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Abstract The properties of linear dust acoustic (DA) waves
in inhomogeneous viscous dusty plasmas with non-thermal
electrons and ions have been investigated. A linear disper-
sion relation is obtained with the non-adiabatic dust charge
fluctuation and fraction of nonthermality of electron-ion.
The dependence of frequency and the damping rate of waves
on the nonthermality fraction and dust kinematic viscosity
coefficient are discussed. To study the dust acoustic shock
waves, KdV-Burgers (KdV-B) equation for homogeneous
dissipative dusty plasma has been considered and solved by
means of tanh method. The obtained solution is a particular
combination of a solitary wave with a Burgers shock wave.
The present results are useful in the context of space plasma.

Keywords Instability of low frequency waves ·
Inhomogeneity · Non-adiabatic dust charge variation ·
Nonthermal electrons · Nonthermal ions · Dust kinematic
viscosity coefficient · KdV-Burgers equation

1 Introduction

Nowadays, waves in inhomogeneous dusty plasmas which
occur in space (e.g., mesospheric noclitlucents clouds, in
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interstellar clouds, in ring systems of giant planets, in in-
terplanetary space, in cometary tails as well as in labora-
tory discharges) have attracted a great deal of interest in
understanding the electrostatic structures observed in dif-
ferent regions of space and laboratory devices discharges
(Shukla and Mamun 2002; Mowafy et al. 2008; El-Wakil
et al. 2006a; Asaduzzaman and Mamun 2012). Inhomogene-
ity may result from magnetic field gradients, temperature
and density which appears significantly near the edges and
the boundaries of the dusty plasma system. Samaryan et al.
(2001) observed experimentally the dust density perturba-
tion in a DC glow discharge in neon and showed that the
phase velocity of the density changed along the plasma col-
umn. Mowafy et al. (2008) investigated the effect of posi-
tive and negative dust charge fluctuation on the amplitude
and the width of the dust ion acoustic waves in a collision-
less, unmagnetized inhomogeneous dusty plasma compris-
ing cold positive ions, cold positive and negative stationary
dust grains, as well as isothermal electrons. More specifi-
cally, Zhang and Xue (2005) investigated the properties of
linear waves in inhomogeneous plasma with non-adiabatic
dust charge fluctuation and nonthermal ions. However, the
Maxwellian distribution function, which is in thermal equi-
librium, is most frequently used in collisionless plasmas.
Accordingly, various observations of fast ions and electrons
in space environments indicated that these particles have ve-
locity distributions that are not in thermal equilibrium. Ac-
cordingly, Cairns et al. (1995) studied the effect of elec-
trons nonthermality for the observations made by the Freja
satellite, while nonthermal ions have been observed in the
Earth’s bow-shock (Asbridge et al. 1968). In the last few
years, several other studies have been devoted for studying
the non-thermal distribution of electrons and ions (Sahu and
Roychoudhurya 2006; El-Shewy 2007; Singh and Lakhina
2004; El-Taibany and Sabry 2005; El-Shewy et al. 2008).
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Later, Asaduzzaman and Mamun (2012) investigated the
effects of polarization force and non-Maxwellian nonther-
mal electrons on properties of DA waves in an inhomo-
geneous positively charged dusty plasma. Moreover, dusty
plasma with dissipative properties supports the existence
of shock waves instead of solitary waves. The dissipation
in dusty plasma can be caused by Landau damping, dust
fluid viscosity, dust-dust collision and dust charge fluctua-
tion, which would modify the wave structures (Nakamura
and Sarma 2001; Singh and Rao 1998a; Popel et al. 2000;
Nakamura et al. 1999). Under some appropriate conditions,
shock waves can be propagated in the system. Experimen-
tally, the effects of dissipation caused by kinematic viscosity
on the propagation of solitary wave structure are observed
by Nakamura and Sarma (2001). However, the effects of
trapped ion on nonlinear DA solitary and shock waves in
a strongly coupled dusty plasma or in a magnetized dusty
plasma were studied (Mamun 1998; Mamun et al. 2004;
Anowar et al. 2009). More specifically, the behavior of the
oscillatory shock waves caused by dust fluid viscosity in
the dusty plasma has been investigated in two types dust
fluid in unmagnetized, collisionless dusty plasma consist-
ing of electrons, singly charged ions, hot and cold dust
grains (El-Shewy et al. 2011a, 2011b). Recently, some pa-
pers have been devoted to study a theoretical models for the
solitary existence in two types of dust fluids in a homoge-
neous/inhomogeneous plasmas, see for example (El-Wakil
et al. 2006b; Mowafy et al. 2008; Mamun and Shukla 2002;
Sayed and Mamun 2007; Mamun 2008). The effect of in-
homogeneity on the dust fluid dissipation is one of the im-
portant problems in dust plasma. Xiao et al. (2006) stud-
ied the wave evolution in one-dimension inhomogeneous
plasmas through the KdV-Burgers equation. Zhang and Xue
(2008) studied the effects of the non-adiabatic dust charge
fluctuation and the fast (nonthermal) ions on the instabil-
ity linear DA waves in inhomogeneous dusty plasmas. They
founded that, the presence of non-thermality of ions mod-
ifies the linear DA wave properties. Very recently, the bi-
furcation analysis of both magnetized and unmagnetized
plasmas with q-nonextensive velocity distribution are stud-
ied via perturbation approaches (Saha and Chatterjee 2014a,
2014b). Therefore, we aim to study the effect of dust viscos-
ity and electron-ion nonthermality fraction on the instability
of DA waves in inhomogeneous dusty plasmas with non-
adiabatic dust charge fluctuation. Moreover, the nonlinear
investigation of the plasma system is carried out by study-
ing the obtained KdV-Burgers equation. The organization of
the paper is as follows: In Sect. 2, we present the basic equa-
tions. In Sect. 3, the linear dispersion relation has been de-
rived. Section 4 is devoted to the nonlinear analysis of dusty
dissipative plasma system via KdV-B equation. Section 5 is
kept for conclusion.

