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Abstract In this paper, we analyze the behavior of pil-
grim dark energy with G-O cutoff scale in modified Horava-
Lifshitz F(R) gravity through correspondence scenario. We
consider three well-known scale factors in which one scale
factor describes the unification of matter dominated and ac-
celerated phases and others are intermediate and bouncing
forms. We obtain the F(R̃) models for these scale factors
and obtain increasing behavior with the passage of time.
We also extract equation of state parameter corresponding
to these models. We observe that this parameter shows tran-
sition from phantom towards quintessence by crossing the
phantom divide line in all cases. We also give comparison
of our results of equation of state parameter with observa-
tional constraints.

Keywords Modified Horava-Lifshitz F(R) gravity ·
Pilgrim dark energy · Cosmological analysis

1 Introduction

Nowadays, it is strongly believed through different obser-
vational schemes such as type Ia Supernovae (Perlmut-
ter et al. 1998; Riess et al. 1998), large scale structure
(Tegmark et al. 2004) and cosmic microwave background
(Spergel et al. 2003) observations that our universe expe-
riences an accelerated expansion with the passage of time.
The combined analysis of cosmological observations favor
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the spatially flat universe and consists of about 70 % DE,
30 % dust matter and negligible radiations. The WMAP
data analysis (Briddle et al. 2003) also provided the con-
firmation of cosmic acceleration. It is recommended that
some mysterious form of energy works behind this accel-
erated expansion phenomenon which is named as dark en-
ergy (DE). This DE possesses strong negative pressure in
abundance which causes in pulling apart all the astronomi-
cal objects.

Due to ambiguous nature of DE, versatile study have
been made in different ways such as cosmological constant,
dynamical models, modified and higher dimensional theo-
ries (Copeland et al. 2006; Bamba et al. 2012). Moreover,
the correspondence phenomenon between some of these DE
models has also been adopted for evaluating or solving many
DE issues. The cosmological constant (with equation of
state (EoS) parameter ω = −1) is the simplest proposal of
DE which works as vacuum energy but it has been plagued
with severe issues named as cosmic coincidence and fine
tuning. As an alternative to this model, many dynamical
DE models have been developed in search of more reliable
explanation of accelerated expansion phenomenon. These
models are phantom, quintessence, k-essence, h-essence,
holographic and its different versions and family of Chap-
lygin gas models (Amendola and Tsujikawa 2010). Differ-
ent cosmological parameters as well as observational con-
straints on these models have been established in order to
give useful outcomes for DE scenario.

Moreover, Wei (2012) constructed pilgrim DE (PDE)
model by realizing the fact that there is a possibility to avoid
black hole (BH) formation. He suggested that phantom-like
DE can play a crucial role for avoiding the phenomenon
of matter collapse. Related to this argument about the fate
of BH is also available in the literature. For example, re-
duction of BH mass though phantom accretion phenomenon
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(Babichev et al. 2004, 2008; Jamil and Qadir 2011; Bhadra
and Debnath 2012; Sharif and Jawad 2013) and the avoid-
ance of event horizon in the presence of phantom-like DE
(Lobo 2005a, 2005b; Sharif and Jawad 2014). Also, phan-
tom DE with strong repulsive force can push the universe
towards the big-rip singularity where all the physical objects
lose the gravitational bounds and finally dispersed. This give
motivation to Wei (2012) for suggesting PDE model. He
choose with Hubble horizon as an infrared (IR) cutoff and
evaluated this model through different possible theoretical
and observational ways to make BH free phantom universe
through PDE parameter.

The modification of gravitational sector of standard gen-
eral relativity is another proposal for explaining the DE
phenomenon. These modified theories are f (R), f (G),
f (R,G) (Nojiri and Odintsov 2007; Bamba et al. 2012),
f (T ) (Linder 2010), f (R,T ) (Harko 2011), Brans-Dicke
(Brans and Dicke 1961), f (R̃) (Chaichian 2010), f (T ,TG)

(Kofinas and Saridakis 2014; Kofinas et al. 2014) etc.
These modified gravities help in explaining the early in-
flation as well as late time accelerated expansion scenario
(Caramisa and de Mellob 2009). Various classes of modi-
fied gravity have been explained in detail in the references
(Nojiri and Odintsov 2005, 2011; Olmo 2011). Moreover,
f (R̃) gravity or modified Horava-Lifshitz F(R) (MFRHL)
gravity has been introduced by Chaichian (2010) through
a general approach which is invariant under foliation-
preserving diffeomorphisms. By taking power-law F(R̃)

model, Carloni et al. (2010) evaluated FRW cosmology
for finite time singularities and explained reductions of
this gravity. Chattopadhyay and Ghosh (2012) have dis-
cussed the generalized second law of thermodynamics in
this gravity and argued that it remains valid in quintessence
phase.

