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Abstract The cosmic spacetime is often described in terms
of the Friedmann-Robertson-Walker (FRW) metric, though
the adoption of this elegant and convenient solution to Ein-
stein’s equations does not tell us much about the equation of
state, p = wρ, in terms of the total energy density ρ and
pressure p of the cosmic fluid. ΛCDM and the Rh = ct

Universe are both FRW cosmologies that partition ρ into
(at least) three components, matter ρm, radiation ρr, and a
poorly understood dark energy ρde, though the latter goes
one step further by also invoking the constraint w = −1/3.
This condition is apparently required by the simultaneous
application of the Cosmological principle and Weyl’s pos-
tulate. Model selection tools in one-on-one comparisons be-
tween these two cosmologies favor Rh = ct , indicating that
its likelihood of being correct is ∼ 90 % versus only ∼ 10 %
for ΛCDM. Nonetheless, the predictions of ΛCDM often
come quite close to those of Rh = ct , suggesting that its pa-
rameters are optimized to mimic the w = −1/3 equation-of-
state. In this paper, we explore this hypothesis quantitatively
and demonstrate that the equation-of-state in Rh = ct helps
us to understand why the optimized fraction Ωm ≡ ρm/ρ

in ΛCDM today must be ∼ 0.27, an otherwise seemingly
random variable. We show that when one forces ΛCDM to
satisfy the equation-of-state w = (ρr/3 − ρde)/ρ, the value
of the Hubble radius today, c/H0, can equal its measured
value ct0 only with Ωm ∼ 0.27 when the equation-of-state
for dark energy is wde = −1. (We also show, however, that
the inferred values of Ωm and wde change in a correlated
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fashion if dark energy is not a cosmological constant, so
that wde �= −1.) This peculiar value of Ωm therefore ap-
pears to be a direct consequence of trying to fit the data
with the equation-of-state w = (ρr/3 −ρde)/ρ in a Universe
whose principal constraint is instead Rh = ct or, equiva-
lently, w = −1/3.
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1 Introduction

The Cosmological principle and Weyl’s postulate appear to
be essential ingredients in any physically realistic cosmolog-
ical theory. Together, they posit that the Universe is homo-
geneous and isotropic (at least on large, i.e., > 100 Mpc,
spatial scales), and that this high degree of symmetry is
maintained from one time slice to the next. The appropri-
ate spacetime to use is conveniently and elegantly written
in terms of the Friedmann-Robertson-Walker (FRW) metric
though this, in and of itself, does not tell us much about the
cosmic equation-of-state, relating the total energy density ρ

to its total pressure p.
In principle, if we knew these quantities precisely, we

could then solve the dynamical equations governing the Uni-
versal expansion and understand its large-scale structure and
how it evolved to its current state. One could then also
unambiguously interpret many of the observations, includ-
ing the redshift-dependent luminosity distance to Type Ia
SNe and the spectrum of fluctuations in the cosmic mi-
crowave background (CMB). Unfortunately, we must rely
on measurements and intuition to pick ρ and p. The best
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we can do today is to assume that ρ must contain mat-
ter ρm and radiation ρr, which we see directly, and an as
yet poorly understand ‘dark’ energy ρde, whose presence
is required by a broad range of data including, and espe-
cially, the aforementioned Type Ia SNe (Riess et al. 1998;
Perlmutter et al. 1999). But instead of refining the cos-
mic equation-of-state, p = wρ, the ever-improving mea-
surements of the redshift-distance and redshift-age relations
seem to be creating more tension between theory and ob-
servations, rather than providing us with a better indication
of the dark-energy component, pde = wdeρde. For the other
two constituents, one simply uses the prescription pr = ρr/3
and pm ≈ 0, consistent with a fully relativistic fluid (radia-
tion) on the one hand, and a non-relativistic fluid (matter) on
the other.

