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Abstract We provide new exact solutions to the Einstein-
Maxwell system of equations for matter configurations with
anisotropy and charge. The spacetime is static and spher-
ically symmetric. A quadratic equation of state is utilised
for the matter distribution. By specifying a particular form
for one of the gravitational potentials and the electric field
intensity we obtain new exact solutions in isotropic coordi-
nates. In our general class of models, an earlier model with
a linear equation of state is regained. For particular choices
of parameters we regain the masses of the stars PSR J1614-
2230, 4U 1608-52, PSR J1903+0327, EXO 1745-248 and
SAX J1808.4-3658. A comprehensive physical analysis for
the star PSR J1903+0327 reveals that our model is reason-
able.

Keywords Exact solutions · Anisotropy · Electric field
intensity · Gravitational potential

1 Introduction

The modelling of highly dense matter configurations in a
general relativistic setting is an important research prob-
lem. Recent attempts in this direction include the effects of
anisotropy and the electromagnetic field. Some recent re-
sults are those of Mafa Takisa and Maharaj (2013b), Mafa
Takisa et al. (2014b, 2014a), Maharaj et al. (2014) and
Sunzu et al. (2014a, 2014b). However these treatments and
others have been completed in the context of Schwarzschild
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coordinates. There have been fewer investigations involving
isotropic coordinates. Pant et al. (2014a) analysed a family
of exact solutions of the Einstein-Maxwell field equations
in isotropic coordinates. An application to neutron star and
quark star with Einstein-Maxwell field equations in isotropic
coordinates was performed by Pradhan and Pant (2014). An
investigation of a class of super dense stars models using
charged analogues of Hajj-Boutros type relativistic fluid so-
lutions has recently been completed by Pant et al. (2014b).
In a recent analysis Ngubelanga et al. (2015) found exact
models for a compact stellar object which could be charged
and anisotropic with a linear equation of state. Other re-
cent investigations that include the effects of anisotropy and
the electromagnetic field are contained in the treatments of
Malaver (2014a), Feroze and Siddiqui (2014) and Newton
Singh et al. (2015).

A simple generalisation of the linear relation between the
energy density and radial pressure is a quadratic equation
of state. This allows for more general behaviour in the mat-
ter distribution and greater complexity in the model. There
is still a debate over the structure of a star as to its com-
position in terms of nuclear matter, or quark matter, or a
hybrid mix of both distributions. It is difficult to find a sin-
gle equation of state for a matter distribution matching the
stellar core (softer quark matter) to the outer regions (stiffer
nuclear matter). These issues are highlighted in the treat-
ments of Cottam et al. (2002), Özel (2006) and Rodrigues
et al. (2011). A quadratic equation of state which is softer
at low densities and stiffer at high densities may be appro-
priate for describing a hybrid star. This would make it pos-
sible to explain the stability of compact stars with masses
∼2 M�. In a general relativistic context models which are
charged and anisotropic were found by Feroze and Siddiqui
(2011). A class of models, generalising the results of Fer-
oze and Siddiqui (2011) and containing models with linear
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equations of state, was found by Maharaj and Mafa Tak-
isa (2012). These solutions have the desirable property of
regularity at the stellar centre. Mafa Takisa et al. (2014a)
modelled a charged general relativistic star with a quadratic
equation of state. They showed their results were consistent
with several masses of stellar objects, in particular with the
star PSR J1614-2230. Malaver (2014b) found exact solu-
tions to the field equations for a strange quark model. An-
alytic and regular models, extending earlier investigations
for polytropic distributions, for quark stars and compact ob-
jects with a modified van der Waals equation of state were
generated by Malaver (2013a, 2013b). Sharma and Ratan-
pal (2013) presented a class of new models using the met-
ric ansatz of Finch and Skea (1989) without assuming any
equations of state. Their approach has the remarkable fea-
ture of yielding a quadratic equation of state when appro-
priate physical bounds are applied. Thirukkanesh and Ragel
(2012) and Mafa Takisa and Maharaj (2013a) generated ex-
act anisotropic spheres which are uncharged and charged,
respectively. These models have a polytropic equation of
state in general; however for particular parameter values
quadratic equations of state arise.

