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Abstract The plasma magnetosphere surrounding a rotat-
ing magnetized neutron star described by non-Kerr space-
time metric in slow rotation approximation has been studied.
First we have studied the vacuum solutions of the Maxwell
equations in spacetime of slowly rotating magnetized non-
Kerr star with dipolar magnetic configuration. Then for the
magnetospheric model we have derived second-order differ-
ential equation for electrostatic potential from the system of
Maxwell equations in spacetime of slowly rotating magne-
tized non-Kerr star. Analytical solutions of Goldreich-Julian
(GJ) charge density along open field lines of slowly rotat-
ing magnetized non-Kerr neutron star have been obtained
which indicate the modification of an accelerating electric
field, charge density along the open field lines and radiat-
ing losses of energy of the neutron star by the deformation
parameter.

Keywords Neutron star · Non-Kerr spacetime · Spin
down · Plasma magnetosphere

1 Introduction

It is well known that the Kerr spacetime metric describes
an external gravitational field of a rotating astrophysical
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black hole, which possesses two parameters as the total mass
M and the specific angular momentum a of gravitational
source. However in the regime of strong gravity, the general
relativity could be broken down and as it has been shown
in Johannsen and Psaltis (2011) that a deformed Kerr-like
metric is suitable for the strong field of the no-hair theorem,
which describes so called rotating non-Kerr compact grav-
itational source (Johannsen and Psaltis 2011). The study of
the astrophysical processes in the vicinity of rotating non-
Kerr compact gravitational objects could provide an oppor-
tunity for constraining the allowed parameter space of solu-
tions, and to provide a deeper insight into the physical nature
and properties of the corresponding spacetime metric. For
example, in our preceding work (Abdujabbarov et al. 2013)
a comparison of the numerical results of the innermost stable
circular orbits (ISCOs) around a non-Kerr black hole with
the observational data for the ISCO radius of rapidly rotat-
ing black holes have (Steiner et al. 2009) provided the up-
per limit for the deformation parameter. Moreover we have
studied shadow of the non-Kerr black holes in Atamurotov
et al. (2013). Therefore, in this work we have paid attention
for studying the electromagnetic processes around rotating
non-Kerr magnetized compact star.

The plasma magnetospheric model of the neutron stars
was first presented in the pioneering paper by Goldreich and
Julian (1969). Since many processes on the surface and mag-
netosphere of the neutron stars depend on several parame-
ters of the neutron star, it is difficult theoretically describe
the whole process. One direction of adequate description
of the astrophysical process around neutron stars is to in-
clude the effects of the strong gravitational field. In general
relativity, Beskin (1990) and, independently, Muslimov and
Tsygan (1990) were the first to find that the frame dragging
induced by general relativistic effects provides a source of
additional electric field contributing to particle acceleration
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in the polar cap region. The accelerating component (par-
allel to the magnetic field) of the electric field is driven by
deviations of the space density charge from the Goldreich-
Julian (GJ) charge density, which is determined by the mag-
netic field geometry. As noted by several authors (Beskin
1990; Muslimov and Tsygan 1990; Muslimov and Harding
1997; Dyks et al. 2001; Mofiz and Ahmedov 2000; Moro-
zova et al. 2008; Beskin 2009), the general relativistic frame
dragging effects on the field geometry in the plasma mag-
netosphere of rotating neutron stars is a first-order effect,
which has to be carefully included in any self-consistent
model of pulsar magnetosphere, especially when computing
the resulting electromagnetic radiation. In the paper (Mus-
limov and Tsygan 1992) influence of non-zero inclination
angle of the neutron star to GJ charge density and accel-
erating electrical fields (parallel electric field to magnetic
field lines)was checked for the small-polar angle approxi-
mation cases. As result of that work we can know the non
zero inclination angle strongly affects to neutron star mag-
netosphere.