One of the most basic FRW models, ΛCDM, assumes
that dark energy is a cosmological constant Λ with wde ≡
wΛ = −1, and therefore w = (ρr/3 − ρΛ)/ρ. This model
does quite well explaining many of the observations, but
growing empirical evidence suggests that it is inadequate
to explain all of the nuances seen in cosmic evolution and
the growth of structure. For example, ΛCDM cannot ac-
count for the general uniformity of the CMB across the
sky without invoking an early period of inflated expan-
sion (Guth 1981; Linde 1982), yet the latest observations
with Planck (Ade et al. 2014) suggest that the inflationary
model may be in trouble at a fundamental level (Ijjas et
al. 2013a, 2013b; Guth et al. 2014). Insofar as the CMB fluc-
tuations measured with both WMAP (Bennett et al. 2003)
and Planck are concerned, there appears to be unresolv-
able tension between the predicted and measured angular
correlation function (Copi et al. 2009, 2013; Melia 2014a;
Bennett et al. 2013). And there is also an emerging conflict
between the observed matter distribution function, which is
apparently scale-free, and that expected in ΛCDM, which
has a different form on different spatial scales. The fine
tuning required to resolve this difference led Watson et al.
(2011) to characterize the matter distribution function as a
‘cosmic coincidence.’ Such difficulties are compounded by
ΛCDM’s predicted redshift-age relation, which does not ap-
pear to be consistent with the growth of quasars at high red-
shift (Melia 2013a), nor the very early appearance of galax-
ies at z � 10 (Melia 2014b).

It is therefore important to refine the basic ΛCDM model,
or perhaps to eventually replace it if necessary, to improve
the comparison between theory and observations. Over the
past several years, we have been developing another FRW
cosmology, known as the Rh = ct Universe, that has much
in common with ΛCDM, but includes an additional ingre-
dient motivated by several theoretical and observational ar-
guments (Melia 2007, 2013b; Melia and Abdelqader 2009;
Melia and Shevchuk 2012). Like ΛCDM, it also adopts the
equation-of-state p = wρ, with p = pm + pr + pde and

ρ = ρm + ρr + ρde, but is subject to the additional con-
straint that w = (ρr/3 + wdeρde)/ρ = −1/3 at all times.
One might come away with the impression that these two
prescriptions for the equation-of-state cannot be consistent.
But in fact if we ignore the constraint w = −1/3 and instead
proceed to optimize the parameters in ΛCDM by fitting the
data, the resultant value of w averaged over a Hubble time is
actually −1/3 within the measurement errors (Melia 2007,
2012b; Melia and Shevchuk 2012). In other words, though
w = (ρr/3 − ρΛ)/ρ in ΛCDM cannot be equal to −1/3
from one moment to the next, its value averaged over the
age of the Universe is equal to what it would have been in
Rh = ct anyway.

This result does not necessarily prove that ΛCDM is an
incomplete version of Rh = ct , but it does seem to sug-
gest that the inclusion of the additional constraint w = −1/3
might render its predictions closer to the data. By now, com-
parative analyses of ΛCDM and Rh = ct have been carried
out for a broad range of observations, from the CMB (Melia
2014a), high-z quasars (Melia 2013a, 2014b) and the ages
of high-z objects (Melia 2014b; Yu and Wang 2014) in the
early Universe, to gamma-ray bursts (Wei et al. 2013) and
cosmic chronometers (Melia and Maier 2013) at intermedi-
ate redshifts and, most recently, to the relatively nearby Type
Ia SNe (Wei et al. 2014). In every case, model selection tools
indicate that the likelihood of Rh = ct being correct is typi-
cally ∼ 90 % compared with only ∼ 10 % for ΛCDM. And
perhaps the most important distinguishing feature between
these two cosmologies is that, whereas ΛCDM cannot sur-
vive without inflation, the Rh = ct Universe does not need
it in order to avoid the well-known horizon problem (Melia
2014c). Thus, an eventual abandonment of inflation should it
fail to work self-consistently would completely tip the scale
in favor of Rh = ct .