The aim of this paper is to obtain new exact solutions
to the Einstein-Maxwell system of equations. We model
charged anisotropic matter distributions in isotropic coordi-
nates by imposing a quadratic equation of state which re-
lates the radial pressure to the energy density. The Einstein-
Maxwell field equations in the presence of electric field with
anisotropic pressures are presented in Sect. 2. The transfor-
mation that has been utilized by Kustaanheimo and Qvist
(1948), Ngubelanga and Maharaj (2013) and Ngubelanga
et al. (2015) is applied to write the field equations in new
equivalent forms. In Sect. 3, we present new classes of ex-
act solutions to the system of equations. We show that the
new solution with a quadratic barotropic equation of state
contains a known solution by Ngubelanga et al. (2015) in
Sect. 4. In Sect. 5, we regain the masses for the observed
objects and study the physical properties of the new exact
solutions. We analyse the physical features for the stellar
model associated with the star PSR J1903+0327 in Sect. 6.
Some concluding remarks are made in Sect. 7.

2 The model

We intend to model the interior of a dense star. The line
element in isotropic coordinates has the form

ds2 = −A2(r)dt2 +B2(r)
[
dr2 +r2(dθ2 +sin2 θdφ2)], (1)

in coordinates (xa) = (t, r, θ,φ). The gravitational field is
represented by the metric quantities A(r) and B(r) in the

metric (1). An anisotropic charged matter distribution has
energy momentum of the form

Tij = diag

(
−ρ − 1

2
E2,pr − 1

2
E2,pt + 1

2
E2,pt + 1

2
E2

)
,

(2)

where ρ is the energy density, pr is the radial pressure, pt

is the tangential pressure and E is the electric field intensity.
A timelike unit four-velocity u where ui = 1

A
δi

0 measures the
quantities in Eq. (2) above.

If we introduce the transformation

x ≡ r2, L ≡ B−1, G ≡ LA, (3)

then the line element can be written in the new form

ds2 = −
(

G

L

)2

dt2 +L−2
[

1

4x
dx2 +x

(
dθ2 + sin2 θdφ2)

]
,

(4)

in new variables of x. The system of the Einstein-Maxwell
field equations can be expressed as

8πρ + 1

2
E2 = 4

[
2xLLxx − 3(xLx − L)Lx

]
, (5)

8πpr − 1

2
E2 = 4L(L − 2xLx)

Gx

G
− 4(2L − 3xLx)Lx,

(6)

8πpt + 1

2
E2 = 4xL2 Gxx

G
+ 4L(L − 2xLx)

Gx

G

− 4(2L − 3xLx)Lx − 8xLLxx, (7)

σ 2 = 1

4πx
L2(E + xEx)

2, (8)

in terms of new variables by utilizing transformation (3).
The subscript “x” denotes a derivative with respect to the
new variable x. In terms of new variables in (3) the condition
of pressure anisotropy has the form

Gxx

G
− 2

Lxx

L
= (8πΔ + E2)

4xL2
, (9)

where the quantity Δ = pt −pr is the measure of anisotropy.
The mass function has the form

m(x) = 2π

∫ x

0

[√
ωρ(ω) + E2

8π

]
dω, (10)

in new coordinates. The mass function represents the mass
within the radius x of the sphere.