In one of our preceding papers (Morozova et al. 2008) the
influence of nonvanishing Newman-Unti-Tamburino (NUT)
parameter of the plasma magnetosphere of neutron stars
was studied. The main result of it was that the NUT pa-
rameter strongly affects the GJ charge density, accelerat-
ing electric field and energy losses along the open mag-
netic field lines on a polar cap. Here we plan to extend it
to the plasma magnetosphere of the deformed neutron star
in slowly rotating geometry with the deformation parame-
ter h. In Sect. 2 we have analyzed GJ charge density and
found approximate solution of the second order Maxwell
equation in the non-Kerr spacetime. In the next Sect. 3 we
have solved second order differential Poisson equation for
scalar potential using separating variables with help of so-
called Fourier Bessel transformation method and as a con-
sequence we have found analytical expression for the ac-
celerating electrical field. Section 4 has been devoted to the
losses energy of the slowly rotating deformed magnetized
neutron stars. Finally the last Sect. 5 summarizes the main
results obtained.

In recent work, we have used signatures (−,+,+,+) for
the space-time and Gaussian system unit G = c = 1 (How-
ever, for those expressions with an astrophysical application
we have written the speed of light explicitly). Latin indices
go from 1,2,3 and Greek ones from 0 to 3.

2 Charge density in the plasma magnetosphere
of slowly rotating deformed star

The spacetime metric of a slowly rotating relativistic star
with the deformation term h can be obtained from the solu-
tion for rotating non-Kerr compact gravitational source pro-
vided by Johannsen and Psaltis (2011) in the case when the

quadratic angular momentum of star a2 → 0 as (see e.g.
Hartle and Thorne 1968)

ds2 = −N2(1 + h)dt2 + N−2(1 + h)dr2

+ r2[dθ2 + sin2 θ
(
dφ2 − 2ω(1 + h)dφdt

)]
, (1)

where lapse function is given as N2 ≡ (1 − 2M/r), ω =
2aM/r3 is the angular velocity of the dragging of inertial
frames, h = εM3/r3 and ε is deformation coefficient of the
star with total mass M .

Assuming that the magnetic field of a neutron star is sta-
tionary in the co-rotating frame one can get the Poisson
equation for the scalar potential Φ as

∇ ·
(

1

N
√

1 + h
∇Φ

)
= −4π(ρ − ρGJ), (2)

using expression derived by Muslimov and Tsygan (1992).
Effective space charge density is given as ρ − ρGJ which
is able to explain production of unscreened parallel electric
field along the open magnetic field lines.

As it was shown by Goldreich and Julian (1969) that,
neutron stars, which have a strong magnetic field and high
conductivity, rotating around magnetic axis, would sponta-
neously build up a charged magnetosphere. One may ana-
lyze influence of the deformation of the spacetime to the
Goldreich-Julian charge density ρGJ in magnetosphere of
slowly rotating deformed neutron star. Using the metric vec-
tor gi = −g0i/g00 one can calculate the GJ charge density
through the following modified expression (Muslimov and
Tsygan 1992)

ρGJ = − 1

4π
∇(N

√
1 + hg × B), (3)

where B is the magnetic field, g is the vector expression for
slowly rotating non Kerr spacetime:

g = 1

N2(1 + h)

[
(� − ω) × r

]
, (4)

and � is the angular velocity of rotation of neutron star. In-
serting (4) into the expression (3) for the Goldreich-Julian
charge density ρGJ we obtain

ρGJ = − 1

4π
∇

{
1

N
√

1 + h

[
1 − κ

η3
(1 + h)

]
u × B

}
, (5)

where u = � × r, η = r/R is the dimensionless radial co-
ordinate, parameter κ ≡ εβ , ε = 2M/R is the compactness
parameter, and β = I/I0 is the stellar moment of inertia in
the units of I0 = MR2.

2.1 Vacuum solutions for dipolar magnetic field of slowly
rotating deformed star

It is clear that magnetic field lines of neutron star depend on
the spacetime structure. That is why we have to definite in-



Astrophys Space Sci (2015) 356:301–308 303

duction of magnetic fields for a slowly rotating neutron star
in the spacetime possessing deformation parameter. For ex-
ample, in the spacetime metric of the slowly rotating neutron
star components of dipolar magnetic field have the form

Br̂ = B0
f (η)

f (1)
η−3 cos θ, (6)

Bθ̂ = 1

2
B0N

[
−2

f (η)

f (1)
+ 3

(1 − ε/η)f (1)

]
η−3 sin θ, (7)

with

f (η) = −3

(
η

ε

)3[
ln

(
1 − ε

η

)
+ ε

η

(
1 + ε

2η

)]
, (8)

where B0 ≡ 2μ/R3 is the Newtonian value of the magnetic
field at the pole of star, hats label the orthonormal compo-
nents and μ is the magnetic moment. The solution of this
type was first obtained by Ginzburg and Ozernoy (1964) and
then reproduced by the number of authors, see for the details
Rezzolla et al. (2001a, 2001b). The magnetic field configu-
ration for compact magnetized stars in alternate theories of
gravity has been studied in Ahmedov and Fattoyev (2008),
Hakimov et al. (2013).

