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Abstract We present a new class of solutions to the Ein-
stein’s field equations corresponding to a static spherically
symmetric anisotropic system by generalizing the ansatz of
Finch and Skea [Class. Quantum Grav. 6:467, 1989] for
the gravitational potential grr . The anisotropic stellar model
previously studied by Sharma and Ratanpal [Int. J. Mod.
Phys. D 13:1350074, 2013] is a sub-class of the solutions
provided here. Based on physical requirements, regularity
conditions and stability, we prescribe bounds on the model
parameters. By systematically fixing values of the model pa-
rameters within the prescribed bound, we demonstrate that
our model is compatible with the observed masses and radii
of a wide variety of compact stars like 4U 1820-30, PSR
J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, SAX
J1808.4-3658 and Her X-1.
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1 Introduction

Finch and Skea (1989), making use of Duorah and Ray
(1987) ansatz for the metric potential grr corresponding
to a static spherically symmetric perfect fluid space-time,
developed a stellar model which was later shown to com-
ply with all the physical requirements of a realistic star
by Delgaty and Lake (1998). Consequently, the Finch-Skea
model has been explored by many investigators in differ-
ent astrophysical contexts, particularly for the studies of
cold compact stellar objects (see for example, Hansraj and
Maharaj 2006; Tikekar and Jotania 2009; Banerjee et al.
2013). One noticeable feature of the Finch and Skea (1989)
model is that it assumes isotropy in pressure. However,
theoretical investigations of Ruderman (1972) and Canuto
(1974), amongst others have shown that anisotropy might
develop in the high density regime of compact stellar ob-
jects. In other words, radial and transverse pressures might
not be equal at the interior of ultra-compact stars. Bow-
ers and Liang (1974) have extensively discussed the con-
ditions under which anisotropy might occur at stellar inte-
riors which include presence of type-3A super fluid, elec-
tromagnetic field, rotation etc. They have also established
the non-negligible effects of local anisotropy on the maxi-
mum equilibrium mass and surface redshift of the distribu-
tion. Accordingly, different anisotropic stellar models have
been developed and effects of anisotropy on physical prop-
erties of stellar configurations have been analyzed by many
investigators, viz. Maharaj and Marteens (1989), Gokhroo
and Mehra (1994), Patel and Mehta (1995), Tikekar and
Thomas (1998, 1999, 2005), Thomas et al. (2005), Thomas
and Ratanpal (2007). Impacts of anisotropy on the stabil-
ity of a stellar configuration have been studied by Dev and
Gleiser (2002, 2003, 2004). Sharma and Maharaj (2007) and
Thirukkanesh and Maharaj (2008) have obtained analytic
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solutions of compact anisotropic stars by assuming a lin-
ear equation of state (EOS). To solve the Einstein-Maxwell
system, Komathiraj and Maharaj (2007) have used a linear
equation of state. By assuming a linear EOS, Sunzu et al.
(2014) have reported solutions for a charged anisotropic
quark star. Feroze and Siddiqui (2011) and Maharaj and
Takisa (2012) have used a quadratic-type EOS for obtain-
ing solutions of anisotropic distributions. Varela et al. (2010)
have analyzed charged anisotropic configurations admitting
a linear as well as non-linear equations of state. For a star
composed of quark matter in the MIT bag model, Paul et al.
(2011) have shown how anisotropy could effect the value
of the Bag constant. For a specific polytropic index, ex-
act solutions to Einstein’s field equations for an anisotropic
sphere admitting a polytropic EOS have been obtained by
Thirukkanesh and Ragel (2012). Maharaj and Takisa (2013)
have used the same type of EOS to develop an analyti-
cal model describing a charged anisotropic sphere. Poly-
tropes have also been studied by Nilsson and Uggla (2001),
Heinzle et al. (2003) and Kinasiewicz and Mach (2007).
Thirukkanesh and Ragel (2014) have used modified Van
der Waals EOS to represent anisotropic charged compact
spheres. For specific forms of the gravitational potential and
electric field intensity, Malaver (2014) has prescribed solu-
tions for a stellar configuration whose matter content ad-
mits a quadratic EOS. Malaver (2013a) and Malaver (2013b)
have also found exact solutions to the Einstein-Maxwell sys-
tem using the Van der Waals modified EOS.