The reconstruction scenario of modified theories of grav-
ity via dynamical DE models is very fascinating and at-
tracted much attention nowadays. Upto now, various works
have been done in this direction (Nojiri and Odintsov
2006a, 2006b, 2007). We have also explored different
cosmological parameters through reconstruction scenario
via different modified theories of gravity as well as dy-
namical DE models (Jawad et al. 2013a, 2013b, 2013c,
2013d, 2014; Jawad 2014a, 2014b, 2014c; Jawad and
Rani 2015). Here, we explore the correspondence phe-
nomenon of (MFRHL) gravity and PDE (GO cutoff) in
flat FRW universe. We obtain the F(R̃) models and dis-
cuss the EoS parameter by taking three different scale fac-
tors. In the section we give basic formalism of F(R̃) gravity
and PDE. In Sect. 3, we elaborate the F(R̃) models and
EoS parameter. In the last section, we summarize our re-
sults.

2 Basic scenario

The action for MFRHL gravity is defined as follows
(Chaichian 2010)

SFHL
=

∫
d4x

√
g(3)NF(RHL),

with RHL ≡ KijKij − δK2 − EijGijklE
kl. (1)

Here δ appear as generalised De Witt metric or super-metric
(‘metric of the space of metric’) and also Eij can be defined

√
g(3)Eij = δW [g(3)

kl ]
δgij

(2)

which is also called detailed balanced condition by using
an action W [g3

kl] on the hypersurface Σt . Moreover, Gijkl is
defined on three-dimensional hyperspace Σt as follows

Gijkl = 1

2

(
g(3)ikg(3)j l + g(3)ilg(3)jk

) − δg(3)ij g(3)kl (3)

and its inverse can be written as

Gijkl = 1

2

(
g

(3)
ik g

(3)
j l + g

(3)
il g

(3)
jk

) − δ̃g
(3)
ij g

(3)
kl , δ̃ = δ

3δ − 1
.

(4)

In above stated HL f (R) gravity (Chaichian 2010), the
lapse N is considered to be a function of t only, which
represents the projectability condition. Further, it was ex-
plored a new very general HL-like f (R) gravity, which is
a general approach for the construction of modified grav-
ity which is invariant under foliation-preserving diffeo-
morphism (Chaichian 2010). The new form of generalized
gravity is knows as modified f (R) Horava-Lifshitz grav-
ity (MFRHL) whose action is defined as follows (Chaichian
2010)

S
F(R̃)

=
∫

d4
√

g(3)NF(R̃), (5)

and

R̃ = KijKij − δK2 + 2ν∇μ

(
nμ∇νn

ν − nν∇νn
μ
)

− EijGijklE
kl, (6)

which takes following form

R̃ = (3 − 9δ)H 2

N2
+ 6ν

a3N

d

dt

(
Ha3

N

)

= (3 − 9δ + 18ν)H 2

N2
+ 6ν

N

d

dt

(
H

N

)
, (7)
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for flat FRW universe. For δ = ν = 1, R̃ ⇒ R and F(R̃) ⇒
F(R) gravity for flat FRW universe. By varying the action
(5) over g

(3)
ij and setting N = 1, we get

0 = F(R̃) − 2(1 − 3δ + 3ν)
(
Ḣ + 3H 2)F ′(R̃)

− 2(1 − 3δ)H
dF ′(R̃)

dt
+ 2ν

d2F ′(R̃)

dt2
+ p. (8)

Here, prime denotes the derivative according to its argu-
ment. In the above equation, the matter contribution is in-
volved as pressure p. Taking ρ as the matter density and the
conservation equation is

ρ̇ + 3H(ρ + p) = 0. (9)

Using Eq. (8) and Eq. (9), we get

0 = F(R̃) − 6
[
(1 − 3δ + 3ν)H 2 + νḢ

]
F ′(R̃)