Radial component of the magnetic field in the spacetime
(1) can be taken in the following form

Br̂(η, θ) = B0
Ψ r̂(η)

η3
cos θ. (9)

Then it is easy to show that in the spacetime (1) the Maxwell
equation for the radial part of magnetic field takes the form

∂

∂η

(
N2 ∂

∂η

[
η2Ψ r̂(η)

]
)

− 2(1 + h)Ψ r̂ (η) = 0. (10)

We look for solution of equation (10) in the following
approximate form

Ψ r̂(η) = f (η)

f (1)
(1 + αh), (11)

where α is correction coefficient being responsible for effect
of the deformation parameter.

The Fig. 1 shows the ratio between numerical solution of
equation (10) and approximate solution (11) for the differ-
ent values of the correction coefficient α. One can see that
when α = 3/20 the difference between numerical and ap-
proximate solutions is minimal i.e. less than 0.12 %. It is
meant that we can use expression (11) with α = 3/20 as an
approximate analytical solution of Eq. (10) since 0.12 % er-
ror is almost negligible. The asymptotical value of this solu-
tion coincides with the solution in the Newtonian spacetime.

Fig. 1 Relation between numerical solution of Eq. (10) and approx-
imate solution (11) for the different values of the parameter α. Solid
blue (red) line corresponds to α = 3/4 (α = −3/4), dashed blue (red)
line corresponds to α = 3/10 (α = −3/10) and dot-dashed blue (red)
corresponds to α = 3/20 (α = −3/20). Thus top red colored side of
the plot is for negative deformation ε = −20 and bottom is for ε = 20

2.2 Goldreich Julian charge density in magnetosphere of
slowly rotating deformed star

Form of the polar angle Θ

sinΘ(η) =
√

η
1

Ψ r̂
sinΘ0,

sinΘ0 =
√

R

RLCf (1)(1 + αε̃)
,

(12)

is slightly different from the expression given by Muslimov
and Tsygan (1991a) due to the presence of the spacetime
deformation. Parameter Θ0 is responsible for the magnetic
colatitude of the last open magnetic field line (or first closed
magnetic field line) at the stellar surface, RLC = c/Ω is the
light-cylinder radius and ε̃ = εM3/R3.

It is obvious that from Eq. (12) one can get particle tra-
jectory equation in the form dθ/dr . In Fig. 2 projection of
particle trajectory to z = const plane on the polar cap for
the different values of the deformation parameter is shown.
For the positive values of deformation coefficient the parti-
cle leaves polar zone with larger (wider) step with compare
to the case when ε is zero or negative.

Performing further algebraic transformations on the
Eq. (5) and taking into account Eq. (6) one can get the fol-
lowing expression for the GJ charge density

ρGJ = −ΩB0

2πc

1

N
√

1 + hη3
Ψ r̂

[
1 − κ

η3
(1 + h)

]
. (13)

In Fig. 3 the radial dependence of obtained general rela-
tivistic expression for the GJ charge density ρGJ normalized
in its Newtonian expression for the different values of de-
formation parameter is presented. It can be found that even
for comparatively small values of the deformation param-
eter its influence on the GJ charge density ρGJ (13) plays
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Fig. 2 Projection to z = const plane of the path of the particles on the
polar cap of the neutron star for the different values of the deformation
parameter.

an important role. The value of the GJ charge density ρGJ

at the surface of the star is more sensitive to the deforma-
tion parameter. ρGJ is “inversely linear” proportional to the
deformation parameter (see Eq. (13) where ρ ∼ (1 − h)) at
the surface of the star and for asymptotic values it reaches
the Newtonian limit. For plotting the graphs we have se-
lected the typical numbers for the neutron star parameters
as R = 10 km, M = 2 km and P = 0.1 s.