Recently, Sharma and Ratanpal (2013), making use of the
Finch and Skea (1989) ansatz, have generated a class of so-
lutions describing the interior of a static spherically symmet-
ric anisotropic star. In this paper, we have generalized the
Sharma and Ratanpal (2013) model by incorporating a di-
mensionless parameter n (>0) in the Finch and Skea (1989)
ansatz and assumed the system to be anisotropic, in general.
We have shown that such assumptions can provide physi-
cally viable solutions which can be used to model realis-
tic stars. Implications of the modified ansatz (by including
an adjustable parameter n) on the size and physical proper-
ties of resultant stellar configurations have been analyzed.
Based on physical requirement, we have put constraints on
our model parameters and subsequently shown that a wide
variety of observed pulsars can be accommodated within the
prescribed bound of the model parameters. In particular, we
have shown that the predicted masses and radii of pulsars
like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1,
PSR J1614-2230, SAX J1808.4-3658 and Her X-1 can well
be achieved by systematically fixing the parameter n. Most
importantly, for a given mass, it is possible to constrain the
radius so as to get the desired compactness by fixing the
compactness parameter n in this model.

The paper has been organized as follows: In Sect. 2, for
a static spherically symmetric anisotropic fluid sphere, we

have solved the relevant field equations by making a partic-
ular choice of the metric potential grr which is a general-
ization of the Finch and Skea (1989) ansatz. In Sect. 3, we
have laid down the boundary conditions and in Sect. 4, we
have put constraints on the model parameters based on phys-
ical requirements, regularity conditions and stability. Physi-
cal applications of our model have been discussed in Sect. 5.
In Sect. 6, we have concluded by pointing out the main re-
sults of our model.

2 Modified Finch and Skea model

We write the interior space-time of a static spherically sym-
metric distribution of anisotropic matter in the form

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (1)

where,

eλ =
(

1 + r2

R2

)n

. (2)

In (2), n > 0 is a dimensionless parameter and R is the cur-
vature parameter having dimension of a length. Note that the
ansatz (2) is a generalization of the Finch and Skea (1989)
model which can be regained by setting n = 1.

We follow the treatment of Maharaj and Marteens (1989)
and write the energy-momentum tensor of the anisotropic
matter filling the interior of the star in the form

Tij = (ρ + p)uiuj − pgij + πij , (3)

where, ρ and p denote the energy-density and isotropic pres-
sure of the fluid, respectively and ui is the 4-velocity of the
fluid. The anisotropic stress-tensor πij has the form

πij = √
3S

[
CiCj − 1

3
(uiuj − gij )

]
, (4)

where, Ci = (0,−e−λ/2,0,0). For a spherically symmet-
ric anisotropic distribution, S(r) denotes the magnitude of
the anisotropic stress. The non-vanishing components of the
energy-momentum tensor are the following:

T 0
0 = ρ, T 1

1 = −
(

p + 2S√
3

)
,

T 2
2 = T 3

3 = −
(

p − S√
3

)
.

(5)

Consequently, radial and tangential pressures of the fluid can
be obtained as

pr = −T 1
1 =

(
p + 2S√

3

)
, (6)

p⊥ = −T 2
2 =

(
p − S√

3

)
, (7)

so that

S = pr − p⊥√
3

. (8)
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The potentials of the space-time metric (1) and physical vari-
ables of the distribution are related through the Einstein’s
field equations

8πρ = 1 − e−λ

r2
+ e−λλ′

r
, (9)

8πpr = e−λ − 1

r2
− e−λν′

r
, (10)

8πp⊥ = e−λ

[
ν′′

2
+ ν′2

4
− ν′λ′

4
+ ν′ − λ′

2r

]
. (11)

By defining the mass m(r) within a radius r as

m(r) = 4π

∫ r

0
u2ρ(u)du, (12)

we get an equivalent description of the system as

e−λ = 1 − 2m

r
, (13)

r(r − 2m)ν′ = 8πprr
3 + 2m, (14)