The purpose of this paper is to further develop the
Rh = ct Universe by addressing a rather obvious ques-
tion that comes to mind. Since ΛCDM lacks the ingredi-
ent w = −1/3 that would turn it into Rh = ct , why does
it in fact do quite well in accounting for many of the data?
And are there any other obvious observational consequences
of the prescription w = (ρr/3 − ρΛ)/ρ for its equation-of-
state? Here, we demonstrate that the inclusion of the con-
dition w = −1/3 in ΛCDM actually helps to explain why
the fraction Ωm ≡ ρm(t0)/ρ(t0) of its energy density in the
form of (visible and dark) matter today must be ≈ 0.27 in
order for it to adequately fit the data. In other words, we will
show that the inferred value of Ωm in ΛCDM is not random
at all, but is instead uniquely required when one attempts
to account for the observations using the equation-of-state
w = (ρr/3 − ρΛ)/ρ in a Universe that is in reality evolving
according to the constraint w = (ρr/3+wdeρde)/ρ = −1/3.
We will demonstrate this interesting and important connec-
tion between ΛCDM and Rh = ct in Sects. 2 and 3, and
discuss the results in Sect. 4.
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2 The cosmic spacetime

The basic ΛCDM model avoids having to deal with uncer-
tainties in the particle physics by relying on transitions, start-
ing with an early radiation-dominated phase, followed by a
Universe dominated by matter after recombination, and then
transitioning into a period dominated by dark energy. But in
order to make testable predictions, we have to assume values
for Ωm, Ωr and ΩΛ, and then integrate backwards to the big
bang by solving the dynamics equations using the equation-
of-state w = (ρr/3 − ρΛ)/ρ. If the Universe is truly subject
to the constraint w = −1/3 at all times, however, how does
this affect the observable signatures and inferred parameters
of the standard model? This is the question we will now at-
tempt to answer.

The Friedmann-Robertson-Walker metric may be written

ds2 = c2dt2 − a2(t)
[
dr2(1 − kr2)−1 + r2(dθ2

+ sin2 θdφ2)], (1)

in terms of the cosmic time t in the comoving frame, and the
corresponding radial (r) and angular (θ and φ) coordinates.
The expansion factor a(t) is a function of t only, whereas
the spatial coordinates (r, θ,φ) in this frame remain “fixed”
for all particles in the cosmos. The constant k is +1 for a
closed universe, 0 for a flat, open universe, or −1 for an
open universe.

The source of spacetime curvature in a Universe that sat-
isfies the Cosmological Principle is a perfect fluid (Weinberg
1972) which, together with the metric coefficients appearing
in Eq. (1), allows us to simplify Einstein’s equations and de-
rive the key dynamical expressions governing the smoothed-
out expansion at large scales. These include, respectively,
the Friedmann and energy-conservation equations,

H 2 ≡
(

ȧ

a

)2

= 8πG

3c2
ρ − kc2

a2
, (2)

and

ρ̇ = −3H(ρ + p), (3)

both written in terms of the total energy density ρ and total
pressure p. H is the time-dependent Hubble ‘constant’ and
an overdot denotes a derivative with respect to time t .

In the Rh = ct Universe, the ‘active mass’ is zero, mean-
ing that ρ + 3p = 0 (Melia 2014d). Therefore, from the def-
inition of the gravitational radius Rh = 2GM/c2, in terms of
the Misner-Sharp mass M = (4π/3)R3

h(ρ/c2) (Misner and
Sharp 1964), it is easy to show that Ṙh = (3/2)(1 + w)c,
where w = p/ρ (Melia and Shevchuk 2012), which yields
Rh = ct (the eponymous constraint of this model). And
since the gravitational radius Rh is a proper distance in this
spacetime, one must also have H = 1/t (see, e.g., Melia and
Shevchuk 2012) which, together with Eq. (2), then shows
that k = 0.

Interestingly the CMB strongly constrains the total en-
ergy density to be near its critical value, ρc ≡ 3c2H 2

0 /8πG,
where H0 ≡ H(t0) (Bennett et al. 2003; Spergel et al. 2003),
so the observations appear to be consistent with zero spatial
curvature. Though this empirical result emerges from the op-
timization of model parameters in ΛCDM, the fact that the
standard model is often a good approximation to Rh = ct

lends some observational support for this theoretical predic-
tion of the Rh = ct cosmology. For these reasons, it will be
sensible for us to assume a perfectly flat universe, and we
will here always assume that k = 0. This also means that
Ω ≡ Ωr + Ωm + Ωde = 1. Our analysis in this paper will be
based entirely on this premise. It is therefore straightforward
to integrate Eq. (2), yielding

ct0 = Rh(t0)

∫ 1

0

udu
√

Ωr + Ωmu + Ωdeu1−3wde
. (4)

To obtain this expression, we have allowed for the possibil-
ity that dark energy is not a cosmological constant (i.e., that
wde may be different from −1, in which case we would refer
to this model as wCDM, rather than ΛCDM), and we have
used the derived value of the gravitational horizon to write
Rh = c/H (Melia 2007; Melia and Shevchuk 2012). This
expression also assumes that a → 0 at t = 0.