3 Solution of Poisson equation in magnetosphere
of slowly rotating deformed star

The charge density ρ in the relativistic plasma is propor-
tional to the magnetic field with the proportionality coeffi-
cient being constant along the given magnetic field line (see,
for example, Muslimov and Tsygan 1991b) that is

ρ = ΩB0

2πc

1

N
√

1 + hη3
Ψ r̂A(ξ), (14)

where ξ = θ/Θ is the dimensionless angular variable, A(ξ)

is an unknown function to be defined from the boundary
conditions.

Following to Muslimov and Tsygan (1991b) one could
insert expressions (13) and (14) into the Poisson equation (2)

Fig. 3 Radial dependence of the Goldreich-Julian charge density nor-
malized to the Newtonian expression for the different values of the
deformation coefficient ε and dimensionless moment of inertia β of
the star

and get the following differential equation

1

R2η2

∂

∂η

(
η2 ∂

∂η
Φ

)

+ 1

R2N2(1 + h)η2θ

(
∂

∂θ
θ

∂

∂θ
+ 1

θ

∂2

∂φ2

)
Φ

= −4π
ΩB0

2πc

Ψ r̂

N2(1 + h)η3

[
1 − κ

η3
(1 + h) + A(ξ)

]

(15)

in the approximation of small angles θ .
The further calculations are based on the extension of

works Muslimov and Tsygan (1992) and Morozova et al.
(2008) to the spacetime of deformed slowly rotating neu-
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tron star. Here one can introduce dimensionless function
F = ηΦ/Φ0 in order to solve Eq. (15), where Φ0 = ΩB0R

2

and variables η and ξ . We can then rewrite Eq. (2) for the
dimensionless electrostatic potential as

[
d2

dη2
+ Λ2(η)

1

ξ

∂

∂ξ

(
ξ

∂

∂ξ

)]
F

= − 2

η2N2(1 + h)
Ψ r̂

[
1 − κ

η3
(1 + h) + A(ξ)

]
, (16)

where Λ(η) = [ηΘ(η)N
√

1 + h]−1. As in Muslimov and
Tsygan (1992) in order to get solution of Eq. (16) we have
also used Fourier-Bessel transformation:

F(η, ξ) =
∞∑

i=1

Fi(η)J0(kiξ)

Fi(η) = 2

[J1(ki)]2

∫ 1

0
ξF (η, ξ)J0(kiξ)dξ, (17)

use relation

∞∑

i=1

2

kiJ1(ki)
J0(kiξ) = 1, (18)

and obtain Eq. (16) in the form

[
d2

dη2
− γ 2

i (η)

]
Fi = − 2

η2N2(1 + h)
Ψ r̂ (η)

×
{

2

kiJ1(ki)

[
1 − κ

η3
(1 + h)

]
+ Ai

}
, (19)

where γ 2
i = k2

i Λ
2, ki are positive zeros of the functions

J0, Ai = (2/kiJ1(ki))
∫ 1

0 ξA(ξ)J0(kiξ)dξ . Considering a
region near to the surface of the star, where z = η − 1 � 1,
and using following boundary conditions (that are the condi-
tions of equipotentiality of the stellar surface and zero steady
state electric field at r = R):

Fi |z=0 = 0,
∂Fi

∂z

∣∣
∣∣
z=0

= 0 (20)

one can find the expression for the scalar potential Φ near
to the surface of the star and corresponding to this poten-
tial component of the electric field E‖, being parallel to the
magnetic field (see the discourses of Muslimov and Tsygan
(1992)):

Φ = 12Φ0

η
κΘ2

0

∞∑

i=0

[
e−γi (1)(η−1) − 1 + γi(1)(η − 1)

]

× 1

γi(1)

J0(kiξ)

k3
i J1(ki)

, (21)

here γi(1) = ki/(Θ0
√

(1 − ε)(1 + ε̃)), Ai = 2[k(1 + ε̃) −
1]/(kiJ1(ki))

E‖ = −12Φ0

R
κΘ2

0

∞∑

i=0

J0(kiξ)

k3
i J1(ki)

[
1 − e−γi (1)(η−1)

]
. (22)

Analyzing the region Θ0 � η − 1 � RLC/R, where
|d2Fi/dη2| � γ 2

i (η)|Fi | one can see that equation (19) be-
comes

−γ 2
i (η)Fi = − 2

η2N2(1 + h)
Ψ r̂ (η)