+ 6μH
dF ′(R̃)

dt
− ρ − Ca−3, (10)

where C is an integration constant. Thus, the density corre-
sponding to MFRHL gravity with C = 0 turns out to be

ρ
R̃

= F(R̃) − 6
[
(1 − 3δ + 3ν)H 2 + νḢ

]
F ′(R̃)

+ 6νH
dF ′(R̃)

dt
. (11)

The reconstruction scheme is a very useful technique
which is proposed by Nojiri and Odintsov (2006a, 2006b,
2007) and also extended for several cosmological scenarios.
Through this technique, one can analyze the role of DE in
different modified gravities. Also, our aim in this work is to
reconstruct F(R̃) for new holographic version of PDE by
equating their energy densities, i.e. ρ

R̃
= ρDE , which gives

6μH
˙̃
RF ′′(R̃) − 6

[
(1 − 3δ + 3ν)H 2 + νḢ

]
F ′(R̃) + F(R̃)

= 3
(
αH 2 + βḢ

) u
2 . (12)

The PDE model is defined as follows

ρDE = 3n2m4−u
p L−u, (13)

where n and u are both dimensionless constants. The first
property of PDE is

ρDE � m2
pL−2. (14)

From Eqs. (14) and (13), we have L2−u � mu−2
p = l2−u

p ,
where lp is the reduced Plank length. Since L > lp , one re-
quires

u ≤ 2. (15)

The second requirement for PDE is that it gives phantom-
like behavior (Wei 2012)

ωDE < −1. (16)

It is stated that (Wei 2012) to obtain the EoS for PDE, we
have to choose a particular cut-off L. Taking different IR
cutoffs, the accelerated expansion of the universe is dis-
cussed by HDE model. For instance, radius of Hubble hori-
zon L = H−1 where H is Hubble parameter, event hori-
zon L = RE = a

∫ ∞
t

dt
a

with a is a scale factor, the form

L = (H 2 + Ḣ )− 1
2 represented the Ricci length, the Granda-

Oliveros (GO) length (αH 2 +βḢ )− 1
2 (Granda and Oliveros

2008), etc. With GO length, the density of HDE model is
modified referred as new HDE (NHDE) model.

3 Reconstruction of F(R̃) models and
corresponding cosmological analysis

In this section, we construct F(R̃) Models corresponding
three different scale factors and discuss the EoS parameter.

3.1 Reconstruction scheme for unification of matter
dominated and accelerated phases

In this scenario, the Hubble rate is defined as follows (Nojiri
and Odintsov 2006a, 2006b)

H(t) = H2 + H1

t
. (17)

The scale factor for this scenario becomes a(t) = C1e
H2t tH1 .

For t � t0, in the early universe and H(t) ∼ H1
t

, the uni-
verse was filled with perfect fluid with EOS parameter as
w = 1 + 2

3H1
. On the other hand, when t 
 t0 the Hubble

parameter H(t) is constant H → H0 and the Universe seems
to de-Sitter. So, this form of H(t) provides transition from a
matter dominated to the accelerating phase. Using Eq. (17)
in Eq. (12), we obtain the following
(
t2ν(H1 + tH2)

)(
H1

(−2ν + χH1

+ t (1 − 3δ + 6ν)H2
))−1 d2F(t)

dt2

+ (
H1(−2ν + χH1 + H2χt)2)−1

× t
(
χ(−1 + 3δ − 3ν)H 3

1 − H1
(−2ν + t (1 − 3δ

+ 3ν)H2
)
(−4ν + 3χH2t) + 3H 2

1

(
2ν(1 − 3δ + 5ν)

− t (1 − 3δ + ν)χH2
) + 3 + tH2

(−6ν2 + tH2
(
4χν

− t (1 − 3δ + 3ν)χH2
)))dF(t)

dt
− F(t)

= 3
((

αH 2
1 + t2αH 2

2 − H1(β − 2tαH2)
)
t−2) u

2 ,
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Fig. 1 Plot of F(R̃) versus t for PDE parameter u = 1. Also, H0 = 2.3
(red); H0 = 2.4 (green); H0 = 2.5 (blue)

