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Abstract This paper analyzes the stability of a collapsing
matter distribution enclosed by plane symmetry in the pres-
ence of electromagnetic field. The field equations, match-
ing conditions as well as conservation laws are formulated
for non-static planar geometry. We apply perturbation to
obtain the dynamical equation for Newtonian and post-
Newtonian eras with expansion-free scenario. The role of
electric charge with anisotropic matter configuration is stud-
ied in the stability regions. We conclude that this system be-
comes more stable as compared to the uncharged case.

Keywords Anisotropy · Electromagnetic field · Instability

1 Introduction

In order to understand physical behavior of the early stages
of the universe, a particular attention is given to the rela-
tivistic cosmology. It is well-known that immediately af-
ter the big-bang, instinctive symmetry breaking has given
rise to certain cosmological structures. Among them plane
symmetric models are believed to play a vital role because
they are treated as viable seeds for galaxy formation of the
early universe. The physical properties of such models like
radius, mass and red-shift generally depend on the matter
profile being used. The plane symmetry is considered to
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be less restrictive than spherical symmetry and widely dis-
cussed in the literature (Anguige 2000; Nouri-Zonoz and Ta-
vanfar 2001; Yazadjiev 2003; Saha and Shikin 2005). Prad-
han et al. (2007) investigated a class of planar solutions and
concluded that such solutions will be non-static if they have
non-vanishing shear. Sharif and Yousaf (2012) explored sev-
eral non-static plane symmetric models with anisotropic
matter.

Zeldovich et al. (1993) pointed out the occurrence of
magnetic fields for a variety of astrophysical phenomena on
galactic scale. Since the electromagnetic field has a cosmo-
logical horizon, so it is essential to include it in the stress
energy tensor of the early universe (Harrison 1973). Pradhan
and Panday (2005) analyzed the behavior of magnetic field
for inhomogeneous plane symmetric cosmological model
with a variable cosmological parameter. Varela et al. (2010)
discussed charged anisotropic matter field of spherical star
with linear as well as non-linear equations of state. Sharif
and Azam (2012) investigated charge effects on the dynam-
ical instability of expansionfree spherical collapse. Conse-
quently, the study of charged fluid structure is of great sig-
nificance in relativistic astrophysics.

The instability issue of magnetized star has been inter-
esting as only stable models are physically viable. Chan-
drasekhar (1964) found a variational principle to examine
the stability of spherical solutions with isotropic source.
This issue has been addressed by many authors after the pi-
oneering work of Tayler (1973) who found that for purely
toroidal magnetic fields, stars would be unstable. In scalar-
tensor theory, Harada (1997) provided the stability analy-
sis for spherically symmetric star and concluded that sta-
bility depends on the choice of coupling function. Seifert
(2007) explored the stability of static spherical solutions
through perturbations in three alternative theories of gravity.
Yoshida et al. (2012) constructed magnetized stars which are
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assumed to be much stable as compared to existing relativis-
tic models.

There are many phases during the evolution of the uni-
verse in which anisotropic pressure may arise such as mix-
ture of two fluids, solid core, slow rotation, pion condensa-
tion and phase transition (Sawyer 1972; Letelier 1980; Her-
rera and Santos 1995, 1997). Many researchers investigated
solutions of the field equations characterizing the inner grav-
itational field as anisotropic source (Consenza et al. 1981;
Bayin 1982; Krori et al. 1984; Maharaj and Maartens 1989).
Govinder et al. (1998) examined the effects of anisotropy
in the dynamical behavior of a self-gravitating collapsing
star. It is found that if a star before the collapsing process
is isotropic in pressure then anisotropy may flourish at a
later stage due to the presence of viscosity (Chan 2000;
Pinheiro and Chan 2008). Sharma and Tikekar (2012) in-
vestigated the impact of anisotropy on various parameters
of the collapsing star.