−4

r
(8π

√
3S) = (8πρ + 8πpr)ν

′ + 2
(
8πp′

r

)
. (15)

Using (2) in (9) and (13), we obtain the energy-density and
mass m(r) in the form

8πρ =
1
r2 (1 + r2

R2 )[(1 + r2

R2 )n − 1] + 2n

R2

(1 + r2

R2 )n+1
, (16)

m(r) =
r
2 [(1 + r2

R2 )n − 1]
(1 + r2

R2 )n
. (17)

To integrate Eq. (14), following Sharma and Ratanpal
(2013), we write the radial pressure in the form

8πpr = p0(1 − r2

R2 )

R2(1 + r2

R2 )n+1
, (18)

which is a reasonable assumption since the radial pressure
vanishes at r = R. Consequently, the curvature parameter R

in our model turns out to be the boundary of the star. Substi-
tuting (18) in (14) and integrating, we get

eν = C

(
1 + r2

R2

)p0

× exp

[

−p0r
2

2R2
+

∫ r

0

[(
1 + u2

R2

)n

− 1

]
1

u
du

]

, (19)

where, C is a constant of integration.
Finally, using Eqs. (15), (16) and (18), the anisotropy is

obtained as

8π
√

3S = A1(r) − {
A2(r)

(
A3(r) + A4(r)

)}
, (20)

where

A1(r) = p0
r2

R2 [(n + 2) − nr2

R2 ]
R2(1 + r2

R2 )n+2
,

A2(r) = 1

4

[(
1 + r2

R2

)n−1]
− p0

4

r2

R2
+ p0

2

r2

R2

(1 + r2

R2 )
,

A3(r) = (1 + r2

R2 )[(1 + r2

R2 )n − 1] 1
r2 + 2n

R2

(1 + r2

R2 )n+1
,

A4(r) = p0(1 − r2

R2 )

R2(1 + r2

R2 )n+1
.

Note that the anisotropy vanishes at the center r = 0, as
expected. Subsequently, the tangential pressure can be ob-
tained from the relation

8πp⊥ = 8πpr − 8π
√

3S. (21)

Using the above relations, we also obtain

dpr

dρ

= p0
r4

R4 [(n + 2) − n r2

R2 ]
(1 + r2

R2 )n+2 − [1 + {(n + 2) + (1 − n − 2n2) r2

R2 } r2

R2 ]
,

dp⊥
dρ

= 1

c2

dpr

dρ
− p0

r4

R4 [I (r) + D(r)] + R6B(r)

4R6(1 + r2

R2 )n+3E(r)
,

where

B(r) = F(r) + G(r) + H(r),

F (r) =
[{

1 + r2

R2

(
1 − n − 2n2)

}(
1 + r2

R2

)
r2

R2

]
,

G(r) =
[

1 − (n − 1)
r2

R2

](
1 + r2

R2

)2n+2

,

H(r) = −2

(
1 + r2

R2

)n+1[
1 + 2

r2

R2
− (n − 1)

r4

R4

]
,

I (r) = 2

[
R6

{(
1 − 3r2

R2

)
−

(
7 − r2

R2

)
nr2

R2

+ 2

(
1 + r2

R2

)n+1}
− n2r2

(
1 − r2

R2

)]
,

D(r) = −p0R
6
(

1 − r2

R2

)

×
[

1 −
{
(n + 4)

r2

R2
+ (n − 1)

r4

R4

}]
,

E(r) = 1 + (n + 2) r2

R2 − (2n2 + n − 1) r4

R4

(1 + r2

R2 )n+2
− 1.

Thus, our model has four unknown parameters namely,
C, p0, R and n which can be fixed by the appropriate bound-
ary conditions as will be discussed the following sections.
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3 Boundary conditions

At the boundary of the star r = R, we match the interior
metric (1) with the Schwarzschild exterior

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

− r2(dθ2 + sin2 θdφ2), (22)

which yields

R = 2n+1M

2n − 1
, (23)

C = 2−(n+p0)

× exp

[
p0

2
−

∫ R

0

[(
1 + r2

R2

)n

− 1

]
1

r
dr

]

, (24)

where M = m(R) denotes the total mass enclosed within
a radius R. Equation (23) clearly shows that the compact-
ness of the stellar configuration M/R will depend on the
parameter n which was not the case in the model previously
developed by Sharma and Ratanpal (2013).