Equation (4) must be satisfied by every flat FRW cos-
mology, though the explicit dependence of the integrand
on Ωm, Ωr, and Ωde shown here applies specifically to
ΛCDM (or wCDM if wde �= −1). However, if in fact the
Cosmological Principle and Weyl’s postulate require the
equation-of-state w = −1/3, then Rh(t0) = ct0 (Melia 2007;
Melia and Shevchuk 2012), so ΛCDM (or wCDM) would
have no choice but to satisfy the condition

I ≡
∫ 1

0

udu
√

Ωr + Ωmu + Ωdeu1−3wde
= 1. (5)

Let us now see what the consequences of this constraint
are for ΛCDM. Figure 1 shows the calculated value of this
integral I as a function of Ωm, for various dark-energy
equations-of-state, wde. The radiation energy density is
evaluated on the basis of the CMB’s current temperature,
T = 2.7 K. Not surprisingly, I can have a broad range of
values, but for any given wde, there is only one unique de-
termination of Ωm that satisfies the condition I = 1. And
for the special case of a cosmological constant (wde = −1),
that value is 0.27.

3 Observational constraints

Over the past decade, both Ωm and wde have been mea-
sured with relatively high precision, combining constraints
from a variety of observational data sets. For example,
Melchiorri et al. (2003) combined data from six CMB ex-
periments (Spergel et al. 2003), from the power spectrum
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Fig. 1 The ratio I ≡ ct0/Rh(t0), calculated as a function of Ωm,
according to ΛCDM (or wCDM when wde �= −1). The label wde
indicates the corresponding equation-of-state for dark energy, i.e.,
pde = wdeρde, in terms of its pressure pde and density ρde. When
Rh(t0) = ct0 and wde = −1, Ωm must have the unique value 0.27 (in-
dicated by the black dot)

of large-scale structure in the 2dF 100k galaxy redshift
survey (Tegmark et al. 2002), from luminosity measure-
ments of Type Ia SNe (Riess et al. 1998; Perlmutter et al.
1999), and from the Hubble space telescope measurements
of the Hubble parameter H0. More recent analyses have
refined the quantitative results from this extensive survey,
though not altering the basic conclusions. It is therefore
rather straightforward for us to compare our theoretical pre-
dictions directly with the observations. As we shall see
shortly, the story emerging from this exercise is quite re-
vealing.

None of the individual observations results in fits that are
so precise as to produce unique values for the parameters
(wde,Ωm). The reason for this is that, other than the Sachs-
Wolfe effect (Sachs and Wolfe 1967), which is responsible
for the largest angular fluctuations in the CMB, none of the
other mechanisms producing structure of one kind or an-
other depends sensitively on the expansion history of the
Universe. As such, some degeneracy exists among the pos-
sible choices of cosmological parameters pertaining to the
CMB (Kosowsky et al. 2002).

At lower redshifts, the cosmological measurements are
heavily influenced by the observation of Type Ia SNe. But
here also, both the luminosities and angular distances (the
fundamental observables) depend on wde through multiple
integrals, and are therefore not particularly sensitive to vari-
ations in wde with redshift (Maor et al. 2001).