Fig. 2 Plot of F(R̃) versus t for PDE parameter u = −1

where χ = 1 − 3δ + 6ν. We solve this complicated dif-
ferential equation numerically for f (R̃) models and plot it
against cosmic time for three different values of PDE pa-
rameter u = 1,−1,−2 as shown in Figs. 1, 2 and 3. The
other constant parameters are δ = 0.5, ν = 0.1, α = 0.91,
β = 1.21, H1 = 0.5. We can analyzed that the reconstructed
F(R̃) model shows increasing behavior initially, then at-
tains a maximum value latter time for the case u = 1. Af-
ter that it shows decreasing behavior and approaches to a
fixed value in future time. On the other hand, the recon-
structed F(R̃) model exhibits decreasing behavior initially
and then increases with the passage of time for other two
cases (u = −1,−2).

Fig. 3 Plot of F(R̃) versus t for PDE parameter u = −2

The EoS parameter, in this scenario becomes

ωDE = (
t2H1ψ

(−3F(t) + (
t (−1 + 3δ − 3ν)

(
3H 2

1 + 3t2

+ H 2
2 + H1(−1 + 6tH2)

)
Ḟ (t)(H1ψ)−1

+ (
t (−1 + 3δ)(H1 + tH2)

(
(−6ν + 3χH1

+ 2tχH2)F̈ (t) + tψḞ (t)
))(

H1ψ
2)−1

− ((
H1ψ

3)−1)
tν

(−2
(
3(−2ν + χH1)

2

+ 3tχ(−2ν + χH1)H2 + t2χ2H 2
2

)
Ḟ (t)

− tψ
(
2(−6ν + 3χH1 + 2tχH2)F̈ + tψ

...
F(t)

))))

× (
3
(
t2F(t)H1ψ + t5(1 − 3δ + 3ν)H 2

2 Ḟ (t)

− 6χνH 3
1

(
3Ḟ (t) + t F̈ (t)

) + tH1
((−t2ν

+ 2H2
(−18ν2 + t3(1 − 3δ + 3ν) + 6tνχH2

))
Ḟ (t)

+ 6tνH2(−2ν + tχH2)F̈ (t)
)

+ H 2
1

((
36ν2 + t3((1 − 3δ + 3ν) + 30tνχH2

))
Ḟ (t)

+ 12tν(−ν + tχH2)
)
F̈ (t)

))−1)

where ψ = −2ν + χH1 + tχH2. The EoS parameter
(Figs. 4, 5 and 6) shows the transition from phantom-like
universe towards vacuum era or cosmological constant in all
cases of H0 and for u = 1. This evolution parameter remains
in the phantom-like universe always for u = −1. However
the trajectories of EoS parameter shows quintessence-like
DE behavior initial cosmic time while goes to vacuum-like
DE in the latter epoch for u = −2.



Astrophys Space Sci (2015) 357:88 Page 5 of 10

Fig. 4 Plot of ωDE versus t for PDE parameter u = 1. Also, H0 = 2.3
(red); H0 = 2.4 (green); H0 = 2.5 (blue)

Fig. 5 ωDE versus t for PDE parameter u = −1

3.2 On unification of inflation with dark energy

The pioneer framework of unification of inflation with DE in
modified gravities has been provided by Nojiri and Odintsov
(2003) in f (R) gravity, which was subsequently general-
ized to more realistic versions (Nojiri and Odintsov 2007;
Cognola et al. 2008). The singularity problem possesses
importance which describes the early universe and it was
investigated by Nojiri and Odintsov (2008). However, it
was also pointed that there exists a class of non-singular
exponential gravity to unify the early and late time ac-
celerated expansion of the universe (Elizalde et al. 2011;
Nojiri and Odintsov 2011). Thus, we also consider the in-

Fig. 6 Plot of ωDE versus t for PDE parameter u = −2

flationary scenario in this framework as follows

H = H1

t
(18)

which provides the following solution of

F(t) = C1t
−((−b1−b2−

√
−4b1+(b1+b2)

2)(2b1)
−1)

+ C2t
−((−b1−b2+

√
−4b1+(b1+b2)

2)(2b1)
−1)

+ ((
b1 + b2 −

√
−4b1 + (b1 + b2)2 + 2b1u

)

× (
b1 + b2 +

√
−4b1 + (b1 + b2)2

+ 2b1u
))−1

12b1b3t
−u,

where C1 and C2 are appear as integration constants. This is
an inflationary solution and b1, b2, b3 are

b1 = ν
(
2ν + (−1 + 3δ − 6ν)H1

)−1
,

b2 = ((
3ν

(−2ν + (1 − 3δ + 6ν)H1
))

× (
2ν + (−1 + 3δ − 6ν)H1

)−2

+ (−νH1 + (1 − 3δ + 3ν)H2
)

× (
H1

(
2ν + (−1 + 3δ − 6ν)H1

))−1)
,

b3 = 3
(−βH1 + αH 2

1

) u
2 .