It is well-consistent to form a vacuum cavity within
the matter distribution after the central explosion. Skrip-
kin (1960) presented the first model which satisfies the
expansion-free condition for non-dissipative isotropic mat-
ter. Since then it remains the area of interest of theoret-
ical and astrophysical problems. In order to investigate
physical models under expansion-free scenario, we require
system evolution with inhomogeneous energy density and
anisotropic pressure for spherical (Herrera et al. 2009) and
plane (Sharif and Yousaf 2012) symmetric configurations.
It is observed that expansion-free condition together with
junction conditions rule out the Skripkin model. We would
like to mention here that zero expansion is a sufficient but
not a necessary condition for the appearance of cavities. The
phenomenon of cavity formation under kinematical condi-
tion other than zero expansion has been discussed in spheri-
cal (Herrera et al. 2010) as well as plane symmetric models
(Sharif and Bhatti 2014c) with anisotropic matter distribu-
tion.

Recently, Herrera et al. (2012) provided the instability
ranges for spherical fluid configuration with vanishing ex-
pansion at both Newtonian (N) and post-Newtonian (pN)
eras. We have investigated the dynamical instability of cylin-
drical as well as spherical stars with axial symmetry with
and without expansion scalar (Sharif and Bhatti 2013a,
2013b, 2014a, 2014b). Sharif and Yousaf (2013a, 2013b,
2013c, 2013d, 2014) also studied N and pN regions for dif-
ferent symmetric backgrounds in f (R) theory of gravity.
Most recently, Sharif and Azam (2014) examined the role
played by anisotropic stresses during the expansion-free col-
lapse of plane symmetric spacetime.

We extend this study by including the effects of electro-
magnetic field and explore the stability of planar symmetry.
The layout of this paper is as follows. In the next section,
we write down the field equations with conservation laws

and junction conditions. Section 3 is devoted for the pertur-
bation technique to obtain the perturbed form of these equa-
tions. In Sect. 4, we develop our main dynamical equation
by taking zero expansion scalar which is then used to iden-
tify the N and pN regions. In the last section, we furnish our
final remarks.

2 Matter distribution and the field equations

The non-static plane symmetric spacetime for the interior
region is (Sharif and Bhatti 2012)

ds2− = B2(t, z)
(
dx2 + dy2)

+ C2(t, z)dz2 − A2(t, z)dt2. (1)

The matter distribution is considered to be anisotropic in
pressure (Herrera et al. 2012)

T −
αβ = (P⊥ + μ)VβVα + (Pz − P⊥)χαχβ + P⊥gαβ, (2)

here μ, P⊥, Pz, Vα and χα are the energy density, anisotropic
stresses, four-velocity and unit four-vector in z-direction,
respectively. The four-vectors in comoving coordinates are
taken such that

χα = C−1δα
3 , V α = A−1δα

0 ,

lα = A−1δα
0 + C−1δα

3 ,

satisfying V αVα = −1, χαVα = 0, χαχα = 1. The electro-
magnetic field is given as follows (Sharif and Bhatti 2012)

Sαβ = 1

4π

(
Fγ

α Fβγ − 1

4
FγδFγ δgαβ

)
,

where Fαβ = −φα,β +φβ,α is the strength field tensor while
φβ represents the four-potential. This electromagnetic field
must obey the Maxwell field equations given by

F
αβ

;β = μ0J
α, F[αβ;γ ] = 0, (3)

here Jα and μ0 = 4π indicate four-current and magnetic
permeability, respectively. In comoving coordinates, the
four-potential and four-current are φα = φδα

0 , Jα = ξV α ,
where φ, ξ are functions of t and z and represent the scalar
potential and charge density, respectively.

The non-zero components of the Maxwell field equations
can be obtained by using Eq. (3) as follows

∂2φ

∂z2
−

(
A′

A
+ C′

C
− 2B ′

B

)
∂φ

∂z
= ξμ0AC2, (4)

∂2φ

∂t∂z
−

(
Ȧ

A
+ Ċ

C
− 2Ḃ

B

)
∂φ

∂z
= 0. (5)
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Here prime and dot show z and t differentiations, respec-
tively. Integrating Eq. (4) with respect to z leads to

φ′ = μ0s(z)AC

B2
, where s(z) =

∫ z

0
ξCB2dz, (6)

which equivalently satisfies Eq. (5). Making use of this
in the Maxwell field tensor, it leads to the non-zero com-
ponents of Einstein–Maxwell field equations (i.e. Gαβ =
8π(Tαβ + Sαβ)) as follows