Nonetheless, all of the constraints derived from the vari-
ous data sets do produce a well-defined region in wde − Ωm

phase space where the most likely values of these parame-

Fig. 2 The solid black curve indicates the value wde must have in
ΛCDM (or wCDM if wde �= −1) as a function of Ωm, when the
condition Rh(t0) = ct0 is imposed. This curve is shown against the
constraints (adapted from Fig. 4 in Melchiorri et al. 2003) on the
dark-energy equation-of-state, assuming a flat universe. The Type Ia
SN limits have been updated from the more recent results in Suzuki
et al. (2012). These limits and confidence levels include results from
CMB anisotropies, measurements of the Hubble constant, and large-
scale structure. The empirically derived, concordance values of wde
versus Ωm track those imposed on ΛCDM by the Rh(t0) = ct0 con-
dition exceptionally well. Note, for example, the location (black dot)
of the WMAP measurements (Bennett et al. 2013), versus (star) the
latest measurements by Planck (Ade et al. 2014), which resulted in the
values Ωm ≈ 0.3 and wde ≈ −1.13. The value Ωm = 0.27 is realized
only when wde = −1

ters are expected to be found. The confidence regions shown
in Fig. 2 are adapted from a corresponding figure in Mel-
chiorri et al. (2003). These show the 68 %, 95 %, and
99 % confidence regions corresponding to the Type Ia SNe
observations (adapted from Suzuki et al. 2012, shown as
gray swaths), and the corresponding regions inferred from
the analysis of CMB, HST, and 2dF data (indicated by the
lighter-colored island regions to the upper left of this dia-
gram). Insofar as the values of wde and Ωm are concerned,
the supernova data are not as constraining as the other sets,
but there is clearly a satisfying consistency among all of the
observations.

Also shown in Fig. 2 is one of the more interesting re-
sults of this paper, indicated here as a thick black curve
to the left of this diagram. This feature shows the loci of
(wde,Ωm) points permitted by the requirement that the in-
tegral I be equal to 1 (see also Fig. 1). That is, while the
constraints shown in Fig. 2 are based on the interpretation
of the data using ΛCDM, this theoretical curve goes one
step further, by illustrating what values of wde and Ωm are
actually permitted theoretically when we impose the addi-
tional constraint Rh(t0) = ct0 (or, equivalently, the equation-
of-state w = −1/3). Notice, for example, where the latest
measurement of Ωm and wde with Planck fall on this dia-
gram (the star in Fig. 2). Whereas Ωm = 0.27 is linked to
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a dark-energy equation-of-state wde = −1, the Planck mea-
surement of Ωm ≈ 0.3 is associated with wde = 1.13+0.13

−0.10
(Ade et al. 2014).

On its own, ΛCDM has no explanation for why the most
preferred region of allowed values is limited to −1.38 <

wde < −0.82 and 0.22 < Ωm < 0.35, and why this oblong
region is slanted in such a way as to couple the higher val-
ues of wde to the smaller values of Ωm. But in the context
of Rh = ct , this is precisely the region permitted by the re-
quirement that I be equal to 1, as evidenced by the fact that
our theoretical curve passes directly through the middle of
the observationally permitted region and, even more impres-
sively, precisely tracks the orientation of this region. The
point of this is that while the data are not sufficiently precise
to tell us the exact value of Ωm, the range of allowed values
of wde trends with Ωm in such a way as to always preserve
the condition I = 1.

These results clearly argue against any suggestion that
Ωm ∼ 0.3 (or, more specifically, Ωm = 0.27 when wde =
−1) could be a coincidence in ΛCDM. First, not only would
it be highly improbable for Ωm to have the value required
to guarantee Rh(t0) = ct0 which, by the way, could only
happen once in the entire history of the Universe, and it
would have to be happening right now, when we just hap-
pen to be looking. But in addition, the region of wde–Ωm

phase space permitted by the data shows a clear trend ex-
actly matching the behavior one would expect if I must al-
ways be equal to 1. In other words, even if Ωm ∼ 0.3 were
somehow a coincidence, there is no reason why the allowed
region of wde–Ωm phase space should be slanted from up-
per left to bottom right, instead of from upper right to bottom
left.

It is therefore difficult to argue against the conclusion
that ΛCDM is merely mimicking the expansion history
we would have obtained with Rh = ct all along, and that
the observed value of Ωm (which happens to be 0.27 if
wde = −1) is required in order to make the assumed den-
sity ρ = ρr + ρm + ρde comply with the equation-of-state
p = −ρ/3 found in the R = ct Universe.