At inflationary (early) Universe, when t � t0, the dominant
part of the F(t) becomes

F(t) ∼ C1t
−((−b1−b2−

√
−4b1+(b1+b2)

2)(2b1)
−1). (19)
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In this limit, the reconstructed F(R̃) for inflationary era has
the form

F(R̃) ∼ C̃1R̃
−b1−b2−

√
−4b1+(b1+b2)2

2b1 . (20)

Hence, F(R̃) produces the inflationary (phantom) solution.

3.3 Reconstruction scheme for intermediate scale factor

This scale factor has the following form (Barrow et al. 2006)

a(t) = exp
(
Btl

)
, 0 < m < 1. (21)

here B is a constant. The scale factor and Hubble parameter
is suitably chosen so that it is consistent with the intermedi-
ate expansion:

H(t) = Blt l−1. (22)

The scale factor is necessary to perform the analysis and
therefore working with a hypothetical scale factor may
not be consistent with the inflationary scenario. Hence we
picked the intermediate scale factor which is also consistent
with astrophysical observations (Barrow et al. 2006). Ac-
cording to this scale factor, we obtain the following form of
differential equation

(
t2ν

)(
(−1 + l)

(−Blχtl − (−2 + l)ν
))−1 d2F(t)

dt2

+ (
t
(
B2l2t2l − χ(−1 + 3δ − 3ν) + 2(−2 + l)2ν2

+ Blt lν
(
6(−1 + 3ν − 5ν) + l(4 − 12δ + 21ν)

)))

× (
(−1 + l)

(−Blχtl − (−2 + l)ν
)2)−1 dF(t)

dt
− F(t)

= −3
(
B2l2t−2+2lα + B(−1 + l)lt−2+lβ

) u
2 .

We numerically plotted above equation for f (R̃) models
versus cosmic time for three different values of PDE pa-
rameter u = 1,−1,−2 as shown in Figs. 7, 8 and 9. The
other constant parameters are δ = 0.5, ν = 0.1, α = 0.91,
β = 1.21, B = 0.1. We can analyzed that the reconstructed
F(R̃) model shows increasing behavior initially, then attains
a maximum value latter time for all the cases u and l which
is consistence with the present day observations. The EoS
parameter is

ωDE = −3F(t) + (
t
(−1 + l + 3Blt l

)
(−1 + 3δ − 3ν)Ḟ (t)

× (
(−1 + l)

(−Blχtl − (−2 + l)ν
))−1

+ (
t (−1 + 3δ)

(
(−2 + l)ν

(
(−3 + l)Ḟ (t) − t F̈ (t)

+ Bχlt l
(
(3 − 2l)Ḟ (t) + t F̈ (t)

))))

× (
(−1 + l)

(
Blχtl − (−2 + l)ν

)2)−1

Fig. 7 Plot of F(R̃) versus t for PDE parameter u = 1. Also, l = 2.2
(red); l = 2.4 (green); l = 2.6 (blue)

Fig. 8 Plot of F(R̃) versus t for PDE parameter u = −1

− (
B(−1 + l)l

(
Blχtl − (−2 + l)ν

)3)−1
t1−l

× ν
(
(−2 + l)2ν2((−3 + l)

(−(−2 + l)Ḟ (t)2t F̈ (t)
)

− t2 ...
F(t)

) − B2l2χt2l
)2(2(−3 + 2l)

(
(−1 + l)Ḟ (t)

− t F̈ (t)
) + t2 ...

