

B
√

C

{

∂t

[√
C

A
(∂tψ2 − ∂θψ0)

]

− ∂r

[
A

√
C(∂rψ2 − ∂θψ1)

]

+ ∂ϕ

[
1

B
√

C
(∂θψ3 − ∂ϕψ2)

]}

+ m2ψ2

�2B
= 0,

1

B
√

C

{

∂t

[
1

A
√

C
(∂tψ3 − ∂ϕψ0)

]

− ∂r

[
A√
C

(∂rψ3 − ∂ϕψ1)

]

− ∂θ

[
1

B
√

C
(∂θψ3 − ∂ϕψ2)

]}

+ m2ψ3

�2BC
= 0.

(10)
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According to the WKB approximation, the solutions are
of the form

ψν = (c0, c1, c2, c3) exp

[
i

�
S(t, r, θ, ϕ)

]

, (11)

where

S(t, r, θ, ϕ) = S0(t, r, θ, ϕ) + �S1(t, r, θ, ϕ)

+ �
2S2(t, r, θ, ϕ) + · · · (12)

Putting Eqs. (11), (12) into Eqs. (10), the equations to the
leading order in � are

B
√

C
[
c0(∂rS0)

2 − c1(∂rS0)(∂tS0)
]

+
√

C

A

[
c0(∂θS0)

2 − c2(∂θS0)(∂tS0)
]

+ 1

A
√

C

[
c0(∂ϕS0)

2 − c3(∂ϕS0)(∂tS0)
]

+ m2B
√

C

A
c0 = 0,

B
√

C
[
c0(∂tS0)(∂rS0) − c1(∂tS0)

2]

+ A
√

C
[
c1(∂θS0)

2 − c2(∂θS0)(∂rS0)
]

+ A√
C

[
c1(∂ϕS0)

2 − c3(∂ϕS0)(∂rS0)
]

+ m2B
√

CAc1 = 0,√
C

A

[
c0(∂tS0)(∂θS0) − c2(∂tS0)

2]

− A
√

C
[
c1(∂rS0)(∂θS0) − c2(∂rS0)

2]

+ 1

B
√

C

[
c2(∂ϕS0)

2 − c3(∂ϕS0)(∂θS0)
]

+ m2
√

Cc2 = 0,

1

A
√

C

[
c0(∂tS0)(∂ϕS0) − c3(∂tS0)

2]

− A√
C

[
c1(∂rS0)(∂ϕS0) − c3(∂rS0)

2]

− 1

B
√

C

[
c2(∂θS0)(∂ϕS0) − c3(∂θS0)

2]

+ m2

√
C

c3 = 0.

(13)

There exists a solution of the form

S0 = −Et + W(r) + J (θ,ϕ) + K, (14)

where E = −∂tS0 is the energy of the emitted particle and
K is a complex constant. Inserting Eq. (14) into Eqs. (13)
we obtain the matrix equation

Λ(c0, c1, c2, c3)
T = 0, (15)

where Λ is a 4×4 matrix, and its components are expressed
as

Λ11 = B
√

C
(
W ′)2 +

√
C

A
(Jθ )

2

+ (Jϕ)2

A
√

C
+ m2B

√
C

A
,

Λ12 = B
√

CEW ′, Λ13 =
√

C

A
EJθ ,

Λ14 = EJϕ

A
√

C
, Λ21 = −B

√
CEW ′,

Λ22 = −B
√

CE2 + A
√

C(Jθ )
2

+ A√
C

(Jϕ)2 + m2B
√

CA,

Λ23 = −A
√

CJθW
′, Λ24 = − A√

C
JϕW ′,

Λ31 = −
√

C

A
EJθ , Λ32 = −A

√
CW ′Jθ ,

Λ33 = −
√

C

A
E2 + A

√
C

(
W ′)2 + 1

B
√

C
(Jϕ)2 + m2

√
C,

Λ34 = − JϕJθ

B
√

C
, Λ41 = − 1

A
√

C
EJϕ,

Λ42 = − A√
C

JϕW ′, Λ43 == − JϕJθ

B
√

C
,

Λ44 = − E2

A
√

C
+ A√

C

(
W ′)2 + 1

B
√

C
(Jθ )

2 + m2

√
C

,

(16)

where W ′ = ∂rS0, Jθ = ∂θS0 and Jϕ = ∂ϕS0.
Homogeneous system of linear equations (15) possesses

nontrivial solution if the determinant of the matrix Λ equals
zero, that is, detΛ = 0. After the calculation, we have

m2{A(CJ 2
θ + J 2

ϕ ) + BC[−E2 + A(m2 + A(W ′)2)]}3

A3BC2
= 0.

(17)

We obtain immediately

(
W ′)2 = E2 − A(m2 + J 2

θ

B
+ J 2

ϕ

BC
)

A2
, (18)

and

W± = ±
∫

√

E2 − A(m2 + J 2
θ

B
+ J 2

ϕ

BC
)

A2
dr

= ±
∫ r

√

E2 − (1 − 2M
r

)(m2 + J 2
θ

r2 + J 2
ϕ

r2 sin2 θ
)

r − 2M
dr, (19)

where W+ > 0 corresponds to vector particles moving away
from the black hole and W− < 0 corresponds to vector par-
ticles moving toward the black hole. So the probabilities of
crossing the horizon each way are

Pout ∝ exp

[

−2

�
ImS0

]

= exp

[

−2

�
(ImW+ + ImK)

]

,

Pin ∝ exp

[

−2

�
ImS0

]

= exp

[

−2

�
(ImW− + ImK)

]

.

(20)
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The incoming particles crossing the horizon should have
a 100 % chance of entering the black hole, so we have
ImK = − ImW−. Considering W+ = −W−, the probabil-
ity of a particle tunneling from inside to outside the horizon
is

Γ ∝ exp [−4 ImW+], (21)

where we set � to unity. Integrating around the pole at the
horizon rh = 2M , we obtain

ImW+ = 2πME, (22)

so the tunneling probability is

Γ ∝ exp(−8πME), (23)

and the Hawking temperature is

TH = 1

8πM
. (24)

We get the tunneling spectrum of vector particles from
four-dimension Schwarzschild black holes. The expected
Hawking temperature is recovered.

3 Discussions and conclusions

In summary, we calculate the Hawking temperature
of vector particles tunneling from a four-dimensional
Schwarzschild black hole by using the Hamilton-Jacobi
method. The radiation temperature is the same as that of
scalar particles, fermions and gravitinos. Therefore, our re-
sult provides further evidence for the universality of black
hole radiation.
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