8πμA2 +
(

μ0sA

B2

)2

= Ḃ

B

(
2Ċ

C
+ Ḃ

B

)

−
(

A

C

)2[2B ′′

B
−

(
2C′

C
− B ′

B

)
B ′

B

]
, (7)

0 = −2

(
Ḃ ′
B

− A′Ḃ
AB

− B ′Ċ
BC

)
, (8)

8πP⊥B2 +
(

μ0s

B

)2

= −
(

B

A

)2[
B̈

B
+ C̈

C
− Ȧ

A

(
Ḃ

B
+ Ċ

C

)
+ ḂĊ

BC

]

+
(

B

C

)2[
A′′

A
+ B ′′

B
− A′

A

(
C′

C
− B ′

B

)
− B ′C′

BC

]
, (9)

8πPzC
2 −

(
μ0sC

B2

)2

= −
(

C

A

)2[2B̈

B
+

(
Ḃ

B

)2

− 2ȦḂ

AB

]

+
(

B ′

B

)2

+ 2A′B ′

AB
. (10)

Three kinematical quantities, i.e., expansion scalar, four-
acceleration and shear tensor, describing the irrotational
flow of the fluid distribution yield

Θ = 1

A

(
2
Ḃ

B
+ Ċ

C

)
, a3 = A′

A
,

a2 = aαaα =
(

A′

AC

)2

, (11)

σ 2 = 1

2
σαβσαβ = 1

9
F 2 with F = 1

A

(
− Ḃ

B
+ Ċ

C

)
.

The decomposition of the Weyl tensor (Cαμβν) leads to
its electric and magnetic components for which the magnetic
part vanishes while the electric part is Eαβ = CαμβνV

μV ν ,
whose non-vanishing components are E11 = 1

3B2ε = E22,

E33 = − 2
3C2ε, where

ε = − 1

2A2

[
Ḃ2

B2
− ȦĊ

AC
+ C̈

C
+ ȦḂ

AB
− B̈

B
− ḂĊ

BC

]

− 1

2C2

[
A′B ′

AB
− B ′2

B2
+ A′C′

AC
− B ′C′

BC
− A′′

A
+ B ′′

B

]
.

It can be written in an alternative way by using projec-
tion tensor (hαβ = VαVβ + gαβ ) and unit four-vector in
z-direction as

Eαβ = ε

(
χαχβ − 1

3
hαβ

)
.

The mass function under the effects of electromagnetic field
takes the form (Zannias 1990)

m(t, z) = B

2

(
s2μ2

0

B2
+ Ḃ2

A2
− B ′2

C2

)
. (12)

In order to join different geometries of spacetime across
the boundary, Darmois (1927) introduced matching condi-
tions based on two fundamental forms. Here we explore
these matching conditions for our planar geometry in the
interior with a suitable exterior spacetime outside the hyper-
surface (Σ(e)). The exterior spacetime is defined as follows
(Chao-Guang 1995)

ds2+ =
(

2M(ν)

Z
− Q2

Z2

)
dν2 − 2dZdν + Z2(dX2 + dY 2),

where ν, M(ν) and Q are the retarded time, total mass and
charge, respectively. The continuity of first and second fun-
damental forms over Σ(e) yield

M
Σ(e)= m(t, z) ⇔ s(z)

�(e)= Q,

Pz − s2

2B4

(
μ2

0 − 1
) Σ(e)= 0.

(13)

It shows that the masses for interior and exterior regions will
be equal if and only if they are filled with the same amount
of charge while the pressure in z-direction with the contribu-
tion of electromagnetic field vanishes over the boundary. If
we take boundary surface between the cavity and matter to
be Σ(i), then the matching of Minkowskian geometry within
the cavity to the matter distribution leads to

m
Σ(i)= 0, Pz

Σ(i)= 0.

The properties of expansion-free spherically symmetric self-
gravitating fluid have also been discussed by Herrera et al.
(2008). The conservation law, T

−αβ

;β = 0, has the following
independent components

μ̇ + (μ + Pz)
Ċ

C
+ 2(μ + P⊥)

Ḃ

B
= 0, (14)
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Pz
′ + (μ + Pz)

A′

A
+ 2(Pz − P⊥)

B ′

B

− 4π
(
BE′ + 2B ′E

)E

B
= 0, (15)

where E = μ0s

4πB2 . It is found that only one dynamical equa-
tion has the contribution of electromagnetism.