4 Discussion and conclusion

The results we have just presented do not exist in isolation,
of course. They add weight to the other one-on-one compar-
isons between Rh = ct and ΛCDM that uniformly show the
superiority of the former over the latter in accounting for the
data. But the analysis we have carried out in this paper is
important specifically because it starts to probe the funda-
mental reasons why ΛCDM can sometimes function as an
approximation to Rh = ct , and why it does reasonably well
accounting for some of the data, e.g., the Type Ia SNe. For
example, even though the empirically motivated choice of

Fig. 3 Ratio of luminosity distance in ΛCDM over that in Rh = ct , as
a function of redshift, for various values of Ωm, assuming wde = −1.
The ΛCDM cosmology with Ωm = 0.27, which comes closest to satis-
fying the condition Rh(t0) = ct0, also best approximates the condition
dΛCDM
L = d

Rh=ct
L over a large range in z

density ρ = ρr + ρm + ρde is not entirely consistent with
the equation-of-state p = −ρ/3, it can nonetheless lead to
an expansion history that mimics Rh = ct over a Hubble
time—but only so long as Ωm ∼ 0.27.

Recently, we studied in detail how the Type Ia SNe ought
to be interpreted in the context of ΛCDM and Rh = ct

(Melia 2012a; Wei et al. 2014). The best-fit distance moduli
calculated from these two theories are so close to each other
all the way out to z ∼ 6, that it is difficult to determine on the
basis of a χ2 comparison alone which of these two cosmolo-
gies is favored. This is due in part to the strong dependence
of the data reduction itself on the pre-assumed cosmology,
since at least 4 ‘nuisance’ parameters defining the SN lu-
minosity must be optimized along with the free parameters
of the model. The inferred SN luminosities and their ‘mea-
sured’ distance moduli are therefore strongly compliant to
the pre-assumed model, greatly weakening this particular
comparative test. Indeed, a similar analysis of the most up-
do-date Gamma-ray Burst Hubble Diagram (HD) (Wei et al.
2013) reinforces this point by demonstrating that when the
data are re-calibrated correctly for each individual cosmol-
ogy, the Rh = ct Universe fits the observed HD better than
ΛCDM does.

A quick inspection of Fig. 3 allows us to better appreci-
ate why ΛCDM fits the Type Ia SNe and Gamma-ray Burst
data as well as it does. This figure shows the ratio of lu-
minosity distances dΛCDM

L /d
Rh=ct
L as a function of redshift

for different values of Ωm, in a Universe with wde = −1.
What emerges from this diagram is that the value of Ωm

that comes closest to satisfying the condition Rh(t0) = ct0



398 Astrophys Space Sci (2015) 356:393–398

in Eq. (4), also corresponds to the ΛCDM universe in which
the luminosity distance dΛCDM

L most closely tracks its coun-
terpart in Rh = ct . One should not be surprised therefore, to
see that the best fit ΛCDM cosmology fits the Type Ia SNe
and Gamma-ray Burst data as well as it does.

Unfortunately, ΛCDM does not do as well accounting
for the high-z universe, having difficulty explaining why
the CMB fluctuations show no correlation at angles greater
than ∼ 60◦, and failing to explain how ∼ 109 M� supermas-
sive black holes could have formed so quickly after the big
bang. The issue is that even though the differences between
ΛCDM and Rh = ct may be smoothed out over a Hubble
time through the careful choice of Ωm ∼ 0.27, the expan-
sion history of the Universe at z > 6 is so different between
these two cosmologies that it is simply not possible to mimic
the equation-of-state p = −ρ/3 with ρ = ρr + ρm + ρde,
given that Rh = ct predicts a constant expansion, while
ΛCDM predicts a very rapid deceleration. Additional in-
consistencies between the predicted age-redshift relation-
ship in ΛCDM and that observed for the oldest objects in
the Universe have recently been pointed out by Yu and Wang
(2014).

And lest the reader come away with the sense that
ΛCDM and Rh = ct overlap so much that one should not
worry about their differences, we close this discussion by
again pointing out the most profound consequence of their
disparity. As shown in Melia (2014c), the horizon problem
does not exist in Rh = ct . So whereas ΛCDM could not
survive without inflation, the real universe may have done
without it, and the cosmological data—particularly at high
redshift—may be pointing in that direction.
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