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Abstract We present a class of relativistic solutions of cold
compact anisotropic stars in hydrostatic equilibrium in the
framework of higher dimensions using spheroidal geome-
try. The solutions obtained with Vaidya-Tikekar metric are
used to construct stellar models of compact objects and
studied their physical features. The effects of anisotropy
and extra dimensions on the global properties namely, com-
pactness, mass, radius, equation of state are determined in
higher dimensions in terms of the spheroidicity parame-
ter (λ). It is noted that for a given configuration, compact-
ness of a star is found smaller in higher dimensions com-
pared to that in four space-time dimensions. It is also noted
that the maximum mass of compact objects increase with the
increase of space-time dimensions which however attains
a maximum when D = 5 for a large (λ = 100), thereafter
it decreases as one increases number of extra dimensions.
The effect of extra dimensions on anisotropy is also stud-
ied.
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1 Introduction

During the last couple of decades there has been a consider-
able research activities in understanding issues both in cos-
mology and in astrophysics in the framework of higher di-
mensions. Particularly the results obtained in the usual four
dimensions are generalized in higher dimensions in addi-
tion to new physics. The history of higher dimensions goes
back to the work done by Kaluza and Klein in the past
(Kaluza 1921; Klein 1926). Kaluza and Klein independently
first introduced the concept of extra dimension in addition to
the usual four dimensions to unify gravitational interaction
with that of electromagnetic interaction. The theory is es-
sentially an extension of Einstein general theory of relativ-
ity (henceforth, GTR) in five dimensions which is of much
interest in particle physics as well as in cosmology. But the
initial approach does not work well. A couple of decades
ago the study of higher dimensional theories has been re-
vived once again and it was considerably generalized after
realizing that many interesting theories of particle interac-
tions need more than four dimensions for their consistent
formulation. On the other hand, GTR was formulated in a
space-time with just four dimensions. Thus if some of the
theories of particle interactions are consistent in higher di-
mensions, it is natural to look for the generalization of the
theories developed in the usual four dimensions. It became
important to generalize the results obtained in four dimen-
sional GTR in the higher dimensional context and probe the
effects due to incorporation of one or more than one extra
space-time dimensions in the theory. In this direction Cho-
dos and Detweiler (1980) first obtained a higher dimensional
cosmological model and thereafter a number of cosmolog-
ical models in higher dimensions have been discussed in
the literature (Shafi and Wetterich 1987; Wetterich 1982;
Accetta et al. 1986; Lorentz-Petzold 1988a, 1988b; Paul and
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Mukherjee 1990) to address different issues not understood
in the usual four dimensions. In cosmology it is proposed
that a higher dimensional universe might undergo a sponta-
neous compactification leading to a product space M4 ×Md ,
with Md the compact inner space, describing the present
universe satisfactorily. Thereafter the advent of string theory
(Green and Schwarz 1984, 1985; Candelas et al. 1985; Wit-
ten 1995) particularly a viable description of superstring the-
ory in 10 dimensions led to a spurt in activities in higher di-
mensions. The work of Randal and Sundrum (1999a, 1999b)
led to a paradigm shift in understanding the compactifica-
tion mechanism. Randall and Sundrum gave an interesting
picture of gravity in which the extra dimensions is not com-
pact and it is possible to recover the usual four dimensional
Newtonian gravity from a five dimensional anti-de Sitter
space-time in the low energy limit. In the context of local-
ized sources in astrophysics, higher dimensional versions
of the spherically symmetric Schwarzschild and Reissner-
Nördstrom black holes (Chodos and Detweiler 1982; Gib-
bons and Wiltshire 1986), Kerr Black holes (Mazur 1987;
Xu 1988), black holes in compactified space-time (My-
ers 1986), no-hair theorem (Sokolowski and Carr 1986),
Hawking radiation (Myers and Perry 1986), Vaidya solu-
tion (Iyer and Vishveshwara 1989) have been generalized.
Shen and Tan (1989) also obtained a global regular solu-
tion of higher dimensional Schwarzschild space-time. The
mass to radius ratio in higher dimensions for a uniform
density star is determined which is a generalization of the
four dimensions and new results have been reported in the
literature (Paul 2001a, 2001b). The consequences of extra
dimensions in understanding the structure of neutron stars
employing Kaluza-Klein model was investigated by Liddle
et al. (1990). The model is constructed making use of a five
dimensional energy-momentum tensor described by perfect
fluid. The four dimensional version of the theory is found to
have a perfect fluid with a scalar source. The effect of the
source term is found very large which leads to a substan-
tial lower value in the mass of neutron star associated with a
particular central density.