3 Perturbation technique

In this section, we perturb the metric coefficient as well
as matter variables upto first order in ε, where 0 < ε � 1
is known as the perturbation parameter. We consider static
state initially and then enters into the non-static phase with
same time dependence. The perturbed equations help us to
identify the N and pN eras during stability analysis through
collapse equation. The perturbation scheme is defined as fol-
lows (Herrera et al. 2012; Sharif and Bhatti 2013b, 2014b;
Sharif and Yousaf 2013a, 2013c; Chan et al. 1993, 1994)

Pz(t, z) = Pz0(z) + εP̄z(t, z), (16)

P⊥(t, z) = P⊥0(z) + εP̄⊥(t, z), (17)

μ(t, z) = μ0(z) + εμ̄(t, z), (18)

A(t, z) = A0(z) + εa(z)T (t), (19)

B(t, z) = B0(z) + εb(z)T (t), (20)

C(t, z) = C0(z) + εc(z)T (t), (21)

E(t, z) = E0(z) + εe(z)T (t), (22)

m(t, z) = m0(z) + εm̄(t, z), (23)

Θ(t, z) = εΘ̄(t, z). (24)

The static part of the field equations is found by using
Eqs. (7)–(10) and (16)–(22) with B0 = z as follows

8πA2
0

(
2πE2

0 + μ0
) = A2

0

zC2
0

(
2C′

0

C0
− 1

z

)
, (25)

8π
(
2πE2

0 − Pz0
) = 1

z

(
1

z
+ 2A′

0

A0

)
, (26)

8π
(
2πE2

0 + P⊥0
)

= 1

C2
0

(
A′′

0

A0
− A′

0

A0

(
C′

0

C0
− 1

z

)
− C′

0

zC0

)
. (27)

The corresponding non-static part after perturbation leads to

8π

[
2aT

A0

(
2πE2

0 + μ0
) + 4πT eE0 + μ̄

]

= T A2
0

C2
0

[
2

(
a

A0
− c

C0

){
1

z

(
2C′

0

C0
− 1

z

)}

+ 1

z

(
2C′

0

C0
− 1

z

)(
b′ − b

z

)
− 2

z

(
c

C0
− b

z

)′]
,

0 =
(

−c′ + bA′
0

zA0
+ c

zC0

)
Ṫ , (28)

8πC2
0

[
2T c

C0

(
Pz0 − 2πE2

0

) + P̄z − 4πE0eT

]

= 2

z
T

(
b′ − b

z

)
+ 2T

A′
0

A0z

(
a′

A′
0

+ b′ − a

A0
− b

z

)

− bC2
0

zA2
0

T̈ . (29)

The mass function (12) has the following static and non-
static parts

m0 = 8π2z3E2
0 − z

2C2
0

, (30)

m̄ = 8π2z2E0T (2ez + 3bE0)

−
{
z

(
b′ − 2c

C0

)
− b

}
T

2C2
0

. (31)

The conservation laws obtained in Eqs. (14) and (15)
have only one static part as follows

P ′
z0 + A′

0

A0
(μ0 + Pz0) + 2

z
(Pz0 − P⊥0)

− 4π
(
zE′

0 + 2E0
)E0

z
= 0, (32)

while the perturbed part turns out to be

˙̄μ + (μ0 + Pz0)
Ṫ c

C0
+ 2Ṫ b

z
(μ0 + P⊥0) = 0, (33)

P̄ ′
z + A′

0

A0
(μ̄ + P̄z) + T

A′
0

A0
(μ0 + Pz0)

(
a′

A′
0

− a

A0

)

+ 2

z
(P̄z − P̄⊥) + 2T

z

(
b′ − b

z

)
(Pz0 − P⊥0)

− 4πT
E0

z

[(
zE′

0 + 2E0
)( e

E0
− b

z

)