2 Governing equations

We consider an inhomogeneous system of an unmagne-
tized dusty plasma. The system consists of extremely mas-
sive, micronsized, negatively charged dust fluid and nonther-
mal ions, electrons obeying a nonthermal distribution. The
plasma is postulated to be inhomogeneous along the ver-
tically oriented tube, chosen to be the x-axis. In case of
the steady state, the charge neutrality becomes: ni0(x) =
Zd0(x)nd0(x) + ne0(x), where ni0(x), nd0(x), ne0(x) and
Zd0(x) refer to the unperturbed ion, dust, electron number
densities and the unperturbed number of charges residing on
the dust grain, respectively. The dynamics of the DA waves
are governed by the basic set of equations

∂nd

∂t
+ ∂(ndϑd)

∂x
= 0, (1)

∂ϑd

∂t
+ ϑd

∂ϑd

∂x
= −q

∂φ

∂x
+ η

∂2ϑd

∂x2
, (2)

∂2φ

∂x2
= −qnd + ne − n

i
, (3)

where ϑd refers to the dust fluid velocity normalized to the
DA speed Cd = √

Zd0(0)Ti/md , with Ti refers to the tem-
perature of ions and md refers to the mass of the negatively
charged dust particles, nd refers to the dust grain number
density normalized to nd0(0), φ refers to the electrostatic
potential normalized to (Ti/e) with e refers to the magni-
tude of the electron charge and η refers to the viscosity co-
efficient. The time and space variables are normalized by the

dust plasma period ω−1
pd =

√
md/4πnd0(0)Z2

d0(0)e2 and the
Debye length λDd = Cd/ωpd , respectively.