In astrophysics, it is known from recent observational
prediction that there exist a number of compact objects
whose masses and radii are not compatible with the standard
neutron star models. As densities of such compact objects
are normally above the nuclear matter density, theoretical
studies hints that pressure within such compact objects are
likely to be anisotropic, i.e., existence of two different kinds
of interior pressures namely, the radial pressure and the tan-
gential pressure (Herrera and Santos 1997). A number of lit-
erature (Tikekar and Thomas 1999; Patel and Mehta 1995;
Maharaj and Maartens 1989; Gokhroo and Mehra 1994)
came up where the solutions of Einstein’s field equations
with anisotropic fluid distribution on different space-time
geometries are discussed. The role of pressure anisotropy

is studied in the context of high-redshift values including
the stability of compact objects (see for example Mak and
Harko 2003; Dev and Gleiser 2004; Chaisi and Maharaj
2005 and references therein). Bowers and Liang (1974) ob-
tained the corresponding change in the limiting values of
the maximum mass of compact stars in the presence of
anisotropy. Recently, the maximum mass of an isotropic
compact object and that of an anisotropic one in the context
of Vaidya-Tikekar model obtained by Sharma et al. (2006)
and Karmakar et al. (2007) in four dimension making use
of general relativistic solution obtained by Mukherjee et al.
(1997). It may be mentioned here that a higher dimen-
sional generalization of the relativistic solution obtained by
Mukherjee et al. (1997) has been generalized by one of us
(Paul 2004). In the present paper we estimate the maximum
mass limit of an anisotropic compact object making use of
the above general relativistic solution in higher dimensions.
In this case we consider space-time geometry describe by a
metric ansatz given by Vaidya and Tikekar (1982). The tech-
nique adopted here is different from that usually considered
in obtaining relativistic solution from Einstein’s field equa-
tion. Usually for a known equation of state (in short, EoS) of
matter one obtains solution for the geometry. But in the case
of compact objects the equation of state of matter inside a
compact object is not yet known except some phenomeno-
logical assumptions. In this case making use of a known
geometry for compact objects in hydrostatic equilibrium in
higher dimensional GTR we explore different physical fea-
tures of the compact objects. It helps to determine both the
mass and radius of compact objects in terms of geometrical
parameters as was obtained in Chattopadhyay et al. (2012);
Paul and Deb (2014) in four dimensions. We also predict the
relevant EoS for a given configuration known from observa-
tions. The EoS obtained here satisfies a non linear equation.
It may be mentioned here that similar non-linear EoS have
been employed by Mafa Takisa and Maharaj (2013) to ob-
tain stellar models for compact objects.

The paper is organized as follows: In Sect. 2 we set up the
Einstein field equation for an anisotropic star and presented
a class of new solutions in higher dimensions. For physically
relevant anisotropic stars, the regularity and matching con-
ditions for the solution at the boundary of the star is ensured
to obtain stellar models. In Sect. 3 the role of anisotropy is
studied and estimated the probable maximum mass for the
class of solutions obtained in Sect. 4. We conclude by sum-
marizing our results in Sect. 5.

2 Field equation in higher dimensions and solutions

The Einstein’s field equation in higher dimensions is given
by

RAB − 1

2
gABR = 8πGDTAB (1)



Astrophys Space Sci (2015) 356:327–337 329

where D is the total number of dimensions, GD = GVD−4 is
the gravitational constant in D dimensions, G denotes the 4
dimensional gravitational constant and VD−4 is the volume
of extra space. RAB is Ricci tensor, R is Ricci scalar, gAB is
metric tensor and TAB is the energy momentum tensor in D

dimensions. We consider the metric of a higher dimensional
spherically symmetric, static space-time given by

ds2 = −e2ν(r)dt2 + e2μ(r)dr2 + r2dΩ2
n (2)

where ν(r) and μ(r) are the two unknown metric functions,
n = D − 2 and dΩ2

n = dθ2
1 + sin2 θ1dθ2

1 + sin2 θ2(dθ2
3 +

· · · + sin2 θn−1dθ2
n) represents the metric on the n-sphere

in polar coordinates. The energy-momentum tensor for an
anisotropic star in the most general form is given by

TAB = diag(−ρ,pr,pt ,pt , . . . , pt ) (3)

where ρ is the energy-density, pr is the radial pressure, pt

is the tangential pressure and � = pt − pr is the measure of
pressure anisotropy in this model, which depends on metric
potential μ(r) and ν(r). Using Eqs. (2) and (3), Einstein’s
field equation reduces to the following set of equations:

8πGDρ = n(n − 1)(1 − e−2μ)

2r2
+ nμ′e−2μ

r
, (4)

8πGDpr = nν′e−2μ

r
− n(n − 1)(1 − e−2μ)

2r2
, (5)

8πGDpt = e−2μ

(
ν′′ + ν′2 − ν′μ′ − (n − 1)(μ′ − ν′)

r

)

− (n − 1)(n − 2)(1 − e−2μ)

2r2
(6)

Using Eqs. (5) and (6), pressure anisotropy condition (� =
pt − pr ) gives rise to