4 Bounds on the model parameters

For a physically acceptable stellar model, the following con-
ditions should be satisfied:

(i) ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0;
(ii) ρ(r) − pr(r) − 2p⊥(r) ≥ 0;

(iii) dρ(r)
dr

< 0, dpr (r)
dr

< 0, dp⊥(r)
dr

< 0;

(iv) 0 ≤ dpr

dρ
≤ 1, 0 ≤ dp⊥

dρ
≤ 1.

Due to mathematical complexity, it is difficult to show an-
alytically that our model complies with all the above men-
tioned conditions. However, by adopting numerical proce-
dures, we have shown that for a specified bound all the above
requirements can be fulfilled in this model.

Now, to get an estimate on the bounds of the model pa-
rameters, we note that pr, p⊥ ≥ 0 at r = R if we have

p0 ≤ (2n − 1)(2n − 1 + n)

2
. (25)

The strong energy condition ρ −pr −2p⊥ ≥ 0 at r = R puts
a further constraint on the parameter p0 given by

p0 ≥ 3(1 − n)

2
+ (

n − 4 + 2n
)
2n−1. (26)

The condition dp⊥
dr

|r=R< 0 imposes the following con-
straint on p0

p0 >
(n2 − 2(2n − 1)2 + 2nn(2n − 1))

(2 − 3n + 2n+1)
. (27)

The requirement dp⊥
dρ

|r=R< 1 puts the following bound

p0 < 2n+1 + n2 − 2. (28)

Similarly, the conditions dp⊥
dρ

|r=0< 1 and dp⊥
dρ

|r=R< 1, re-
spectively puts the following constraints on p0:

p0 < 8 + 2n −
√

64 + 22n − 9n2, (29)

p0 <
4(2n+1 + n2 − 2) − 2(2n − 1)2 + 2n(2n − 1) + n2

2n+1 − 3n + 2
.

(30)

All the above constraints when put together provides an ef-
fective bound

n2 − 2(2n − 1)2 + 2nn(2n − 1)

2 − 3n + 2n+1

< p0 ≤ (2n − 1)(2n − 1 + n)

2
(31)

on p0 and n.

4.1 Stability

Though we have obtained an effective bound on p0 and n

based on requirements (i)–(iv), a more stringent bound on
these parameters may be obtained by analyzing the stabil-
ity of the system. To check stability, we have followed the
method of Herrera (1992) which states that for a potential
stable configuration we should have (υ2⊥ − υ2

r ) |r=0< 0. In
our case, the difference between the radial speed of sound
υ2

r (= dpr

dρ
) and tangential speed of sound υ2⊥ (= dp⊥

dρ
) eval-

uated at the center r = 0 is obtained as

(
υ2⊥ − υ2

r

) |r=0= −3n2 + (p0 − 8)p0

10n(n + 1)
. (32)

Then Herrera’s stability condition implies

p0 < 4 −
√

16 − 3n2. (33)

Similarly, (υ2⊥ − υ2
r ) |r=R< 0 yields

p0 < n2 − 2n(n − 4) + 4n(n − 2) − 2. (34)

Combining (31), (33) and (34), the most appropriate bound
on the model parameters is finally obtained in the form

n2 − 2(2n − 1)2 + 2nn(2n − 1)

2 − 3n + 2n+1
< p0 < 4 −

√
16 − 3n2.

(35)

It is to be noted that for a real valued upper bound on p0 we
must have n ≤ 4√

3
. In Fig. 1, we have shown the possible

range of p0 and n (shaded region) for which a physically
acceptable stable stellar configuration is possible.

5 Physical analysis

Having derived a physically plausible model, let us now ana-
lyze the implications of the modified Finch and Skea (1989)
ansatz. Note that in our description, two of the four unknown
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Fig. 1 Bounds on the model parameters p0 and n based on physical
requirements and stability

parameters can be determined from the boundary conditions
(23) and (24) provided the mass is known. Since the condi-
tion pr(R) = 0 is automatically satisfied, it provides no ad-
ditional information about the unknowns. Therefore, n and
p0 remain free parameters in our construction. For a chosen
value of n, the parameter p0 can be appropriately fixed from
within the bound provided in (35). Thus, all the physically
interesting quantities of the model can be evaluated if the
mass M is supplied.