The nonthermal distribution of the ions and the electrons
is chosen to take the form

n
i
= 1

1 − μ(0)

[
1 + β

(
φ + φ2)] exp(−φ), (4)

ne = μ(x)

1 − μ(0)

[
1 − θσiφ + θ(σiφ)2] exp(σiφ), (5)

where β = 4α/(1+3α), α refers to a parameter determining
the number of fast nonthermal ions, μ(x) = ne0(x)/ni0(0),
θ = 4/(1 + 3),  refers to a parameter determining the
number of fast nonthermal electrons and σi = Ti/Te with Te

refers to the temperature of electrons.
The charge q = Zd0e which implies the charge’s sign is

normalized by Zd0(0)e which refers to the dust charge at
x = 0. To determine q , we postulate the following orbital
motion-limited (Allen 1992) charge current balance equa-
tion. In the normalized form, it will be in the form

τch

τd

(
∂q

∂t
+ ϑd

∂q

∂x

)
= τch

Zd0(0)e
(Ie + Ii), (6)



Astrophys Space Sci (2015) 356:269–276 271

where Ie and Ii refer to the electron and ion currents, re-
spectively, and given as

Ie = −πa2e

√
8Te

πme

ne0(x)eσiφezq, (7)

Ii = πa2e

√
8Ti

πmi

ni0(x)

1 + 3α

[
1 + 24α

5
+ 16α

3
φ + 4αφ2

− zq

σi

(
1 + 8α

5
+ 8α

3
φ + 4αφ2

)]
exp(−φ), (8)

where a refers to the dust grain’s radius and z = zd0(0)e2/

(4πε0aTe), 4πε0a refers to the capacitance of the dust grain
of radius a. And τd ≈ ω−1

pd refers to the dust hydrodynamical

time scale and τch ≈ (dqd/dt)−1 refers to the charging time
scale given as

τch =
(

a√
2π

ω2
pi

ϑthi

5 + 8α

5 + 15α

(
1 + z + 5 + 24α

5 + 8α
σi

))−1

, (9)

where ωpi and ϑthi refer to the ion plasma frequency and
the ion thermal velocity, respectively.

In case of the non-adiabatic charge variation, τch/τd is
small and finite, (Singh and Rao 1998b) we set

τch

τd

= λ (10)

3 Linear analysis

Firstly, one can study the dispersion properties of the linear
waves, in which we express our dependent variables ϑd , φ,
q and nd according to the standard-normal mode analysis
in terms of the equilibrium and perturbed parts, viz. ϑd =
0 + ϑ ′

d(x, t), φ = 0 + φ′(x, t), q = q0(x) + q ′(x, t), nd =
nd0(x) + n′

d(x, t) and substitute them into (1)–(8), we as-
sume all perturbed quantities are proportional to exp[i(kx −
ωt)], we get the following set of equations

n′
d(x, t) = 1

ω

(
knd0(x) − i

dnd0(x)

dx

)
ϑ ′

d(x, t), (11)

ϑ
′
d(x, t) = kq0(x)

ω + iηk2
φ

′
(x, t), (12)

n
′
d(x, t) = 1

ω(ω + iηk2)

[
kq0(x)

(
knd0(x)

− i
dnd0(x)

dx

)]
φ

′
(x, t), (13)

n
i
= 1

1 − μ(0)
(β − 1)φ′(x, t), (14)

ne = μ(x)

1 − μ(0)
σi(1 − θ)φ′(x, t), (15)

q ′(x, t) = 1

β1 − iλω

(
β2 − kλq0(x)

ω

dq0(x)

dx

)
φ′(x, t), (16)

where

β1 = 1 + δσi

(1 + zq0(x))(1 + z + δσi)
, δ = 5 + 24α

5 + 8α
,

β2 = σi

z(1 + z + δσi)

(
zq0(x)

σi

15 − 16α

15 + 24α
(17)

− δσi − zq0(x)

1 + zq0(x)
− 15 − 8α

15 + 24α

)
.