ν′′ + ν′2 − ν′μ′ − (n − 1)μ′

r
− ν′

r
− (n − 1)(1 − e2μ)

r2

= �e2μ (7)

To solve the Eqs. (4)–(7), we use the ansatz (Vaidya and
Tikekar 1982),

e2μ = 1 + λr2/R2

1 − r2/R2
, (8)

where λ being the spheroidicity parameter and R is the geo-
metrical parameter. Now from Eq. (7), one obtains a second
order differential equation in x, given by

(
1 + λ − λx2)Ψxx + λxΨx + λ(λ + 1)(n − 1)Ψ

− �R2(1 + λ − λx2)2

(1 − x2)
Ψ = 0 (9)

where Ψ = eν(r), with x2 = 1 − r2

R2 .
Now for simplicity we choose the anisotropic parame-

ter � (Sharma et al. 2006) as follows,

� = αλ2(1 − x2)

R2(1 + λ − λx2)2

The above relation is chosen so that the regularity at the cen-
tre of the star is ensured. The method adopted here to obtain
solution of the field Eqs. (4)–(7) is similar to that previously
obtained by Mukherjee et al. (1997). Using the transforma-
tion z = √

λ/(λ + 1)x, Eq. (9) can be written as

(
1 − z2)Ψzz + zΨz + (

β2 − 1
)
Ψ = 0 (10)

where β = √
(n − 1)(λ + 1) − λα + 1 is a constant. The

general solution of Eq. (10) (Mukherjee et al. 1997) is given
by

eν = A

[
cos[(β + 1)ζ + δ]

β + 1
− cos[(β − 1)ζ + δ]

β − 1

]
(11)

where ζ = cos−1 z. A and δ are two constants which can be
determined from the boundary conditions. For a real β the
anisotropy parameter α satisfies a limit determined by the
space-time dimensions (D) and spheroidicity parameter λ

which is αmax < (D − 3) + D−2
λ

. The physical parameters
relevant in this model are given below:

ρ = n

16πGDR2(1 − z2)

[
n − 1 + 2

(λ + 1)(1 − z2)

]
(12)

pr = − 1

8πGDR2(1 − z2)

[
n(n − 1)

2
+ nzΨz

(λ + 1)Ψ

]
(13)

pt = pr + � (14)

� = αλ

8πGDR2

[
(λ + 1)(1 − z2) − 1

(λ + 1)2(1 − z2)2

]
(15)

Equations (12)–(15) together with Eqs. (8) and (11) will be
employed here to obtain exact solution of the Einstein field
equation. The mass of a compact star of radius b (Paul 2004)
in higher dimensions is given by

M(b) = nAn

16πGD

(1 + λ)bn+1

R2(1 + λ b2

R2 )
. (16)

We impose the following conditions in our model:

• At the boundary of the star the interior solution should be
matched with the Schwarzschild exterior solution, i.e.,

e2ν(r=b) = e−2μ(r=b) =
(

1 − C

bn−1

)
, (17)

where C is a constant related to the mass of the star
which is given by M = nAnC

16πGD
. Here An = 2π(n+1)/2

Γ (n+1)/2 . In
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four dimension (D = 4), C = 2M and in five dimension
(D = 5), C = 0.84848MG5 where G5 = GV1 and V1 is
the volume of extra space in five dimensions.

• The radial pressure pr should vanish at the boundary of
the star which gives,

Ψz(zb)

Ψ (zb)
= − (n − 1)(1 + λ)

2zb

(18)

where z2
b = (λ/(λ + 1))(1 − b2/R2). From Eq. (11) one

obtains

ψz

ψ
= (β2 − 1)√

(1 − z2)
W (19)

where

W = sin[(β − 1)ζ + δ] − sin[(β + 1)ζ + δ]
(β + 1) cos[(β − 1)ζ + δ] − (β − 1) cos[(β + 1)ζ + δ] .

Using Eqs. (18) and (19) we get

tan δ = τ cot ζ b − tan(βζ b)

1 + τ cot ζ b tan(βζ b)
(20)

where τ = (n−1)(λ+1)−2λα
β(1+λ)(n−1)

and ζ b = cos−1 zb .
• As the radial pressure inside the star is positive, the con-

dition pr ≥ 0 leads to the inequality

Ψz

Ψ
≤ − (1 + λ)(n − 1)

2z
. (21)

• Using Eqs. (12)–(14), the radial squared speed of sound
is obtained which is given by

dpr

dρ

= z(1 − z2)2(Ψz/Ψ )2 − ((1 − z2)Ψz/Ψ ) − αλz(1 − z2)

z(1 − z2)(λ + 1)(n − 1) + 4z
.