+ zE′
0

(
b

z
+ e′

E′
0

)
+ 2E0

(
b′ + e

E0

)]
= 0. (34)

Integrating Eq. (33) with respect to t , it follows that

μ̄ = −
[
(μ0 + Pz0)

c

C0
+ 2b

z
(μ0 + P⊥0)

]
T . (35)

Using the perturbation scheme on the matching condi-
tions (13), we find that the static as well as non-static parts
of the radial pressure become zero over the boundary as

Pz0
Σ(e)= 0, P̄z

Σ(e)= 0. (36)
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Moreover, Eq. (29) with (36) yields

T̈ − α(z)T
Σ(e)= 0, (37)

where

α(z) = zA2
0

bC2
0

[
16π2C0E0(cE0 + eC0) + 1

z2

(
b′ − b

z

)

+ A′
0

zA0

(
a′

A0
− a

A0
+ b′ − b

z

)]
. (38)

Equation (37) is solved to obtain stable as well as unstable
states of the collapsing planar geometry. Since our aim is to
investigate the instability regions, thus we carry our system-
atic analysis only with its unstable part

T (t)
Σ(e)= − exp

(√
α(z)t

)
, (39)

here α is chosen to be positive. This shows that the system
goes in the collapsing state with T (−∞) = 0 at t = −∞
keeping it in static state.

4 Dynamical instability and expansion-free condition

This section aims to investigate the dynamical equation for
zero expansion which is used to build the instability ranges
for N and pN regions. We consider a state in N regime such
that the static part of energy density is much greater than the
static parts of the principal stresses, i.e., μ0 � Pz0, μ0 �
P⊥0 while in pN limit, we consider the metric coefficients
such that

A0 = 1 − m0

z
+ Q2

2z2
, C0 = 1 + m0

z
− Q2

2z2
,

where we have chosen c = G = 1 in relativistic units, where
c is the speed of light and c �= c(z). Using the value of C2

0
from Eq. (30) in (25) and (26), it follows that

C′
0

C0
= 4πz3μ0 − m0 + 16π2E2

0z3

2z(8π2z3E2
0 − m0)

,

A′
0

A0
= 8πz3Pz0 + 2m0 − 32π2E2

0z3

2z(16π2z3E2
0 − 2m0)

.

(40)

Using
A′

0
A0

from Eq. (40) in (32), the dynamical equation in
relativistic units turns out to be

P ′
z0 = −

[
8πz3Pz0 + 2m0 − 32π2E2

0z3

2z(16π2z3E2
0 − 2m0)

]
(μ0 + Pz0)

+ 2

z
(P⊥0 − Pz0) + 4πE0

z

(
zE′

0 + 2E0
)
, (41)

and transforming the above equation in cgs units, we have

P ′
z0 = −

[
8πc−2z3Pz0 + 2m0 − 32c−2π2E2

0z3

2z(16Gc−4π2z3E2
0 − 2Gc−2m0)

]

× (
μ0 + c−2Pz0

) + 2

z
(P⊥0 − Pz0)

+ 4πE0

z

(
zE′

0 + 2E0
)
. (42)

This equation can be expanded upto order c−4 to get the
terms associated with c0, c−2 and c−4 which correspond
to N, pN and parameterized post-Newtonian (ppN) regions,
respectively, as follows

P ′
z0 = 2

z
(P⊥0 − Pz0) + 4πE0

z

(
zE′

0 + 2E0
)

− G

c2z3

(
2Gμ0m

2
0 + Pz0m0z

+ 4πμ0Pz0z
4 − 16π2E2

0μ0z
4)

− G

c4z4

(
4G2μ0m

2
0 + 2GPz0m

2
0z + 4πμ0Pz0z

4

− 32π2GE2
0m0μ0z

4 − 16π2E2
0Pz0z

5). (43)

The expansion scalar can be perturbed to obtain its static and
non-static parts using Eqs. (11) and (24) as

Θ̄ =
(

c

C0
+ 2b

z

)
Ṫ

A0
.