According to this, we get the linear dispersion relation

k2 − B − nd0(x)

β1 − iλω

(
β2 − kλq0(x)

ω

dq0(x)

dx

)

− kq2
0 (x)

ω(ω + iηk2)

(
knd0(x) − i

dnd0(x)

dx

)
= 0, (18)

where

B = 1

1 − μ(0)

[
(β − 1) − μ(x)σi(1 − θ)

]
. (19)

If all the functions nd0(x), q0(x) and μ(x) are character-
ized by the exponential forms as

nd0(x) = nd0(0) exp(αdx),

q0(x) = q0(0) exp(αqx),

μ(x) = μ(0) exp(αμx),

(20)

we get a new dispersion relation in the form

k2(β1 − iλω)ω
(
ω + iηk2) − B(β1 − iλω)ω

(
ω + iηk2)

− β2nd0ω
(
ω + iηk2)eαdx

+ kλαqnd0q
2
0

(
ω + iηk2)e2αqxeαdx

− k2(β1 − iλω)nd0q
2
0e2αqxeαdx

+ ikαdnd0q
2
0 (β1 − iλω)e2αqxeαdx = 0, (21)

which can be written in another form as

i
(
Bλ − k2λ

)
ω3 + (−k2Bλη + k2λη − Bβ1 + k2β1

− nd0β2e
αdx

)
ω2 + (

k2iλnd0q
2
0e2αqx+αdx

+ kλnd0q
2
0αde2αqx+αdx + kλnd0q

2
0αqe2αqx+αdx

− k2iBηβ1 + k4iηβ1 − k2iηnd0β2e
αdx

)
ω

+ k3iληnd0q
2
0αqe2αqx+αdx − k2nd0q

2
0β1e

2αqx+αdx

+ kind0q
2
0αdβ1e

2αqx+αdx = 0, (22)

where i = √−1. Let us consider
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ω = ωr + iωi, (23)

where ωr and ωi refer to the real and imaginary parts.
Considering (22) in view of (23), we get

− k2Bληω2
r + k2ληω2

r − k2λnd0q
2
0ωie

2αqx+αdx

− 3Bλω2
r ωi + 3k2λω2

r ωi + k2Bληω2
i − k4ληω2

i

+ Bλω3
i − k2λω3

i + kλnd0q
2
0αdωre

2αqx+αdx

+ kλnd0q
2
0αqωre

2αqx+αdx − k2nd0q
2
0β1e

2αqx+αdx

− Bβ1ω
2
r + k2β1ω

2
r + k2Bηβ1ωi − k4ηβ1ωi

+ Bβ1ω
2
i − k2β1ω

2
i − nd0β2ω

2
r e

αdx

+ k2ηnd0β2ωie
αdx + nd0β2ω

2
i e

αdx = 0, (24)

k2λnd0q
2
0ωre

2αqx+αdx + Bλω3
r − k2λω3

r − 2Bk2ληωrωi

+ 2k4ληωrωi − 3Bλωrω
2
i + 3k2λωrω

2
i

+ kλnd0q
2
0αdωie

2αqx+αdx + k3ληnd0q
2
0αqe2αqx+αdx

+ kλnd0q
2
0αqωie

2αqx+αdx − k2Bηβ1ωr

+ k4ηβ1ωr − 2Bβ1ωrωi + 2k2β1ωrωi

+ knd0q
2
0αdβ1e

2αqx+αdx − k2ηnd0β2ωre
αdx

− 2nd0β2ωrωie
αdx = 0. (25)

By solving the last two equations for ωr � ωi , the fre-
quency ωr and the growth rate ωi are given by

ωr = 1

2

(
k2Bλη − k4λη + Bβ1 − k2β1 + nd0β2e

αdx
)−1

× [
kλnd0q

2
0αde2αqx+αdx + kλnd0q

2
0αqe2αqx+αdx

− (((
kλnd0q

2
0αde2αqx+αdx + kλnd0q

2
0αqe2αqx+αdx

)2

+ 4k2nd0q
2
0β1e

2αqx+αdx
(−k2Bλη + k4λη − Bβ1

+ k2β1 − nd0β2e
αdx

)))− 1
2
]
, (26)

ωi = 1

2

((
B − k2)(k2λη + β1

) + nd0β2e
αdx

)−3
A− 1

2 k

× {−n4
d0q

2
0β2

2e2x(2αq+αd)
(
k2λ2q2

0e2αqx(αd + αq)

+ (
k2λη(−αd + αq) + 2αdβ1

)
β2

) + k
(−B + k2)3

× ηβ1
(
k2λη + β1

)2
A

1
2 + n3

d0

[
k2e3x(αd+2αq)