(22)

The variation of the tangential pressure with density is
given by

dpt

dρ
= dpr

dρ
+ αλ

(1 + λ)

[
(λ + 1)(1 − z2) − 2

(λ + 1)(1 − z2) + 4

]
. (23)

Now, the parameters are so chosen that the causality con-
ditions are not violated, i.e., dpr

dρ
,

dpt

dρ
≤ 1 in the model.

The above constraints are used to obtain physically viable
stellar models in the next section.

3 Physical analysis of compact objects

In this section we consider a higher dimensional space-
time to determine the maximum mass of compact objects.

Fig. 1 Variations of ( dp
dρ

) at the centre of an anisotropic star with α for
λ = 53.34, with M = 1.435 M�, b = 7.07 km (SAX J 1808.4-3658).
The solid and dotted lines represent the variation of (

dpr

dρ
)r=0 and

(
dpt

dρ
)r=0 with α in four dimensions respectively. The dashed and long

dashed lines represent the variation of (
dpr

dρ
)r=0 and (

dpt

dρ
)r=0 in five

dimensions respectively

Fig. 2 Variations of ( dp
dρ

) at the centre of an anisotropic star with α for
λ = 53.34, M = 1.435 M�, b = 7.07 km (SAX J 1808.4-3658). The
solid and dotted lines represent the variation of (

dpr

dρ
)r=b and (

dpt

dρ
)r=b

with α in four dimensions respectively. The dashed and long dashed
lines represent respectively the variation of (

dpr

dρ
)r=b and (

dpt

dρ
)r=b in

five dimensions respectively

We explore the effect of increasing the number of space-
time dimensions in addition to anisotropy. The methodology
adopted here is as follows: For a given mass (M), radius (b),
spheroidicity parameter (λ) and space-time dimensions (D),
the factor y = b2/R2 can be determined from Eq. (16). For
a given central or the surface density, the value of the ge-
ometrical parameter R can be determined using Eq. (12).
Thereafter, the radius of star b = R

√
y and mass M can be

determined using Eq. (16). It may be mentioned here that for
a specific value of anisotropy parameter α, the parameter δ is
fixed. However, using Eqs. (22) and (23) one can show that
for compact objects with same masses and radii might have
different anisotropy for different equation of state (EoS). In
Sect. 3.1, it is shown that EoS changes as one varies the
anisotropy and space-time dimensions. It is evident from the
plot of variations of dpr

dρ
and dpt

dρ
with α in Figs. 1 and 2 re-

spectively.
It is also evident that the slope for dp

dρ
with anisotropy is

decreases as the dimension is increased and moreover the
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Fig. 3 Radial variation of energy density (ρ̃ = ρR2) interior to the
star HER X-1 (Mass M = 0.88 M�, Radius = 7.7 km). Solid line for
D = 4 and dotted line for D = 5 with anisotropy parameter α = 0.4
and λ = 2

value of dp
dρ

for five dimensions is less than that of four di-
mensions. Thus the EOS of matter inside the star changes as
the number of space-time dimensions are changed for the
same set of values of the model parameters. For a given
values of α and λ one can determine δ from Eq. (20). In
the case of isotropic star (α = 0), for a given λ and uiso

(isotropic compactness factor), we first calculate y using
Eq. (16) thereafter δ is determined from Eq. (20). In the
case of anisotropic star we employ same δ to determine yani

for different α. Using Eq. (16) for anisotropic compactness
given by

uani = M(b)

b
= nAn

16π

(1 + λ)yani

(1 + λyani)

we probe the effect of anisotropy on the compactness of a
star for different space-time dimensions. We note that for
vanishing anisotropy with D = 4, the results are obtained by
Karmakar et al. (Sharma et al. 2006; Karmakar et al. 2007).

3.1 Numerical results

In this section we consider two different compact objects of
known masses as examples for the above purpose.

Case I: For the pulsar Her X-1 (Sharma and Mukher-
jee 2001) which has mass M = 0.88 M� where M� is the
solar mass, radius b = 7.7 km, in the framework of the
space-time geometry considered here the compactness fac-
tor is uiso = 0.1686 when λ = 2 in four dimensions. Now
as mentioned we determine R using Eq. (17) for λ = 2 in
four and five dimensions which are R = 20.2238 km and
R = 97.2474 km respectively. It is now possible to study the
radial variation of energy density (ρ), radial pressure (pr)

and transverse pressure (pt ) using Eqs. (12), (13) and (14)
which are plotted in Figs. 3–5 respectively for four (solid
line) and five dimensions (dotted line).