It is interesting to mention here that matter with vanishing
expansion continues to change with the evolution of time
without being compressed resulting a naked singularity by
slowing down the apparent horizon formation. Thus, we spe-
cialize our study to the zero expansion (Θ̄ = 0) so that

c

C0
= −2b

z
. (44)

Inserting the above equation in Eq. (28) and then its integra-
tion leads to

b = h1
A0

z2
, (45)

where h1 is the integration constant.
The perturbed energy density and pressure in the z-

direction (μ̄ and P̄z) can be related through stiffness param-
eter Γ (which is chosen as constant in our stability analysis)
through Harrison–Wheeler equation of state (Harrison et al.
1965)

P̄z = Γ
Pz0

μ0 + Pz0
μ̄. (46)
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The non-static part of the energy density can be found from
Eqs. (35) and (44) as

μ̄ = (Pz0 − P⊥0)T
2b

z
, (47)

describing the relation of perturbed energy density with the
static anisotropic pressure. Substituting the above equation
in Eq. (46), it leads to

P̄z = Γ
2bPz0(Pz0 − P⊥0)

z(μ0 + Pz0)
T . (48)

It is noted from the above equation that P̄z belongs to ppN
regime, thus we neglect these terms in our following analy-
sis. From the static part of the second conservation law, we
have

A′
0

A0
= − 1

μ0 + Pz0

[
P ′

z0 + 2(Pz0 − P⊥0)

z

+ 4πE0

z

(
zE′

0 + 2E0
)]

. (49)

The main dynamical equation can be obtained from
Eqs. (25), (34) and (39) to examine the instability regions
under N and pN limits as

κ(μ0 + Pz0)z

(
a

A0

)′
+ 2z2α

A2
0B

2
0

(
b

z
+ c

C0

)

− 4z2

B2
0C2

0

[
A′′

0

A0
− C′

0

zC0
− A′

0

A0

(
C′

0

C0
− 1

z

)]

− 2z2

B2
0C2

0

[
A′′

0

A0

(
a′′

A′′
0

− a

A0

)
− z

C0

(
C0

z

)′(
a

A0

)′

+ 2

z

(
c

C0

)′
− A′

0

A0

(
c

C0
− b

z

)′
+ C′

0

C0

(
b

z

)′]

+ κ2eE0 + 4κb
(
P⊥0 + 2πE2

0

) + 2κz(Pz0 − P⊥0)

(
b

z

)′

− 4πκE0

[(
zE′

0 + 2E0
)( e

E0
− b

z

)
+ bE′

0

+ ze′ + 2e + 2b′
]

= 0. (50)

The expressions for
A′′

0
A0B

2
0

and ( a
A0

)′ from Eqs. (27) and (29)

turn out to be

A′′
0

A0C
2
0

= 8π
(
P⊥0 + 2πE2

0

)

+ A′
0

A0C
2
0

(
C′

0

C0
− 1

z

)
+ C′

0

zC3
0

, (51)

and
(

a

A0

)′
= z

2

[
8πC2

0

{
2c

C0

(
Pz0 − 2πE2

0

) − 4πeE0

}

+ 2αbC2
0

zA0
−

(
2A′

0

A0
+ 2

z

)(
b

z

)′]
. (52)

Substituting Eqs. (45), (51) and (52) in (50) and discarding

the ppN terms (P̄z and μ̄
A′

0
A0

), it follows that

κz2

2
(μ0 + Pz0)

[
κC2

0

{
2c

C0

(
Pz0 − 2πE2

0

) − 4πeE0

}

+ 2αcC2
0

z3
− 2

(
cA0

z3

)′{A′
0

A0
− 1

z

}]

+ 2α

A2
0

(
cA0

z3
+ c

C0

)
− 32π

(
P⊥0 + 2πE2

0

) − 4
A′

0

A0C
2
0

+ 4

C2
0

{
C′

0

zC0
− A′

0

A0

(
C′

0

C0
− 1

z

)}
− 2

(
a′′

A′′
0

− a

A0

)

×
[

A′
0

A0C
2
0

(
C′

0

C0
− 1

z

)
+ C′

0

zC3
0

+ 8π
(
P⊥0 + 2πE2

0

)]

+ z2

C3
0

(
C0

z

)′[
κC2

0

{
2c

C0

(
Pz0 − 2πE2

0

) − 4πeE0

}

+ 2αcC2
0

z3
− 2

(
cA0

z3

)′{A′
0

A0
− 1

z

}]