× (−B + k2)λ4q6
0 (αd + αq)3 + k2e3xαd+4xαq

× (−B + k2)λ2q4
0 (αd + αq)

(
2k2ηλ − β1

)
β2

− kηβ3
2e3xαd A

1
2 + q2

0β2
2e3xαd+2xαq

((−B + k2)

× (−2k4η2λ2(αd − 2αq) + 3k2ηλ(αd + αq)β1

+ 6αdβ2
1

) + kλA
1
2
)] + (

B − k2)2
nd0

(
k2ηλ + β1

)

× [−kηexαd
(
k2ηλ + 3β1

)
β2A

1
2 + q2

0ex(αd+2αq)

× (−(
B − k2)(k2ηλ + β1

)(
k2ηλαq

(
2k2ηλ + β1

)

+ αdβ1
(
k2ηλ + 2β1

)) + k3ηλ2A
1
2
)]

− (−B + k2)n2
d0

[−kηe2αdx
(
2k2ηλ + 3β1

)
β2

2A
1
2

+ kλ2q4
0e2x(αd+2αq)(αd + αq)

(
k3(B − k2)ηλβ1

+ 2k
(
B − k2)β2

1 + λ
(
k5(−B + k2)η2λ

+ (αd + αq)A
1
2
)) + q2

0β2

× e2x(αd+αq)
((

B − k2)αd

(
k2ηλ + β1

)

× (
k4λ2η2 − 3β1

(
k2ηλ + 2β1

))

+ kλ
(
k
(−B + k2)ηαq

(
k2ηλ + β1

)(
5k2ηλ + 3β1

)

+ (
2k2ηλ + β1

)
A

1
2
))]}

, (27)

where

A = k2nd0q
2
0ex(2αq+αd)

(−4
(
B − k2)β1

(
k2λη + β1

)

+ nd0e
αdx

(
λ2q2

0e2αqx(αd + αq)2 − 4β1β2
))

. (28)

To make our theoretical results physically relevant, nu-
merical calculations have been made using plasma pa-
rameters close to those values corresponding to typical
dusty plasma, i.e., nd0(0) ∼ 105 cm−3, ni0(0) ∼ 109 cm−3,
ne0(0) ∼ 108 cm−3, Td ∼ 0.05 eV, Ti ∼ 0.1 eV, Te ∼ 2 eV,
a ∼ 1 µm, md ∼ 10−12 g ∼ 1012mi , respectively, as given
in Zhang and Xue (2008). Both the frequency ωr and the
growth rate ωi of the dust acoustic waves (DAW) in an un-
magnetized inhomogeneous viscous dusty plasma consist-
ing of extremely massive, micronsized, negatively charged
dust fluid with nonthermal ions and electrons have been
studied. The application of the linear normal mode analysis
to the basic set of system fluid equations leads to the linear
dispersion relation for low frequency waves in nonuniform
dusty plasmas. To investigate the effects of nonthermality
fraction of ions and electrons and dust kinematic viscosity
coefficient on the instability of the (DAW), we proposed
that all the inhomogeneity functions depend exponentially
on space x. It is noticed that, the dispersion relation is de-
pendent on dust kinematic viscosity coefficient, nonthermal-
ity of ions and electrons, inhomogeneity and non-adiabatic
dust charge variation. The effect of parameters like the dust
kinematic viscosity coefficient η, the fraction of nonther-
mality energetic population of electron-ion Γ , the tempera-
ture of ions σi , the non-adiabatic dust charge variation λ and
the carrier wave number k on the frequency ωr and growth
rate ωi of the (DAW) mode are shown in Figs. 1, 2 and 3.
The variation of ωr and ωi with the parameters η and Γ

are shown in Fig. 1. It is founded that the increase of the
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(a)

(b)

Fig. 1 The variation of ωr and ωi against η for different values of Γ

for σi = 0.2, λ = 50, k = 6, x = 0.2, z = 2, μ = 0.7, nd0 = 100000,
αd = −4, αq = −5, αμ = −6

kinematic viscosity coefficient η and the fraction of non-
thermality energetic population of electron-ion Γ decreases
the frequency ωr and the growth rate ωi . On the other hand,
the variation of ωr and ωi with the parameters σi and λ are
shown in Fig. 2. It is emphasized that both the frequency
ωr and the growth rate ωi decrease as σi increases, while
the increase of λ deceases the frequency ωr but increases
the growth rate ωi . Finally, the increase of the parameter k

decreases the frequency ωr but increases the growth rate ωi

as depicted in Fig. 3.
In order to proceed further, we extend our investigation

to include the characteristics of nonlinear waves (e.g. soliton
and shock waves) of the plasma system under consideration.