F(t)
) − B(−2 + l)lt l

× χν
(
3(−4 + l)(−1 + l)Ḟ (t)

+ 2t
(−3(−2 + l)F̈ (t) + t

...
F(t)

)))

× (
3
(
F(t) + (

(−1 + l)t3νḞ (t) + 6B2(−1 + l)l2t2l

× νχ
(
(−3 + 2l)Ḟ (t) − t F̈ (t)

)

+ Blt l
((

6(−3 + l)(−2 + l)(−1 + l)ν2 + t3(1 − 3δ
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Fig. 9 Plot of F(R̃) versus t for PDE parameter u = −2

Fig. 10 Plot of ωDE versus t for PDE parameter u = 1. Also, l = 2.2
(red); l = 2.4 (green); l = 2.6 (blue)

+ 3ν)
)
Ḟ (t) − 6(−2 + l)(−1 + l)tν2F̈ (t)

))

× (
(−1 + l)t2(Blχtl − (−2 + l)ν

))−1))
.

The above EoS parameter is plotted against cosmic time for
three specific values of u shown in Figs. 10, 11 and 12.
It can be observed from Fig. 10 (for u = 1) that the EoS
parameter shows quintom-like behavior two times and also
shows oscillation about vacuum DE era. It evolutes the uni-
verse from phantom to vacuum to quintessence to vacuum
to phantom and then approaches to Λ CDM limit in the end
for all values of l. Figure 11 (u = −1) shows that EoS pa-
rameter evolutes the universe from phantom-like behavior
towards quintessence-like behavior by crossing the phantom
divide line for all values of l. Figure 12 (u = −2) exhibits
the phantom-like behavior initially and then goes towards

Fig. 11 ωDE versus t for PDE parameter u = −1

Fig. 12 Plot of ωDE versus t for PDE parameter u = −2

quintessence-like DE by crossing the phantom divide line
for all values of l.

3.4 Reconstruction scheme for bouncing scale factor

Inflation is a solution for flatness problem in big-bang cos-
mology. Bouncing scenario predicts a transitionary infla-
tionary Universe,in which the Universe evolves from a con-
tracting epoch (H < 0) to an expanding epoch (H > 0).
It means the scale factor a(t) reaches a local minima.
So the cosmological solution is non-singular. In GB grav-
ity,bouncing solutions widely studied in literature (Bamba
et al. 2014a, 2014b; Odintsov et al. 2014).
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Fig. 13 Plot of F(R̃) versus t for PDE parameter u = 1. Also,
H0 = 2.3 (red); H0 = 2.4 (green); H0 = 2.5 (blue)

This scale factor takes the following form (Myrzakulov
and Sebastiani 2014)

a(t) = a0 + α(t − t0)
2n,

H(t) = 2nα(t − t0)
2n−1

a0 + α(t − t0)2n
, n = 1,2,3 . . .

(23)

where a0, α are positive (dimensional) constants and n is a
positive natural number. The time of the bounce is fixed at
t = t0. When t < t0, the scale factor decreases and we have
a contraction with negative Hubble parameter. At t = t0, we
have the bounce, such that a(t = t0) = a0, and when t >

t0 the scale factor increases and the universe expands with
positive Hubble parameter. It should be mentioned that for
sake of simplicity (without any loss of generality) we have
taken n in the power law form as well as in the PDE density
(Eq. 13).

The f (R̃) models versus cosmic time corresponding to
this scale factor is shown in Figs. 13, 14 and 15. It can be
seen that the reconstructed F(R̃) model shows increasing
behavior for all values of n which is consistence with the
present day observations. Also, F(R̃) models corresponding
to u = −1,−2 shows decreasing behavior with the passage
of time. The EoS parameter in this scenario has shown in
Figs. 16, 17 and 18 for u = 1,−1,−2, respectively. This pa-
rameter also shows quintom-like behavior (transition from
phantom-like to quintessence-like DE by crossing the phan-
tom divide line) in all cases of u and n.

4 Concluding remarks

We have elaborated the reconstruction scenario of MFRHL
gravity with new holographic PDE model by assuming three