To examine the nature of physical quantities, we have
considered the pulsar 4U 1820-30 whose estimated mass
and radius are given by M = 1.58 M� and R = 9.1 km, re-
spectively Güver et al. (2010). Assuming M = 1.58 M�, we
note that if we set the dimensionless parameter n = 0.6154
and p0 = 0.1211 Mev fm−3, we get exactly the same radius
as estimated by Güver et al. (2010). Moreover, the com-

Table 1 Estimation of physical values based on observational data

STAR n p0 (MeV fm−3) M (M�) R (km) ρc (MeV fm−3) ρR (MeV fm−3) u (= M
R

) (
dpr

dρ
)r=0

4U 1820-30 0.6154 0.1211 1.58 9.1 671.36 272.35 0.2561 0.1275

1 0.3638 6.32 2261.77 753.93 0.3688 0.2183

1.2 0.5667 5.59 3469.29 1047.59 0.4169 0.2748

1.38 0.8079 5.13 4737.27 1311.33 0.4543 0.3326

PSR J1903+327 0.6287 0.1269 1.667 9.438 637.65 256.89 0.2605 0.1303

1 0.3638 6.66 2036.74 678.91 0.3692 0.2183

1.2 0.5667 5.90 3114.30 940.39 0.4168 0.2748

1.38 0.8079 5.41 4259.59 1179.11 0.4545 0.3326

4U 1608-52 0.6752 0.1485 1.74 9.31 703.83 276.78 0.2757 0.1405

1 0.3638 6.96 1864.94 621.65 0.3688 0.2183

1.2 0.5667 6.16 2856.95 862.69 0.4166 0.2748

1.38 0.8079 5.65 3905.40 1081.06 0.4542 0.3326

Vela X-1 0.6672 0.1446 1.77 9.56 659.553 260.45 0.2731 0.1387

1 0.3638 7.08 1802.26 600.75 0.3688 0.2183

1.2 0.5667 6.27 2757.59 832.68 0.4164 0.2748

1.38 0.8079 5.75 3770.74 1043.79 0.4540 0.3326

PSR J1614-2230 0.7529 0.1892 1.97 9.69 724.42 273.692 0.2999 0.1578

1 0.3638 7.88 1454.89 484.96 0.3688 0.2183

1.2 0.5667 6.98 2225.12 671.90 0.4163 0.2748

1.38 0.8079 6.40 3043.71 842.54 0.4540 0.3326

SAX J1808.4-3658 0.3703 0.0411 0.9 7.951 529.18 244.30 0.1669 0.0768

1 0.3638 3.6 6970.73 2323.58 0.3688 0.2183

1.2 0.5667 3.19 10653.30 3216.86 0.4161 0.2748

1.38 0.8079 2.92 14621.70 4047.46 0.4546 0.3326

Her X-1 0.3399 0.0344 0.85 8.1 467.95 219.575 0.1548 0.1031

1 0.3638 3.40 7814.94 2604.98 0.3688 0.2183

1.2 0.5667 3.01 11965.50 3613.11 0.4165 0.2748

1.38 0.8079 2.76 16366.1 4530.33 0.4543 0.3326
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Fig. 2 Variation of density (ρ) against the radial parameter r

pactness of the star can be made as high as ∼0.4543 for
an upper limit of n ∼ 1.38. Similarly, we have consid-
ered some other well studied pulsars like PSR J1903+327
(Freire et al. 2011), 4U 1608-52 (Rawls et al. 2011), Vela
X-1 (Rawls et al. 2011), PSR J1614-2230 (Demorest et al.
2010), SAX J1808.4-3658 (Elebert et al. 2009) and Her
X-1 (Abubekerov et al. 2008) and shown that the estimated
masses and radii of these stars can also be obtained by mak-
ing necessary adjustments in the values of n. In Table 1, we
have given the appropriate values of the adjustable compact-
ness parameter n for which one can obtain the predicted
masses and radii of the stars considered here. Respective
central density (ρ0), surface density (ρR), central pressure
(p0) and compactness (u = M

R
) have also been shown in the

table. The difference in the values of these parameters for
different choices of n has also been shown.