4 Nonlinear analysis

4.1 KdV-Burgers equation

To study the nonlinear characteristics of the shock wave
due to the viscosity, the reductive perturbation technique
(Washimi and Taniuti 1966) has been used. In this section,

(a)

(b)

Fig. 2 The variation of ωr and ωi against σi for different values of
λ for α = 0.6,  = 0.2, k = 6, η = 0.01, x = 0.2, z = 2, μ = 0.7,
nd0 = 100000, αd = −4, αq = −5, αμ = −6

we restrict our analysis to the case of homogeneous viscous
dusty plasmas where the functions μ(x) and q(x, t) in the
basic equations (1)–(5) are constants. According to the gen-
eral method of reductive perturbation theory, we introduce
the slow stretched coordinates

τ = ε
3
2 t, ξ = ε

1
2 (x − λ̃t), η = ε

1
2 η1, (29)

where ε is a small dimensionless expansion parameter mea-
suring the strength of nonlinearity and λ̃ is the wave speed.
Expanding the physical quantities appearing in the basic
equations and substituting into the basic equations, we fi-
nally obtain, after cumbersome of algebraic manipulations,
the KdV-B equation as

∂φ1

∂τ
+ A φ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
+ C

∂2φ1

∂ξ2
= 0, (30)

where

A = λ̃3

2q2

(
μi − μeσ

2
i

) + 3q

2λ̃
,
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(a)

(b)

Fig. 3 The variation of ωr and ωi against x for different values of
k for α = 0.1,  = 0.2, σi = 0.2, λ = 100, η = 0.6, z = 2, μ = 0.7,
nd0 = 100000, αd = −4, αq = −5, αμ = −6

B = λ̃3

2q2
, C = −1

2
η1, (31)

λ̃ =
√

−q2

μe(θ − 1)σi + μi(β − 1)
.

By using the co-moving coordinate system that is needed
as χ = ξ − u0τ where u0 is the velocity of the wave, and
integrating with respect to the variable χ , the reduced KdV-
B equation is

d2φ1

dχ2
− u0

B
φ1 + A

2B
φ2

1 + C

B

dφ1

dχ
= 0. (32)

Owing to the presence of the Burgers term C
B

dφ1
dχ

, (32) de-
scribes homogeneous and dissipative dusty plasmas. Partic-
ularly, if the Burgers coefficient C = 0, the system of equa-
tions becomes conservative (i.e., dE

dχ
= 0) and the total en-

ergy is

1

2

(
dφ1

dχ

)2

− u0

2B
φ2

1 + A

6B
φ3

1 = E, (33)

Fig. 4 The variation of φ1 against χ for different values of Γ for
σi = 0.2, u0 = 0.4, q = 1

where the potential function V (φ1) is given by

V (φ1) = − u0

2B
φ2

1 + A

6B
φ3

1 . (34)

The existence of stable solitonic solution should satisfy

the condition d2V

dφ2
1

< 0 at φ1 = 0. In connection with (34), it

is clear that this condition is satisfied and hence (32) has the
following compressive stable solitonic solution

φ1 = 3u0

A
sech2

(√
u0

4B
χ

)
. (35)

The behavior of the obtained solution is shown graphi-
cally in Fig. 4.

If C �= 0, the system of equations is dissipative and then
the total energy E is not conserved. In this case, the exact
solution of (32) can be constructed by means of different
mathematical methods (Dutta et al. 2012; El-Hanbaly 2003;
El-Hanbaly and Abdou 2006; El-Wakil et al. 2014; Mah-
mood and Ur-Rehman 2010). Among those, the tanh method
has been proved to be a powerful mathematical technique for
solving nonlinear partial differential equations (Malfliet and
Hereman 1996).