We assume the quadratic equation of state of the form

pr = ηρ2 + αρ − β, (11)

relating the radial pressure pr to the energy density ρ, and
where η, α and β are arbitrary constants. This is a simple
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generalisation of a linear equation of state which is regained
when η = 0. With the inclusion of the quadratic equation of
state, the Einstein-Maxwell system of Eqs. (5)–(8) with the
charged anisotropic fluid spheres can be expressed as

8πρ = 4
[
2xLLxx − 3(xLx − L)Lx

] − 1

2
E2, (12)

pr = ηρ2 + αρ − β, (13)

pt = pr + Δ, (14)

8πΔ = 4xL2 Gxx

G
+ 4L(L − 2xLx)

Gx

G

− η

32π

[
16xLLxx − 24(xLx − L)Lx − E2]2

− 8(1 + α)xLLxx + 12(1 + α)xL2
x

− 4(2 + 3α)LLx − (1 − α)E2

2
+ 8πβ, (15)

Gx

G
= η[16xLLxx − 24(xLx − L)Lx − E2]2

128πL(L − 2xLx)

+ 2αxLxx

(L − 2xLx)
− 3(1 + α)xL2

x

L(L − 2xLx)

+ (2 + 3α)Lx

(L − 2xLx)
− (1 + α)E2

8L(L − 2xLx)

− 2πβ

L(L − 2xLx)
, (16)

σ 2 = 1

4πx
L2(E + xEx)

2. (17)

It is crucial to note the non-linearity in both the functions
L and G in the system (12)–(17) which is increased because
of the appearance of terms containing the parameter η. This
system of equations contains six variables involving the mat-
ter and the electromagnetic quantities (ρ, pr , pt , Δ, E and
σ ) and two gravitational potentials (L and G). It should also
be highlighted that there are only six independent equations
in this system of equations. Integration of such systems is
not easy to perform due to nonlinearity and the fact that
there are more unknown functions than the independent field
equations. In order to integrate and obtain some exact so-
lutions, the above mentioned facts suggest that we need to
choose the form for two of the quantities mentioned above.
The system of Eqs. (12)–(17) is similar to the field equations
of Ngubelanga et al. (2015); however in our case the equa-
tion of state is quadratic. In their treatment they utilized the
linear equation of state, i.e., η = 0 so that pr = αρ − β .

The interior metric (1) with the charged matter distribu-
tion should match the exterior spacetime which is given by

ds2 = −
(

1 − 2M

R
+ q2

R2

)
dt2 +

(
1 − 2M

R
+ q2

R2

)−1

dR2

+ R2(dθ2 + sin2 θdφ2), (18)

in coordinates (xa) = (t,R, θ,φ). In (18) the total mass and
the total charge of the sphere are denoted by M and q2, re-
spectively. The exterior spacetime (18) is referred to as the
Reissner-Nordström metric. The junction conditions at the
stellar surface are obtained by matching the first and the sec-
ond fundamental forms for the interior metric (1) and the
exterior metric (18). The conditions are as follows

As =
(

1 − 2M

R
+ q2

R2

) 1
2

, (19)

Rs = rsBs, (20)

(
B ′

B
+ 1

r

)

s

rs =
(

1 − 2M

R
+ q2

R2

) 1
2

, (21)

rs
(
A′)

s
= M

R
− q2

R2
, (22)

evaluated at the boundary of the star r = s. In isotropic coor-
dinates the boundary conditions are given by Eqs. (19)–(22).

3 Exact models

Our purpose is to generate new exact solutions to the
Einstein-Maxwell system of Eqs. (12)–(17). The integration
is achieved by choosing physical reasonable forms for the
electric field E and the gravitational potential L. We make
the particular choice

L = a + bx, (23)

E2 = x(c + dx), (24)

where a, b, c and d are real constants. The potential L and
the electric field intensity E2, respectively, are selected to be
a linear function and a quadratic function in the variable x.
Similar choices for L and E were made by Ngubelanga et al.
(2015) for a linear equation of state leading to acceptable
stellar configurations; we expect this to also carry through
with the addition of a quadratic term in the equation of state.
On applying (23) and (24), Eq. (16) becomes

Gx

G
= η[24ab − (c + dx)x]2

128π(a − bx)(a + bx)
+ b(2 + 3α)

(a − bx)