In Fig. 3, we plot variation of energy density (ρ̃)

inside the compact objects for a given α and λ with
different space-time dimensions. The radial pressure is

Fig. 4 Variation of radial pressure (p̃r = prR
2) inside HER X-1

(Mass M = 0.88 M�, Radius = 7.7 km). Solid line for D = 4 and
dotted line for D = 5 for anisotropy parameter α = 0.4 and λ = 2

Fig. 5 Radial variation of tangential pressure (p̃t = ptR
2) inside HER

X-1 (Mass M = 0.88 M�, Radius = 7.7 km). Solid line for D = 4 and
dotted line for D = 5 with anisotropy parameter α = 0.4 and λ = 2

found to increase with an increase in space-time dimen-
sions (D). In the case of pressures plotted in Figs. 4
and 5, it is evident that both the radial and the tangen-
tial pressures decrease with increase of space-time di-
mensions. The rate of decrease of pressure is more when
the dimension is less. The tangential pressure at the sur-
face of the star is more in the case of lower dimen-
sion.

In Table 1 we tabulated the calculated values of the com-
pactness factor and mass of compact objects considering
HER X-1 an anisotropic star. The observed mass is consid-
ered corresponding to isotropic compact object in 4 dimen-
sions. In the case of 5-dimensions mass of compact object is
found less than that of 4 dimensional mass. From Table 1 it
is evident from columns 3 and 4 that in four dimensions both
compactness factor (u) and mass (M) decreases with the in-
crease of anisotropy (α). But in five dimensions both com-
pactness factor (u) and mass (M) are found to increase at
first with the increase of anisotropy parameter (α), it attains
a maximum value for a certain α then decreases as evident
from columns 7 and 8 respectively.

Case II: For a millisecond pulsar namely, SAX J 1808.4-
3658 (Sharma et al. 2002) with mass M = 1.435 M� and
radius b = 7.07 km, it is found that isotropic compactness
uiso = 0.2994 corresponds to λ = 53.34. In this case also the
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Table 1 Compactness factor and mass calculated for different anisotropy parameter (α) for space-time dimensions D = 4 & D = 5

α
yiso

1000
u

100
Miso
10 α

yiso
1000

u
100

Miso
10

D = 4, λ = 2, b = 7.7 km D = 5, λ = 2, b = 7.7 km

0 145.0 16.86 8.8 M� 0 6.27 2.18 1.14 M�

α
yani
1000

uani
100

Mani
10 α yani

uani
1000

Mani
10

D = 4, λ = 2, b = 7.7 km D = 5, λ = 2, b = 7.7 km

0.2 128.1 15.30 8.0 M� 0.2 7.14 2.48 1.29 M�
0.4 95.3 12.01 6.3 M� 0.4 6.67 2.32 1.21 M�
0.5 69.0 9.09 4.7 M� 0.5 5.80 2.02 1.05 M�
0.6 32.2 4.54 2.4 M� 0.6 4.43 1.55 0.81 M�

Fig. 6 Variation of anisotropy parameter (α) with spheroidicity pa-
rameter (λ) for a given mass and radius configuration

Fig. 7 Radial variation of energy density (ρ̃ = ρR2) interior to the
star SAX J 1808.4-3658 (Mass M = 1.435 M�, Radius = 7.07 km).
Solid line for D = 4 and dotted line for D = 5 for anisotropy parameter
α = 0.4 and λ = 53.34

compact star with the given mass and radius can be modelled
as an anisotropic star.

It admits pressure anisotropy in the configuration for
a suitable combination of spheroidicity parameter (λ) and
anisotropy parameter (α) in four dimensions as evident from
Fig. 6. It is observed that the anisotropy parameter α in-
creases with the increase of spheroidicity parameter (λ)

for a fixed mass of the star which we call isotropic mass
(M = 1.435 M�). It is also evident that α increases first
with the increase in λ and at a large limiting value of λ

Fig. 8 Variation of radial pressure (p̃r = prR
2) interior to the star

SAX J 1808.4-3658 (Mass M = 1.435 M�, Radius = 7.07 km). Solid
line for D = 4 and dotted line for D = 5 for anisotropy parameter
α = 0.4 and λ = 53.34

Fig. 9 Radial variation of tangential pressure (p̃t = ptR
2) in-

terior to the star SAX J 1808.4-3658 (Mass M = 1.435 M�,
Radius = 7.07 km). Solid line for D = 4 and dotted line for D = 5
for anisotropy parameter α = 0.4 and λ = 53.34

the anisotropy parameter α attains a constant value. In this
case we obtain α = 0.23267 for λ = 600. The value of
R can be determined using Eq. (17) for λ = 53.34 which
gives R = 43.245 km and R = 270.059 km in four and
five dimensions respectively. We plot the radial variation
of energy density (ρ), radial pressure (pr) and transverse
pressure (pt ) in four and five dimensions in Figs. 7–9 re-
spectively. In Fig. 7, we plot the variation of energy den-
sity (ρ̃) with radial distance and found that energy density
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Table 2 Compactness factor and mass for different anisotropy (α) in D = 4 & D = 5 dimensions with λ = 53.34