Following the procedure of the tanh method, we consider
the solution in the following form

φ1 =
N∑

n=0

an tanhn(χ), (36)

where the coefficients an and N should be determined. Bal-
ancing the nonlinear and dispersion terms in (32), we obtain
N = 2. Substituting (36) into (32) and equating to zero the
different coefficients of different powers of tanh(χ) func-
tions, one can write down the following solution of KdV-B
equation

φ1 = u0

A
+ 8B

A
+ C2

25AB
+ 12C

5A
tanh(χ)
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Fig. 5 The variation of φ1 against χ for different values of Γ for
σi = 0.2, η1 = 0.6, u0 = 0.4, q = 1

− 12B

A
tanh2(χ), (37)

or

φ1 = 7
1

A

(
u0 − 4B + C2

25B
+ 12C

5
tanh(χ)

+ 12B sech2(χ)

)
. (38)

It is obviously, this class of solution represents a partic-
ular combination of a solitary wave (sech2(χ) term on the
right hand side of (38)) with a Burgers shock wave (tanh(χ)

term). The behavior of this solution is shown graphically in
Fig. 5.

5 Conclusion

The characteristics of linear and nonlinear dust acoustic
waves in viscous dusty plasmas with nonthermal electrons
and ions have been investigated. In the linear analysis, it is
found that the combined influence of the dust kinematic vis-
cosity coefficient η, the fraction of nonthermality energetic
population of electron-ion Γ , the temperature of ions σi ,
the non-adiabatic dust charge variation λ and the carrier
wave number k can produce novel instabilities involving
the DAWs. The given plasma parameters would modify the
properties of linear dust acoustic in nonuniform plasma. So,
we are hoping that forthcoming space missions and Hub-
ble Space Telescope observations shall provide more ob-
servations that may lend support to our theoretical predic-
tions.

On the other hand, the nonlinear analysis for the homoge-
neous dissipation arising from fluid viscosity dusty plasma
is considered to investigate the propagation characteristics
of finite amplitude shock wave. By means of reductive per-
turbation method, the fluid model reduces to KdV-B equa-
tion which is not integrable Hamiltonian system. This means

that the energy of plasma system is not conserved due to
Burgers term. In the absence of Burgers term the equation
reduces to the integrable Hamiltonian KdV equation. By
solving the obtained KdV-B equation, we succeed to distin-
guish some interesting classes of analytical solutions due to
Burgers coefficient C. The compressive soliton solution ex-
ist when C = 0 (Fig. 4). If C �= 0, KdV-B equation is solved
by using tanh method and exhibits a solution which is a par-
ticular combination of a solitary wave with a Burgers shock
wave (Fig. 5). The real application of obtained results might
be particularly interesting in the context of space plasma,
particularly, the properties of linear and nonlinear DAWs
that may propagate in cometary tails and mesospheric dusty
plasma.

References

Allen, J.E.: Phys. Scr. 45, 497 (1992)
Anowar, M.G.M., Rahman, M.S., Mamun, A.A.: Phys. Plasmas 16,

053704 (2009)
Asaduzzaman, M., Mamun, A.A.: Phys. Plasmas 19, 093704 (2012)
Asbridge, J.R., Bame, S.J., Strong, I.B.: J. Geophys. Res. 73, 5777

(1968)
Cairns, R.A., Mamun, A.A., Bingham, R., Dendy, R., Boström, R.,

Nairns, C.M.C., Shukla, P.K.: Geophys. Res. Lett. 22, 2709
(1995)

Dutta, M., Ghosh, S., Chakrabarti, N.: Phys. Rev. E 86, 066408 (2012)
El-Hanbaly, A.: J. Phys. A 36, 8311–8323 (2003)
El-Hanbaly, A., Abdou, M.: J. Appl. Math. Comput. 182, 301–312

(2006)
El-Shewy, E.K.: Chaos Solitons Fractals 34, 628 (2007)
El-Shewy, E.K., Abdelwahed, H.G., Elmessary, M.A.: Phys. Plasmas

18(11), 113702 (2011b)
El-Shewy, E.K., Abo el Maaty, M.I., Abdelwahed, H.G., Elmessary,

M.A.: Commun. Theor. Phys. 55, 143–150 (2011a)
El-Shewy, E.K., Zahran, M.A., Schoepf, K., El-Wakil, S.A.: Phys. Scr.