For a particular mass M = 1.58 M�, we have also shown
that all the physical quantities are well behaved at all inte-
rior points of the star within the specified bounds on n and
p0. In Fig. 2, we have shown the variation of density which
shows that the density decreases from its maximum value at
the center towards the boundary. Moreover, the central den-
sity increases if the value of n increases. In Fig. 3, radial
variation of the two pressures has been shown. As expected,
the radial pressure pr vanishes at the boundary; however
the tangential pressure p⊥ remains finite at the boundary.
As in the case of density, both pressures increase as n in-
creases. In Fig. 4, radial variation of anisotropy has been
shown which shows that anisotropy is zero at the center and
is maximum at the surface. In Fig. 5, radial variations of
sound speed in the radial and transverse directions have been
shown which confirms that the causality condition is not vio-
lated throughout the configuration. In Fig. 6, we have plotted
(ρ −pr −2p⊥) which was shown to remain positive thereby
implying that the strong energy condition is not violated in
this model. Though we have not assumed any explicit EOS
in our model, Fig. 7 shows how the radial pressure varies
against the density for different values of n.

Fig. 3 Variation of radial (pr ) and transverse (p⊥) pressure against
the radial parameter r

Fig. 4 Variation of anisotropy (p⊥ − pr ) against r

Fig. 5 Variation of dpr

dρ
and dp⊥

dρ
against the radial parameter r

6 Discussion

In this paper, we have solved the Einstein’s field equations
describing a spherically symmetric anisotropic matter com-
position by assuming the form of one of the metric potentials
of the associated space-time and also by choosing a partic-
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Fig. 6 (ρ − pr − 2p⊥) plotted against the radial parameter r

Fig. 7 Variation of radial pressure (pr ) against density (ρ)

ular radial pressure profile. The assumed form of the metric
potential is a generalization of the Finch and Skea (1989) an-
zatz, which has so far been utilized successfully by many au-
thors to generate solutions to the Einstein’s field equations in
different astrophysical contexts. We note that a modification
of the Finch and Skea (1989) ansatz for the metric potential
grr allows us to fit the theoretically obtained compactness
to the observed compactness of a given star. We have shown
that in the presence of such an adjustable parameter, it is
possible to accommodate a large class of observed pulsars
in our model. Another interesting feature of our approach is
that though no a priori knowledge of the EOS is required
in our set up, we have been able to show that the predicted
masses and radii of the pulsars based on the exotic strange
matter EOS formulated by Dey et al. (1998) and examined
by Gangopadhyay et al. (2013) can also be fitted into our
model.

Acknowledgements D.M.P. is obliged for the support from the
Inter-University center for Astronomy and Astrophysics (IUCAA),

Pune, India, where a part of this work was carried out. R.S. acknowl-
edges support from the IUCAA, under its Visiting Research Associ-
ateship Programme. D.M.P. and V.O.T. thank B.S. Ratanpal for useful
suggestions.

References

Abubekerov, M.K., Antokhina, E.A., Cherepashchuk, A.M., Shiman-
skii, V.V.: Astron. Rep. 52, 379 (2008)

Banerjee, A., Rahaman, F., Jotania, K., Sharma, R., Karar, I.: Gen. Rel-
ativ. Gravit. 45, 717 (2013)

Bowers, R., Liang, E.: Astrophys. J. 188, 657 (1974)
Canuto, V.: Annu. Rev. Astron. Astrophys. 12, 167 (1974)
Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998).

doi:10.1016/s0010-4655(98)00130-1
Demorest, P.B., Pennucci, T., Ranson, S.M., Rpberts, M.S.E., Hessels,