− [16πβ + (1 + α)(24b2 + c + dx)x]
8(a − bx)(a + bx)

, (25)

which is a first order equation in potential G. We integrate
(25) to obtain

G(x) = K(a − bx)Ψ (a + bx)ΦeN(x), (26)
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where K is the constant of integration. The function N(x)

and the constants Ψ and Φ are given explicitly by

N(x) = x

384πb4

{
48πb2d(1 + α)

− 3η
[
b2c2 + ad

(
ad − 48b3)]

− b2dη(3c + dx)x
}
, (27)

Ψ = 1

256πab5

{
16πab2(1 + α)(bc + ad)

− 128πb4[ab(1 + 3α) − 2πβ
]

− a2η
[
a2d2 + b

(
c − 24b2)

× (
2ad + bc − 24b3)]}, (28)

Φ = 1

256πab5

{
16πab2(1 + α)

[
b
(
24b2 + c

) − ad
]

− 256π2b4β + a2η
[
a2d2

− b
(
24b2 + c

)(
2ad − bc − 24b3)]}, (29)

where the constants a �= 0 and b �= 0 to avoid singularity. An
exact solution can then be found to the Einstein-Maxwell
system. The metric (1) has the form

ds2 = −K
(
a − br2)2Ψ (

a + br2)2(Φ−1)
e2N(r)dt2

+ (
a + br2)−2[

dr2 + r2(dθ2 + sin2 θdφ2)], (30)

where K is the constant of integration. The function N(r)

and the constants Ψ and Φ are given explicitly by (27)–(29).
Since Eq. (25) has been integrated, then we can generate

an exact model for the system of Eqs. (12)–(17) in terms of
the radial coordinate “r” which has the form

8πρ = 12ab −
(

1

2
c + 1

2
dr2

)
r2, (31)

pr = ηρ2 + αρ − β, (32)

pt = pr + Δ, (33)

8πΔ = 4bΨ (a + br2)r2

(a − br2)2

[
b(Ψ − 1)

(
a + br2)

− 2
(
a − br2)(bΦ + N ′(a + br2))]

− η

32π

[
24ab − r2(c + dr2)]2

+ 4
(
a + br2)[a − br2(1 − 2Φ)

]
N ′

+ 4r2(a + br2)2(
N ′2 + N ′′)

+ 4b
[
Φ

(
a − br2) − (

a + br2)(2 + 3α + Ψ )
]

+ 4b2[3(1 + α) + Φ(Φ − 1)
]
r2

− 1

2
(1 − α)

(
c + dr2)r2 + 8πβ, (34)

σ 2 = (a + br2)2

16π2(c + dr2)

[
3c + 4dr2]2

, (35)

E2 = r2(c + dr2). (36)

It is interesting to note that our model is of a simple form and
all physical quantities are expressed in terms of elementary
functions where the function N(r) and the constants Ψ and
Φ are given in (27)–(29), respectively. For this model the
mass function is given by

m(r) = 1

2
r3

[
(12ab + c)

3
− (c − 2d)r2

10
− dr4

14

]
. (37)

A charged anisotropic star with quadratic equation of
state may be modeled by the above solution (31)–(36).

4 The linear case

When η = 0 then the equation of state becomes

pr = αρ − β, (38)

which is linear. We observe that the case (38) reduces to the
Ngubelanga et al. (2015) model. Our result is a generali-
sation with a quadratic equation of state. All the results in
Ngubelanga et al. (2015) can be regained as a special case
from the exact solution (31)–(36). The relationship (38) is
consistent with the stars PSR J1614-2230, Vela X-1, PSR
J1903+0327, 4U 1820-30 and SAX J1808.4-3658 as demon-
strated in their analysis. In particular for the parameter val-
ues a = 1.96819, b = 0.5, c = 0.01, d = 0.01 and α = 0.931
we can produce the mass 1.97 M�. This stellar mass corre-
sponds to the astronomical object PSR J1614-2230.