78, 025501 (2008)
El-Taibany, W.F., Sabry, R.: Phys. Plasmas 12, 082302 (2005)
El-Wakil, S.A., Attia, M.T., Zahran, M.A., El-Shewy, E.K., Abdelwa-

hed, H.G.: Z. Naturforsch. 61, 316–322 (2006a)
El-Wakil, S.A., El-Hanbaly, A.M., El-Shewy, E.K., El-Kamash, I.S.:

J. Phys. Theor. Appl. 8, 130 (2014)
El-Wakil, S.A., Zahran, M.A., El-Shewy, E.K., Mowafy, A.E.: Phys.

Scr. 74, 503 (2006b)
Mahmood, S., Ur-Rehman, H.: Phys. Plasmas 17, 072305 (2010)
Malfliet, W., Hereman, W.: Phys. Scr. 54, 563–568 (1996)
Mamun, A.A.: J. Plasma Phys. 59(3), 575 (1998)
Mamun, A.A.: Phys. Rev. E 77, 026406 (2008)
Mamun, A.A., Eliasson, B., Shukla, P.K.: Phys. Lett. A 332, 22 (2004)
Mamun, A.A., Shukla, P.K.: Geophys. Res. Lett. 29, 1870 (2002)
Mowafy, A.E., El-Shewy, E.K., Moslem, W.M., Zahran, M.A.: Phys.

Plasmas 15(7), 073708 (2008)
Nakamura, Y., Bailung, H., Shukla, P.K.: Phys. Rev. Lett. 83, 1602–

1605 (1999)
Nakamura, Y., Sarma, A.: Phys. Plasmas 8(6), 3921–3926 (2001)
Popel, S.I., Gisko, A.A., Golub, A.P., Losseva, T.V., Bingham, R.,

Shukla, P.K.: Phys. Plasmas 7(6), 2410–2416 (2000)
Saha, A., Chatterjee, P.: Astrophys. Space Sci. 349, 813–820 (2014a)
Saha, A., Chatterjee, P.: Astrophys. Space Sci. 351, 533–537 (2014b)
Sahu, B., Roychoudhurya, R.J.: Phys. Plasmas 13, 072302 (2006)
Samaryan, A., Chemyshev, A., Petrov, O., et al.: J. Exp. Theor. Phys.

92, 454 (2001)



276 Astrophys Space Sci (2015) 356:269–276

Sayed, F., Mamun, A.A.: Phys. Plasmas 14, 014501 (2007)
Shukla, P.K., Mamun, A.A.: Introduction to Dusty Plasma Physics.

Inst. of Phys., Bristol (2002)
Singh, S.V., Lakhina, G.S.: Nonlinear Process. Geophys. 11, 275

(2004)
Singh, S.V., Rao, N.N.: J. Plasma Phys. 60(3), 541–550 (1998a)

Singh, S.V., Rao, N.N.: Phys. Plasmas 5, 94 (1998b)
Washimi, H., Taniuti, T.: Phys. Rev. Lett. 17, 996 (1966)
Xiao, D.L., Ma, J.X., Li, Y.F., et al.: Phys. Plasmas 13, 052308 (2006)
Zhang, L.P., Xue, J.K.: Chin. Phys. 14, 2052 (2005)
Zhang, L.P., Xue, J.K.: Chin. Phys. B 17(07), 2594 (2008)


	Effect of nonthermality fraction on dust acoustic growth rate in inhomogeneous viscous dusty plasmas
	Abstract
	Introduction
	Governing equations
	Linear analysis
	Nonlinear analysis
	KdV-Burgers equation

	Conclusion
	References