J.W.T.: Nature 467, 1081 (2010)
Dev, K., Gleiser, M.: Gen. Relativ. Gravit. 34, 1793 (2002)
Dev, K., Gleiser, M.: Gen. Relativ. Gravit. 35, 1435 (2003)
Dev, K., Gleiser, M.: Int. J. Mod. Phys. D 13, 1389 (2004)
Dey, M., Bombaci, I., Dey, J., Ray, S., Samanta, B.C.: Phys. Lett. B

438, 123 (1998)
Duorah, H.L., Ray, R.: Class. Quantum Gravity 4, 1691 (1987)
Elebert, P., et al.: Mon. Not. R. Astron. Soc. 395, 884 (2009)
Feroze, T., Siddiqui, A.A.: Gen. Relativ. Gravit. 43, 1025 (2011)
Finch, M.R., Skea, J.E.F.: Class. Quantum Gravity 6, 467 (1989)
Freire, P.C.C., et al.: Mon. Not. R. Astron. Soc. 412, 2763 (2011)
Gangopadhyay, T., Ray, S., Li, X.-D., Dey, J., Dey, M.: Mon. Not. R.

Astron. Soc. 431, 3216 (2013)
Gokhroo, M.K., Mehra, A.L.: Gen. Relativ. Gravit. 26, 75 (1994)
Güver, T., Özel, F., Cabrera-Lavers, A., Wroblewski, P.: Astrophys. J.

712, 964 (2010)
Hansraj, S., Maharaj, S.D.: Int. J. Mod. Phys. D 8, 1311 (2006)
Heinzle, J.M., Röhr, N., Uggla, C.: Class. Quantum Gravity 20, 4567

(2003)
Herrera, L.: Phys. Lett. A 165, 206 (1992)
Kinasiewicz, B., Mach, P.: Acta Phys. Pol. B 38, 39 (2007)
Komathiraj, K., Maharaj, S.D.: Int. J. Mod. Phys. D 16, 1803 (2007)
Maharaj, S.D., Marteens, R.: Gen. Relativ. Gravit. 21, 899 (1989)
Maharaj, S.D., Takisa, P.M.: Gen. Relativ. Gravit. 44, 1419 (2012)
Maharaj, S.D., Takisa, P.M.: Gen. Relativ. Gravit. 45, 1951 (2013)
Malaver, M.: Am. J. Astron. Astrophys. 1, 41 (2013a)
Malaver, M.: World Appl. Program. 3, 309 (2013b)
Malaver, M.: Front. Math. Appl. 1, 9 (2014)
Nilsson, U.S., Uggla, C.: Ann. Phys. 286, 292 (2001)
Patel, L.K., Mehta, N.P.: J. Indian Math. Soc. 61, 95 (1995)
Paul, B.C., Chattopadhyay, P.K., Karmakar, S., Tikekar, R.: Mod. Phys.

Lett. A 26, 575 (2011)
Rawls, M.L., Orosz, J.A., McClintock, J.E., Torres, M.A.P., Baliyn,

C.D., Buxton, M.M.: Astrophys. J. 730, 25 (2011)
Ruderman, R.: Astron. Astrophys. 10, 427 (1972)
Sharma, R., Maharaj, S.D.: Mon. Not. R. Astron. Soc. 375, 1265

(2007)
Sharma, R., Ratanpal, B.S.: Int. J. Mod. Phys. D 13, 1350074 (2013)
Sunzu, J.M., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 352, 719

(2014)
Thirukkanesh, S., Maharaj, S.D.: Class. Quantum Gravity 25, 235001

(2008)
Thirukkanesh, S., Ragel, F.S.: Pramana J. Phys. 78, 687 (2012)
Thirukkanesh, S., Ragel, F.S.: Pramana J. Phys. 83, 83 (2014)
Thomas, V.O., Ratanpal, B.S.: Int. J. Mod. Phys. D 16, 9 (2007)
Thomas, V.O., Ratanpal, B.S., Vinodkumar, P.C.: Int. J. Mod. Phys. D

14, 85 (2005)

http://dx.doi.org/10.1016/s0010-4655(98)00130-1


292 Astrophys Space Sci (2015) 356:285–292

Tikekar, R., Jotania, K.: Gravit. Cosmol. 15, 129 (2009)
Tikekar, R., Thomas, V.O.: Pramāna 50, 95 (1998)
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