5 The quadratic case

From the exact solution (31)–(36) we observe that the quan-
tities associated with the matter field and the electromag-
netic field are well behaved. The electric field vanishes at
the stellar centre r = 0. The matter density ρ and the proper
charge density σ remain finite at the centre. At the centre of
the star we can write

ρ0 = 3ab

2π
, (39)

pr0 = η

(
3ab

2π

)2

+ α

(
3ab

2π

)
− β, (40)

which are finite values. For the electromagnetic quantities
we have

σ 2
0 = 1

c

(
3ac

4π

2)
, (41)
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Table 1 Mass m, central
density ρ0, central radial
pressure pr0 and surface density
ρs of different stars
corresponding to the parameters
b = 0.504167, c = 0.01,
d = 0.01, α = 0.931 and
η = 3.185

Star Observed mass m a ρ0 pr0 ρs

PSR J1614-2230 1.97 1.95192 0.469871 0.00156084 0.469473

4U 1608-52 1.74 1.72382 0.414962 0.00142167 0.414565

PSR J1903+0327 1.667 1.65143 0.397535 0.0013775 0.397137

EXO 1745-248 1.3 1.28746 0.30992 0.00115543 0.309522

SAX J1808.4-3658 0.9 0.890767 0.214427 0.000913404 0.214029

E2
0 = 0, (42)

which are nonsingular at the centre. For the pressure
anisotropy we have

Δ0 = −3abη

32π2
+ a2

2π
N ′(0)

+ ab

2π

[
Φ − (2 + 3α + Ψ )

] + β, (43)

at r = 0. The metric functions A and B are regular at r = 0.
Therefore all physical and gravitational quantities are well
behaved in the core regions of the star. For the star to remain
stable it is required that Δ = 0 at r = 0; we demonstrate that
this happens in the next section using a graphical treatment.
The mass remains finite and also depends on the parameters
c and d which are associated with charge.

The speed of sound is defined by

v2 = dpr

dρ
, (44)

where we must have v < 1 to maintain causality. Also we
must have zero radial pressure at the boundary for a stable
configuration of the compact object. This will ensure con-
sistency of the matching conditions (19)–(22) at the surface
and continuity of the metrics (1) and (18) at the surface. For
a finite value of the density at the surface along with the zero
pressure, we require

ρs = 3ab

2π
− 1

16π
(c + d), (45)

in geometric units by fixing the radius of the star at r = 1.
Then (32) restricts the parameter β by

βs = ηρ2
s + αρs. (46)

When η = 0 then (46) reduces to the corresponding ex-
pression of Ngubelanga et al. (2015). In our subsequent
analysis throughout we choose the parameter values α =
0.931 and η = 3.185 since they produce relativistic compact
stars with desirable physical features.

It is to be noted that the relation for the mass in (37) is
free from the equation of state parameters η, α and β . Hence
the value of the mass will be indistinguishable from that of

the results in the linear case as per Ngubelanga et al. (2015)
if we select the same parameter values. To tackle this issue,
we have matched the values of the gravitational potentials
(A2) at the stellar surface (r = 1) for both the linear and the
quadratic cases, showing that for an exterior observer, the
gravitational potential should be the same. Thus the effect
of the parameters in the quadratic equation of state comes
into the system through the Φ and the Ψ terms in the gravi-
tational potentials.

It is possible to give numerical values to quantities in
our exact solutions. We have considered values for five
compact objects for which reliable data exists. The objects
selected are PSR J1614-2230 studied by Demorest et al.
(2010), 4U 1608-52 investigated by Güver et al. (2010), PSR
J1903+0327 analysed by Freire et al. (2011), EXO 1745-
248 studied by Özel et al. (2009) and SAX J1808.4-3658
considered by Elebert et al. (2009). We vary the parameter
a in (37) and assign fixed values for b = 0.504167, c = 0.01
and d = 0.01. This permits us to generate numerical values
for the stellar masses for the five astronomical objects listed
in Table 1. We have used small values for the parameters c

and d which introduce charge into the system to ensure that
the electromagnetic contribution is small. We find that the
observed masses vary between 0.9 M� to 1.97 M�. Values
for the central density ρ0, central radial pressure pr0 and
surface density ρs lie in the expected range.