Fig. 14 Plot of F(R̃) versus t for PDE parameter u = −1

Fig. 15 Plot of F(R̃) versus t for PDE parameter u = −2

well-known forms of scale factor. We have constructed
F(R̃) models numerically corresponding to three different
values of PDE parameter u = 1,−1,−2. In first choice of
scale factor, we have analyzed that the reconstructed F(R̃)

model shows increasing behavior initially, then attains a
maximum value latter time for the case u = 1 (Fig. 1). After
that it shows decreasing behavior and approaches to a fixed
value in future time. On the other hand, the reconstructed
F(R̃) models (Figs. 2–3) exhibits decreasing behavior ini-
tially and then increases with the passage of time for other
two cases (u = −1,−2). In Intermediate scale factor case,
the reconstructed F(R̃) model shows increasing behavior
initially, then attains a maximum value latter time for all the
cases u and l which is consistence with the present day ob-
servations (Figs. 7–9). In bouncing scale factor case, f (R̃)

models versus cosmic time corresponding to this scale fac-
tor is shown in Figs. 13–15. It has been seen that the re-
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Fig. 16 Plot of ωDE versus t for PDE parameter u = 1. Also, n = 3
(red); n = 4 (green); n = 5 (blue)

Fig. 17 ωDE versus t for PDE parameter u = −1

constructed F(R̃) model shows increasing behavior for all
values of n which is consistence with the present day obser-
vations. Also, F(R̃) models corresponding to u = −1,−2
shows decreasing behavior with the passage of time.

Also, we have analyzed the behavior of EoS parameter
for above mentioned scenario. For the first scale factor, the
EoS parameter is shown in Figs. 4–6. It has shown the tran-
sition from phantom-like universe towards vacuum era or
cosmological constant in all cases of H0 and for u = 1.
This evolution parameter remains in the phantom-like uni-
verse always for u = −1. However the trajectories of EoS
parameter shows quintessence-like DE behavior initial cos-
mic time while goes to vacuum-like DE in the latter epoch
for u = −2. For Intermediate scale factor, EoS parameter
is plotted against cosmic time for three specific values of

Fig. 18 Plot of ωDE versus t for PDE parameter u = −2

u shown in Figs. 10–12. It can be observed from Fig. 10
(for u = 1) that the EoS parameter shows quintom-like be-
havior two times and also shows oscillation about vacuum
DE era. It evolutes the universe from phantom to vacuum
to quintessence to vacuum to phantom and then approaches
to Λ CDM limit in the end for all values of l. Figure 11
(u = −1) shows that EoS parameter evolutes the universe
from phantom-like behavior towards quintessence-like be-
havior by crossing the phantom divide line for all values of l.
Figure 12 (u = −2) exhibits the phantom-like behavior ini-
tially and then goes towards quintessence-like DE by cross-
ing the phantom divide line for all values of l. For bouncing
scale factor, EoS parameter has shown in Figs. 16–18 for
u = 1,−1,−2, respectively. This parameter shows quintom-
like behavior (transition from phantom-like to quintessence-
like DE by crossing the phantom divide line) in all cases of
u and n.

Also, the trajectories of EoS parameter compatible with
the constraints as obtained by Ade et al. (2014) (Planck data)
which is given as follows:

ωDE = −1.13+0.24
−0.25 (Planck + WP + BAO),

ωDE = −1.09 ± 0.17 (Planck + WP + Union 2.1),

ωDE = −1.13+0.13
−0.14 (Planck + WP + SNLS),

ωDE = −1.24+0.18
−0.19 (Planck + WP + H0).

The trajectories also favor the nine-year WMAP observa-
tional data (Hinshaw et al. 2013) which gives the ranges for
EoS parameter as

ωDE = −1.073+0.090
−0.089 (WMAP + eCMB + BAO + H0),

ωDE = −1.084 ± 0.063

(WMAP + eCMB + BAO + H0 + SNe).
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The above constraints has been obtained by implying dif-
ferent combination of observational schemes at 95 % confi-
dence level.

References

Ade, P.A.R., et al.: Astron. Astrophys. 571, A16 (2014)
Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations.

Cambridge University Press, Cambridge (2010)
Babichev, E., et al.: Phys. Rev. Lett. 93, 021102 (2004)
Babichev, E., et al.: Phys. Rev. D 78, 104027 (2008)
Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Astrophys.