α
yiso

1000
u

100
Miso
10 α

yiso
1000

u
10

Miso
10

D = 4, b = 7.07 km D = 5, b = 7.07 km

0 26.7 29.94 1.435 M� 0 0.68 4.23 0.203

α
yani
1000

uani
100 Mani α

yani
1000

uani
100 Mani

D = 4, b = 7.07 km D = 5, b = 7.07 km

0.2 26.8 29.97 1.437 M� 0.2 0.62 3.84 0.184 M�
0.4 23.9 28.58 1.368 M� 0.3 0.49 3.06 0.147 M�
0.5 19.5 26.00 1.246 M� 0.4 0.28 1.77 0.085 M�
0.6 9.0 17.60 0.844 M� 0.45 0.14 0.89 0.043 M�

is more in five dimensions than that in four dimensions.
A star of same radius accommodates more mass in the case
of higher dimensions. However radial and transverse pres-
sures are found to have lower values in higher dimensions
than that in four dimensions which is evident from Figs. 8
and 9 respectively. In Table 2, the values of y, u and M

are given considering an isotropic star (α = 0) and also for
an anisotropic (α �= 0) stellar configuration both in 4 and
5-dimensions. It is evident from columns 3 and 4 that in
four dimensions both compactness factor (u) and the cor-
responding mass of a star (M) first increases with an in-
crease in anisotropy (α), which attains a maximum value
and thereafter decreases. But in five dimensions both com-
pactness factor and mass of a compact object are found to
decrease with the increase of anisotropy parameter (α) as
evident from columns 7 and 8 of Table 2. It is also evident
that for the same anisotropy, compactness of a star is found
to decrease significantly if the space-time dimensions are
increased. We note that there is a limiting value of α above
which y = b2/R2 becomes zero or negative which is non-
physical.

It is noted that for HER X-1, a physically realistic stel-
lar model is obtained with a maximum value of α which
are 0.665 and 0.79 for D = 4 and D = 5 respectively.
In the case of SAX J 1808.4-3658, however, a physically
realistic stellar model is permissible with a maximum α

which are 0.65 and 0.49 for D = 4 and D = 5 respec-
tively.

4 Maximum mass and surface red-shift

In this section maximum mass of a class of isotropic and
anisotropic stars in four (D = 4) and in higher (D > 4) di-
mensions will be explored. In determining the maximum
mass of a compact object in higher dimensions we follow
a technique adopted in Sharma et al. (2006) and Karmakar
et al. (2007).

• The squared speed of sound should satisfy an inequality
( dpr

dρ
≤ 1) inside the compact object for causality. It de-

creases away from the centre thus we consider squared
speed of sound maximum at the centre which leads to

ψz

ψ

∣∣∣∣
zo

≥ (1 + λ)

2
√

λ

[√
λ + 1 −

√
(4n + 13)λ + 1 + 4αλ2

λ + 1

]
.

(24)

Using (18) and (24), one can determine the limiting value
of δ which is a function of α for given values of λ and D.

• Corresponding to the limiting value of δ, a maximum
value for y = b2/R2 can be determined using Eq. (19).

• From Eq. (15) the compactness of a compact star in higher
dimension can be determined which is given by

u = M(b)

b
= nAn

16π

(1 + λ)

(λ + 1
y
)
. (25)

Thus the maximum value of y corresponds to the max-
imum compactness of a stellar configuration. The maxi-
mum surface red-shift ((Zs)max) is given by:

(Zs)max = (1 − 2uani)
−1/2 − 1. (26)

Thus, in the above it is noted that once the maximum
compactness of a star is known the corresponding maxi-
mum mass of the anisotropic star can be determined for a
given radius or surface density. In Tables 3, 4 and 5 we have
tabulated the maximum mass of stars, surface red-shift for
λ = 2, 3 and 100 respectively in four and higher dimen-
sions. From Tables 3 and 4, it is evident that both the sur-
face red-shift and maximum mass are found to increase with
the increase of anisotropy parameter (α) for a given dimen-
sion. However surface red-shift and maximum mass both in-
creases when the space-time dimensions are increased with
or without anisotropy. We note that for spheroidicity param-
eter λ = 100, the maximum compactness of an isotropic
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Table 3 Maximum Mass configurations for a star of radius 10 km. with λ = 2

D α δ ymax (M
b

)max (Zs)max Mmax

4 0 1.71374 0.42341 0.34390 0.78970 2.3315 M�
0.5 1.65996 0.47337 0.36474 0.92267 2.4728 M�

5 0 1.66216 0.14400 0.39514 1.18368 2.6790 M�
0.5 1.65254 0.16517 0.43881 1.85850 2.9750 M�

6 0 1.51764 0.03560 0.20882 0.31039 1.4157 M�
0.5 1.53075 0.04521 0.26051 0.44491 1.7662 M�

Table 4 Maximum Mass
configurations for a star of
radius 10 km with λ = 3

D α δ
ymax
10 (M

b
)max Zs |max Mmax

4 0 1.718 3.728 0.352 0.838 2.386 M�
0.5 1.654 4.283 0.375 0.999 2.541 M�

5 0 1.681 1.294 0.439 1.869 2.978 M�
0.5 1.665 1.505 0.489 5.602 3.312 M�

6 0 1.546 0.410 0.306 0.608 2.075 M�
0.5 1.557 0.502 0.365 0.928 2.477 M�

Table 5 Maximum Mass
configurations for a star of
radius 10 km with λ = 100

D n α
ymax
1000 (M

b
)max Maximum Mass Mmax (M�)