×
{

2

kiJ1(ki)

[
1 − κ

η3
(1 + h)

]
+ Ai

}
(23)

from which it right away follows

Fi = θ2(η)Ψ r̂ (η)
4κ

k3
i J1(ki)

[
1 + ε̃ − 1

η3
(1 + h)

]
. (24)

The derived expression for Fi gives an opportunity to get
expression for the scalar potential in the region at distances
greater than the polar cap size as

Φ = Φ0

η
F = 2Φ0Θ

2
0κ

[
1 + ε̃ − 1

η3
(1 + h)

]∑

i

2J0(kiξ)

k3
i J1(ki)

= 1

2
Φ0Θ

2
0 κ

[
1 + ε̃ − 1

η3
(1 + h)

](
1 − ξ2)

= 1

2
ΩR2B0Θ

2
0κ

[
1 + ε̃ − 1

η3
(1 + h)

](
1 − ξ2). (25)

Component of electric field E‖ produced by the gradient
of this potential will look like

E‖ = − 1

R

∂Φ

∂η

∣∣∣∣
ξ=const

= −3

2
EvacΘ

2
0κ

1

η4
(1 + 2h)

(
1 − ξ2),

(26)

where Evac ≡ (ΩR/c)B0 is the Newtonian value of the elec-
tric field generated near the surface of a neutron star rotating
in vacuum (Deutsch 1955). In Fig. 4 it is shown radial de-
pendence of the ratio between E‖ and Evac for the different
values of deformation parameter.

4 Energy losses of slowly rotating deformed magnetized
neutron star

Now it is possible to calculate losses energy on the polar
cap of the slowly rotating deformed neutron star. The total
energy losses expression according to Muslimov and Hard-
ing (1997) is

Lp = 2

(
−c

∫
ρΦ dS

)
. (27)
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Fig. 4 Radial dependence of accelerating electrical field for the differ-
ent values of deformation coefficient

In the slowly rotating non Kerr spacetime with deformation
parameter we have

−ρΦ ≈ 1

4π

(
ΩB0

c

)2 R2Θ2
0

N
√

1 + hη3
Ψ r̂

× κ
[
1 − κ(1 + ε̃)

]
(1 + ε̃)

(
1 − ξ2). (28)

Maximal loss energy can be obtained by inserting (28)
into (27) and taking the integral as

(Lp)max ≈ 3

2
κ
[
1 − κ(1 + ε̃)

][
1 +

(
1

2
− α

)
ε̃

]
Ėrot, (29)

where

Ėrot ≡ 1

6

Ω4B2
0R6

c3f 2(1)
= 1

f 2(1)
(Ėrot)Newt, (30)

and (Ėrot)Newt is the standard Newtonian expression for the
magneto-dipole losses in flat space-time approximation.

In general relativistic non deformation cases i.e. when
ε → 0, ε̃ also tends to zero, then one could get the result
of Muslimov and Harding (1997)

(Lp)max (ε=0) = 3

2
κ(1 − κ)Ėrot. (31)

The ratio

(Lp)max

(Lp)max (ε=0)

=
[

1 +
(

1

2
− α

)
ε̃

]
1 − κ(1 + ε̃)

1 − κ
(32)

as a function of deformation parameter is presented in Fig. 5.
The dependence has a linear character and for small val-
ues of deformation parameter amount of the energy losses
is increased. The amount of energy loss increases with the
growth of deformation parameter and it is due to the fact that
contributions into accelerating electric field produced by the
effects of the different parameters have the same sign.

Fig. 5 Ratio of polar cap energy losses as a function of deformation
coefficient for the typical neutron star with the different values of pa-
rameter β

Now for comparison with the astrophysical data on pul-
sars spin down Eq. (29) can be rewritten in terms of pul-
sar’s observable characteristics as the period P and its time
derivative Ṗ ≡ dP/dt :

(P Ṗ )max = 3

2
κ
[
1 − κ(1 + ε̃)

][
1 +

(
1

2
− α

)
ε̃

]