Space Sci. 342, 155 (2012)
Bamba, K., et al.: J. Cosmol. Astropart. Phys. 010, 08 (2014a)
Bamba, K., et al.: Phys. Lett. B 732, 349 (2014b)
Barrow, J., Rliddle, A., Pahud, C.: Phys. Rev. D 74, 127305 (2006)
Bhadra, J., Debnath, U.: Eur. Phys. J. C 72, 1912 (2012)
Brans, C.H., Dicke, R.H.: Phys. Rev. D 124, 925 (1961)
Briddle, S., et al.: Science 299, 1532 (2003)
Caramisa, T.R.P., de Mellob, E.R.B.: Eur. Phys. J. C 64, 113 (2009)
Carloni, S., et al.: Phys. Rev. D 82, 065020 (2010)
Chaichian, M.: Class. Quantum Gravity 27, 185021 (2010)
Chattopadhyay, S., Ghosh, R.: Astrophys. Space Sci. 341, 669 (2012)
Cognola, G., et al.: Phys. Rev. D 77, 046009 (2008)
Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753

(2006)
Elizalde, E., et al.: Phys. Rev. D 83, 086006 (2011)
Granda, L., Oliveros, A.: Phys. Lett. B 669, 275 (2008)
Harko, T.: Phys. Rev. D 84, 024020 (2011)
Hinshaw, G.F., et al.: Astrophys. J. Suppl. 208, 19 (2013)
Jamil, M., Qadir, A.: Gen. Relativ. Gravit. 43, 1089 (2011)
Jawad, A.: Eur. Phys. J. Plus 129, 207 (2014a)
Jawad, A.: Astrophys. Space Sci. 353, 691 (2014b)
Jawad, A.: Eur. Phys. J. C 74, 3215 (2014c)

Jawad, A., Rani, S.: Adv. High. Ener. Phys. (2015)
Jawad, A., Pasqua, A., Chattopadhyay, S.: Astrophys. Space Sci. 344,

489 (2013a)
Jawad, A., Chattopadhyay, S., Pasqua, A.: Eur. Phys. J. Plus 128, 88

(2013b)
Jawad, A., Pasqua, A., Chattopadhyay, S.: Eur. Phys. J. Plus 128, 156

(2013c)
Jawad, A., Chattopadhyay, S., Pasqua, A.: Astrophys. Space Sci. 346,

273 (2013d)
Jawad, A., Chattopadhyay, S., Pasqua, A.: Eur. Phys. J. Plus 129, 54

(2014)
Kofinas, G., Saridakis, E.N.: Phys. Rev. D 90, 084044 (2014)
Kofinas, G., Leon, G., Saridakis, E.N.: Class. Quantum Gravity 31,

175011 (2014)
Linder, E.V.: Phys. Rev. D 81, 127301 (2010)
Lobo, F.S.N.: Phys. Rev. D 71, 124022 (2005a)
Lobo, F.S.N.: Phys. Rev. D 71, 084011 (2005b)
Myrzakulov, R., Sebastiani, L.: Astrophys. Space Sci. 352, 281 (2014).

arXiv:1403.0681 [gr-qc]
Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)
Nojiri, S., Odintsov, S.D.: Phys. Lett. B 631, 1 (2005)
Nojiri, S., Odintsov, S.D.: Gen. Relativ. Gravit. 38, 1285 (2006a)
Nojiri, S., Odintsov, S.D.: Phys. Rev. D 74, 086005 (2006b)
Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115

(2007)
Nojiri, S., Odintsov, S.D.: Phys. Rev. D 78, 046006 (2008)
Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)
Odintsov, S.D., et al.: (2014). 1406.1205 [hep-th]
Olmo, G.J.: Int. J. Mod. Phys. D 20, 413 (2011)
Perlmutter, S.J., et al.: Nature 391, 51 (1998)
Riess, A.G., et al.: Astron. J. 116, 1009 (1998)
Sharif, M., Jawad, A.: Int. J. Mod. Phys. D 22, 1350014 (2013)
Sharif, M., Jawad, A.: Eur. Phys. J. Plus 129, 15 (2014)
Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)
Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004)
Wei, H.: Class. Quantum Gravity 29, 175008 (2012)

http://arxiv.org/abs/arXiv:1403.0681
http://arxiv.org/abs/1406.1205

	Reconstruction scenario in modiﬁed Horava-Lifshitz F(R) gravity with well-known scale factors
	Abstract
	Introduction
	Basic scenario
	Reconstruction of F(R) models and corresponding cosmological analysis
	Reconstruction scheme for uniﬁcation of matter dominated and accelerated phases
	On uniﬁcation of inﬂation with dark energy
	Reconstruction scheme for intermediate scale factor
	Reconstruction scheme for bouncing scale factor

	Concluding remarks
	References