4 2 0 25.19 0.3615 2.4510

0.5 45.02 0.3905 2.6475

5 3 0 7.82 0.5222 3.5407

0.5 12.02 0.5874 3.9824

6 4 0 3.09 0.4994 3.3855

0.5 4.58 0.5816 3.9428

7 5 0 1.09 0.3080 2.0881

0.5 1.80 0.3903 2.6461

8 6 0 0.06 0.0238 0.1614

0.5 0.45 0.9716 0.6587

Table 6 Equation of state for
different stellar models in
4-dimensions

Star Mass Size λ α Equation of State

HER X1 0.88 M� 7.7 2 0 p = 0.1747ρ − 0.1518

p = −0.0067ρ2 + 0.189ρ − 0.156

0.3 p = 0.1466ρ − 0.1272

p = −0.0125ρ2 + 0.174ρ − 0.142

SAX J 1.435 M� 7.07 53.34 0 p = 0.2309ρ − 0.299

p = −0.0041ρ2 + 0.258ρ − 0.336

SS1 0.3 p = 0.1527ρ − 0.1892

p = −0.0061ρ2 + 0.193ρ − 0.244

SAX J 1.323 M� 6.55 5 0 p = 0.2627ρ − 0.4393

p = −0.0025ρ2 + 0.2800ρ − 0.465

SS2 0.3 p = 0.201ρ − 0.3289

p = −0.0057ρ2 + 0.239ρ − 0.387
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Table 7 Equation of state for
different stellar models in
5-dimensions

Star Mass Size λ α Equation of State

HER X1 0.88 M� 7.7 2 0 p = 0.2654ρ − 0.0695

p = 0.2002ρ2 + 0.158ρ − 0.055

0.3 p = 0.248ρ − 0.065

p = 0.165ρ2 + 0.159ρ − 0.053

SAX J 1.435 M� 7.07 53.34 0 p = 0.1917ρ − 0.1121

p = 0.0364ρ2 + 0.146ρ − 0.098

SS1 0.3 p = 0.1646ρ − 0.0962

p = 0.0234ρ2 + 0.1352ρ − 0.087

SAX J 1.323 M� 6.55 5 0 p = 0.2277ρ − 0.1673

p = 0.045ρ2 + 0.1572ρ − 0.140

SS2 0.3 p = 0.2046ρ − 0.1503

p = 0.0333ρ2 + 0.1524ρ − 0.13

star is 0.3615 which is same as that obtained in Sharma
et al. (2006). We note that the maximum mass of a compact
star first increases with the increase of dimensions, attains
a maximum value in between D = 5 and D = 6 (if fractal
dimensions exist), thereafter it decreases which is evident in
Table 5. In Fig. 14 we plot the variation of maximum mass
with dimension. From Table 5, it is evident that maximum
compactness factor of a compact object may exceed 0.5 in
higher dimensions. In Kaluza-Klein gravity similar limiting
value of compactness of a higher dimensional star admit-
ting compactness more than 0.5 without a black hole was
reported in the literature (Ponce de Leon 2010). However if
one restricts the compactness to a value less then 0.5, then
the maximum allowed value of λ found in this case is 10
in isotropic star. In Tables 3, 4 and 5, it is evident that for
a given value of λ there exists a upper limit of space-time
dimensions for a physically viable model. It is evident that
a compact object with spheroidicity parameters λ = 2 and 3
can be accommodated consistently in D ≤ 6 and for a large
value say, λ = 100 it can be accommodated in D ≤ 8.

4.1 Equation of state (EoS)

Using the above model parameters we plot the radial varia-
tion of density and radial pressure vide Eqs. (12) and (13).
However, it may be pointed out here that an analytic function
of pressure with density in known form cannot be obtained
here because of complexity of the equations. We study nu-
merically to obtain a best fitted relation between the energy
density (ρ) and radial pressure (p) which are presented in
Tables 6 and 7. Theoretically a convenient way of express-
ing EoS is obtained from energy per unit mass of the fluid
which is a function of energy density (u) and entropy (S)
respectively. From the first law of thermodynamics,

du = −p d

(
1

ρ

)
+ T dS. (27)

For the description of the fluid flow pressure and temper-
atures are given by

p = ρ2 ∂u

∂ρ

∣∣∣∣
S

, T = ∂u

∂S

∣∣∣∣
ρ

. (28)