× I

Ĩ

1

f 2(1)
(P Ṗ )Newt, (33)

where the expressions

(Lp)max = −Ĩ (ΩΩ̇)max, (34)

and

(P Ṗ )Newt ≡
(

2π2

3c3

)
R6B2

0

I
(35)

have been taken into account.
In Eq. (34) Ĩ is the general relativistic moment of inertia

of the star (see e.g. Rezzolla and Ahmedov 2004)

Ĩ ≡
∫

d3x
√

γ e−Φ(r)ρr2 sin2 θ, (36)

where e−Φ(r) ≡ 1/
√−g00, ρ(r) is the total energy den-

sity, γ is the determinant of the three metric and d3x is
the coordinate volume element. Period of pulsar and it’s
time derivative are very precisely measured quantities for a
large number of pulsars (for example, in the paper of Kaspi
et al. (2006) there is a P − Ṗ diagram for the 1403 cata-
logued rotation-powered pulsars). Thus, expression (33) for
P Ṗ may indicate the possible existence and magnitude of
deformation-parameter. It has been found in our preceding
study Ahmedov et al. (2013) that in general relativity slow
down due to the energy losses through charged particles out-
flow in plasma magnetosphere strongly depends on star’s
compactness parameter and is more faster for the neutron
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star with comparison to that for the strange star of the same
mass. Comparison with astrophysical observations on pul-
sars spin down precise data may provide important informa-
tion about star’s compactness parameter and consequently
an evidence for the strange star existence and, thus, serve
as a test for distinguishing it from the neutron star. As it
was mentioned the main difficulty encountered on this way
nowadays is the uncertainty of estimation of the moment of
inertia of the neutron star.

5 Conclusion

We have analyzed corrections from the spacetime deforma-
tion to the GJ charge density, electrostatic scalar potential
and accelerating component of electric field being parallel
to the magnetic field lines in the polar cap region of slowly
rotating magnetized neutron star.

The presence of deformation parameter slightly modu-
lates Goldreich-Julian charge density near the surface of the
star. However as it is known the effective electric charge
density i.e. difference between Goldreich-Julian charge den-
sity ρGJ (being proportional in the case of flat space-time to
� · B) and electric charge density (being proportional to B)
in the star magnetosphere is responsible for the generation
of electric field being parallel to magnetic field lines. This
difference is equal to zero at the surface of the star and
changes with the distance from it due to the fact that ρ can
not compensate ρGJ . General relativistic terms arising from
the dragging of inertial frames and presence of the deforma-
tion parameter gives very important additional contribution
to this difference. Both of these terms depend on the radial
distance from the star as 1/r3 and have equally important
influence on the value of accelerating electric field compo-
nent generated in the magnetosphere near the surface of the
neutron star. The negative deformation increases value of GJ
charge density and the positive deformation decreases it. It
is also shown that accelerating electrical field being parallel
to magnetic field lines is also increased (decreased) for the
negative (positive) values of deformation parameter.

From the Fig. 3 one can see that GJ charge density near
to the surface of the neutron star at negative values of the
deformation coefficient has bigger value than that for the
positive and zero deformations. It is clear from Eq. (2) that
this feature will increase the values of the scalar potential
and accelerating electrical field on the polar cap. This result
has been shown in Fig. 4 and the higher accelerating elec-
trical field will give the higher energy losses with compare
to other cases (see Fig. 5). Moreover one we could see from
Fig. 2 that for the negative deformation particles leave out
from polar cap with the wider step than in the case with the
positive and zero deformation.

There results are also repeated for energy losses which
linearly depend on the deformation parameter. The obtained
results have been applied to find an expression for electro-

Fig. 6 Dependence of the ratio of polar cap energy losses from the
stellar compactness parameter. Left panel is for the different values of
the deformation coefficient. In the right panel solid line corresponds to
β = 1, dashed and dotdashed lines correspond to β = 1.1 and β = 0.9,
respectively

magnetic energy losses along the open magnetic field lines
of the slowly rotating non Kerr star. It is found that in the
presence of deformation parameter an additional important
term to the standard magneto-dipole energy losses expres-
sion appears. It is easy to see from Fig. 6 at ε = −22 amount
of energy losses for typical neutron stars (compactness pa-
rameter ε = 0.2) increases nearly for 20 per cents and for
ε = 22 it decreases up to 20 per cents. For neutron stars
with the bigger compactness parameter ε = 0.22 this value
reaches up to 30 per cents.
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