6 The star PSR J1903+0327

The parameter value a = 1.65143 generates the mass
1.667 M� which corresponds to the star PSR J1903+0327.
We use this parameter value for a to analyse the variation of
the physical features associated with the matter, charge and
gravity field within the star.

Table 2 represents the variation of density ρ, radial pres-
sure pr , tangential pressure pt and anisotropy Δ within the
star. The quantities ρ and pr are decreasing functions. The
radial pressure pr vanishes at r = 1 determining the bound-
ary which is the requirement for a compact star. The tangen-
tial pressure pt has finite values. The anisotropy Δ remains
finite and has the value Δ = 0 at r = 0 which is required
for stability. Table 3 presents the behaviour of the mass m,
electric field E and charge density σ . The mass increases
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Table 2 Variation of energy density ρ, radial pressure pr , tangential
pressure pt and measure of anisotropy Δ from the centre to the surface
with parameters a = 1.65143, b = 0.504167, c = 0.01, d = 0.01, α =
0.931 and η = 3.185

r ρ pr pt Δ

0 0.397536 0.0013775 0.0013775 0

0.1 0.397534 0.00137054 0.00259535 0.00122481

0.2 0.397527 0.00134884 0.00633559 0.00498676

0.3 0.397516 0.00130991 0.0128702 0.0115603

0.4 0.397499 0.00124963 0.0226954 0.0214458

0.5 0.397473 0.0011622 0.0366066 0.0354444

0.6 0.397438 0.00104019 0.0558307 0.0547905

0.7 0.39739 0.000874527 0.0822543 0.0813798

0.8 0.397327 0.000654462 0.118827 0.118173

0.9 0.397244 0.000367625 0.170302 0.169934

1 0.397138 0 0.244665 0.244665

Table 3 Variation of mass m, electric field intensity E2 and charge
density σ 2 for charged bodies from centre to the surface with parame-
ters a = 1.65143, b = 0.504167, c = 0.01 and d = 0.01

r m E2 σ 2

0 0 0 0.00155433

0.1 0.00166686 0.000101 0.00158992

0.2 0.013335 0.000416 0.00169896

0.3 0.0450063 0.000981 0.00188841

0.4 0.106684 0.001856 0.00217005

0.5 0.20837 0.003125 0.00256092

0.6 0.360071 0.004896 0.00308389

0.7 0.571787 0.007301 0.00376848

0.8 0.853521 0.010496 0.00465182

0.9 1.21527 0.014661 0.00577994

1 1.667 0.02 0.00720911

as r grows larger. The electric field E and charge density
σ are finite and nonsingular throughout the star with E = 0
at r = 0. The effect of the charge is incorporated through
the parameters c and d . Tables 4 and 5 represent the total
charge in the star with r = 1 fixed at the stellar surface. It
is clear that the parameter d has a greater effect than that
of the parameter c which makes the star more charged. The
metric functions A2 and B2 are evaluated in Table 6 for the
set of parameter values corresponding to PSR J1903+0327
through the interior of the star. The values obtained for the
metric functions indicate that the potentials are regular and
positive.