In the case of production of entropy through dissipative
processes we restrict to adiabatic flows only. In the isen-
tropic case dS

dt
= 0, entropy remains constant. Therefore, the

energy density becomes a one parameter function. Conse-
quently Eq. (27) is equivalent to

p = p(ρ). (29)

It is evident that the EoS obtained (in Tables 6 and 7) numer-
ically using the Eqs. (12) and (13) is not linear relation of the
form p = ωρ where ω is a constant. We found that the mod-
els may be fitted with linear, quadratic even with higher or-
der polynomial function in ρ. We determine here two prob-
able EoS in isotropic and anisotropic case both in D = 4
and D = 5. The EoS obtained here are found to have simi-
lar to that recently considered by Maharaj and Mafa Takisa
(2012). From Tables 6 and 7 we note that equation of state
becomes softer in higher dimensions. Using suitable choice
of λ and α in some compact objects it may be possible to
fit the equation of state with pr = 1

3 (ρ − 4B), where B is
the Bag constant in MIT Bag model for strange matter. This
aspect of the model will be taken up elsewhere.

5 Discussion

In this paper we study compact objects in hydrostatic equi-
librium making use of an alternative approach considered by
Mukherjee et al. (1997). The interior geometry is described
by Vaidya-Tikekar metric both in four and in higher dimen-
sions. The radial variation of pressure (pr ) for HER X-1 and
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Fig. 10 Radial variation of �̃ = � R2 interior to the star HER X-1
with uiso = 0.1686, λ = 2, α = 0.4 and D = 4

Fig. 11 Radial variation of �̃ = � R2 interior to the star HER X-1
with uiso = 0.1686, λ = 2, α = 0.4 and D = 5

Fig. 12 Radial variation of �̃ = � R2 interior to the star SAX J
1808.4-3658 with uiso = 0.2994, λ = 53.34, α = 0.4 and D = 4

SAX J 1808.4-3658 are shown in Figs. 4 and 8 respectively
assuming an anisotropic distribution of fluid. Radial varia-
tion of transverse pressure (pt ) for the two stars mentioned
here are also shown in Figs. 5 & 9. It is evident from the
figures that both pr and p⊥ decreases from the centre to the
surface of the stars both in four and five dimensions. This
type of variation is also found for anisotropic stellar models
as obtained by Chaisi and Maharaj (2005) and Sharma et al.
(2002) for four dimensional space-time geometry. The radial
variation of anisotropy in pressure (�) in case of HER X-1
are plotted in Figs. 10 and 11 in D = 4 and D = 5 respec-
tively. The radial variation of anisotropy in pressure (�) in
case of SAX J 1808.4-3658 are plotted in Figs. 12 and 13
in D = 4 and D = 5 respectively. The variation in tangen-

Fig. 13 Radial variation of �̃ = � R2 interior to the star SAX J
1808.4-3658 with uiso = 0.2994, λ = 53.34, α = 0.4 and D = 5

Fig. 14 Variation of Maximum mass (Mmax) with Dimensions (D) for
a compact object with radius b = 10 km and λ = 100. Solid curve for
α = 0 and dotted curve for α = 0.5

tial pressure is physically acceptable. Since during the quasi-
equilibrium contraction of a massive body, conservation of
angular momentum leads to a high value for transverse pres-
sure at the central region of the star. To incorporate the ef-
fect of dimensions on the maximum mass of a star, we ob-
tain a class of relativistic solution in spheroidal space-time
in Vaidya-Tikekar model with higher dimensions. The so-
lution is then employed to estimate the maximum mass of a
star in higher dimensions. The maximum mass of a isotropic
star and that in the presence of anisotropy are also discussed
in Karmakar et al. (2007) and Sharma et al. (2006) respec-
tively. We recover the maximum mass obtained in four di-
mensions in isotropic case (2.45 M�) and in presence of
anisotropy (2.8 M�) for λ = 100. We also note that the max-
imum mass increases with the increase of space-time dimen-
sions (D) which is maximum in between D = 5 and D = 6,
thereafter it decreases. It is found that Mmax = 3.54 M�
when α = 0 and Mmax = 3.9824 M� when α = 0.5 in 5-
dimensions as shown in Table 5. It is also noted that in
higher dimensions the maximum mass of a anisotropic star
is greater than an isotropic star also. From Figs. 10–13, it is
evident that at the centre of the star anisotropy (�) vanishes
both in D = 4 and D = 5, whereas at the surface it attains a
maximum value. Though the nature of radial variation of �

is same, � picks up lower values in higher dimensions. We
also note that the surface red-shift has greater value in case
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of anisotropic star than isotropic one. Also surface red-shift
increases with dimensions first, attains a maximum value
and then decreases. It picks up a maximum value when mass
of the star attains its maximum, i.e., we note a correlation
between maximum mass of a star and its surface red-shift.
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