A graphical analysis provides deeper insight into the be-
haviour of the physical features. We have presented plots
for the density (Fig. 1), radial pressure (Fig. 2), tangential
pressure (Fig. 3), pressure anisotropy (Fig. 4), mass (Fig. 5),

Table 4 Electric field intensity E2 and charge density σ 2 (r = 1) with
parameters r = 1, a = 1.65143, b = 0.504167 and c = 0.01

d σ 2 E2

0 0.00264824 0.01

0.1 0.0494606 0.11

0.2 0.0965278 0.21

0.3 0.143603 0.31

0.4 0.190681 0.41

0.5 0.237759 0.51

0.6 0.284838 0.61

0.7 0.331917 0.71

0.8 0.378997 0.81

0.9 0.426076 0.91

1 0.473156 1.01

Table 5 Electric field intensity E2 and charge density σ 2 with param-
eters r = 1, a = 1.65143, b = 0.504167 and d = 0.01

c σ 2 E2

0 0.00470799 0.01

0.1 0.0309229 0.11

0.2 0.0573926 0.21

0.3 0.0838705 0.31

0.4 0.110351 0.41

0.5 0.136832 0.51

0.6 0.163313 0.61

0.7 0.189795 0.71

0.8 0.216277 0.81

0.9 0.242759 0.91

1 0.269241 1.01

Table 6 Potentials A2 and B2 with varying radius with parameters
a = 1.65143, b = 0.504167, c = 0.01, d = 0.01, α = 0.931 and η =
3.185

r A2 B2

0 2.21008 0.366674

0.1 2.21284 0.364445

0.2 2.22096 0.35788

0.3 2.23391 0.347325

0.4 2.25077 0.333316

0.5 2.27027 0.316515

0.6 2.29067 0.297652

0.7 2.30976 0.277454

0.8 2.32474 0.256604

0.9 2.33215 0.235694

1 2.32766 0.215211
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Fig. 1 Variation of density (y-axis) with the radius

Fig. 2 Variation of pressure (y-axis) with the radius

Fig. 3 Variation of tangential pressure (y-axis) with the radius

electric field intensity (Fig. 6), charge density (Fig. 7) and
metric functions (Figs. 8 and 9). It is clear that all the quan-
tities have regular profiles from the various plots that have
been generated. Ngubelanga et al. (2015) using a linear
equation of state also studied particular observed stars in
general relativity. Our results in this paper with a quadratic
equation of state are broadly consistent with their results.

Fig. 4 Variation of measure of anisotropy (y-axis) with the radius

Fig. 5 Variation of mass (y-axis) with the radius

Fig. 6 Square of Electric field intensity with the radius

7 Discussion

Our objective in this paper was to find new exact solu-
tions to the Einstein-Maxwell field equations for matter con-
figurations with anisotropy and charge in isotropic coordi-
nates. We selected the barotropic equation of state to be
quadratic which relates the radial pressure pr to the energy
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Fig. 7 Charge density against the radius

Fig. 8 Variation of the gravitational potential A2 (y-axis) with the ra-
dius

Fig. 9 Variation of the gravitational potential B2 (y-axis) with the ra-
dius

density ρ. The classes of exact solutions (31)–(36) to the
Einstein-Maxwell field equations were shown to be physi-
cally acceptable. The tables for charge and matter variables
suggest that they represent physically reasonable configu-
rations. By choosing to fix the parameters b = 0.504167,
c = 0.01, d = 0.01, α = 0.931 and η = 3.185 and vary-
ing the parameter a in Table 1, we regained the masses

for the stellar objects PSR J1614-2230, 4U 1608-52, PSR
J1903+0327, EXO 1745-248 and SAX J1808.4-3658. We
fixed the parameter a and used the star PSR J1903+0327
which has the mass 1.667 M�, to produce tables and graph-
ical plots for relevant quantities related to the metric, matter
and charge. We made the particular choices a = 1.65143,
b = 0.504167, c = 0.01, d = 0.01, α = 0.931 and η = 3.185
to perform graphical plots using the software package Math-
ematica. Our graphical approach suggests that the model for
the star PSR J1903+0327 is well behaved. The introduc-
tion of the quadratic parameter η in the equation of state
pr = ηρ2 + αρ − β does produce a new exact solution of
the Einstein-Maxwell system which is qualitatively differ-
ent from the linear case pr = αρ −β . However the quadratic
equation of state shall produce models which can be related
to observed stellar objects.
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