− 2

C2
0

[(
c

C0

)′(2

z
− A′

0

A0

)
+

(
cA0

z3

)′(A′
0

A0
+ C′

0

C0

)]

+ κ2eE0 + 4κcA0

z2

(
P⊥0 + 2πE2

0

)

+ 2κz(Pz0 − P⊥0)

(
cA0

z3

)′

− 4πκ

{
cA0E

′
0

z
+ ze′ + 2e

+ 2

(
cA0

z2

)′(
zE′

0 + 2E0
)( e

E0
− cA0

z3

)}
= 0. (53)

It is found that the terms in Eq. (53) generally constitute
one static part of planar geometry and matter profile for the
applicability of stability of collapsing fluid. Substituting the
values of metric coefficient, a = a0 + a1z, where a0, a1 are
arbitrary positive constants, neglecting the ppN order terms
and expanding upto pN order, we obtain

κz2μ0

2

[
κ

(
1 + 2m0

z
− Q2

z2

)

×
{

2c

(
1 − m0

z
+ Q2

2z2

)(
Pz0 − 2πE2

0

) − 4πeE0

}
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+ 2αc

z3

(
1 + 2m0

z
− Q2

z2

)
− 2

{
c

z3

(
1 − m0

z
+ Q2

2z2

)}′

×
{

8πz3Pz0 + 2m0

2z(16π2z3E2
0 − 2m0)

− 32π2E2
0z3

2z(16π2z3E2
0 − 2m0)

− 1

z

}]

+ 2α

(
1 + 2m0

z
− Q2

z2

)(
c

z3

(
1 − m0

z
+ Q2

2z2

)

+ c

(
1 − m0

z
+ Q2

2z2

))
− 32π

(
P⊥0 + 2πE2

0

)

− 4

(
1 − 2m0

z
+ Q2

z2

)(
8πz3Pz0 + 2m0 − 32π2E2

0z3

2z(16π2z3E2
0 − 2m0)

)

+ 4

(
1 − 2m0

z
+ Q2

z2

){
4πz3μ0 − m0

2z2(8π2z3E2
0 − m0)

+ 16π2E2
0z3

2z2(8π2z3E2
0 − m0)

− 8πz3Pz0 + 2m0 − 32π2E2
0z3

2z(16π2z3E2
0 − 2m0)

×
((

4πz3μ0 − m0

2z(8π2z3E2
0 − m0)

+ 16π2E2
0z3

2z(8π2z3E2
0 − m0)

)

− 1

z

)}
− 2

(
a′′

(
1 + m0

z
− Q2

2z2

)′′

− a

(
1 + m0

z
− Q2

2z2

))

×
[(

8πz3Pz0 + 2m0 − 32π2E2
0z3

2z(16π2z3E2
0 − 2m0)

)(
1 − 2m0

z
+ Q2

z2

)

×
((

4πz3μ0 − m0 + 16π2E2
0z3

2z(8π2z3E2
0 − m0)

)
− 1

z

)

+
(

4πz3μ0 − m0 + 16π2E2
0z3

2z2(8π2z3E2
0 − m0)

)(
1 − 2m0

z
+ Q2

z2

)

+ 8π
(
P⊥0 + 2πE2

0

)] + z2
(

1 − 3m0

z
+ 3Q2

2z2

)

×
(

1

z
+ m0

z2
− Q2

2z3

)′[
κ

(
1 + 2m0

z
− Q2

z2

)

×
{

2c

(
1 + m0

z
− Q2

2z2

)(
Pz0 − 2πE2

0

) − 4πeE0

}

+ 2αc

z3

(
1 + 2m0

z
− Q2

z2

)
− 2

(
c

z3

(
1 − m0

z
+ Q2

2z2

))′

×
{

8πz3Pz0 + 2m0 − 32π2E2
0z3

2z(16π2z3E2
0 − 2m0)

− 1

z

}]

−
(

2 − 4m0

z
+ 2Q2

z2

)[(
c

(
1 − m0

z
+ Q2

2z2

))′

×
(

2

z
− 8πz3Pz0 + 2m0 − 32π2E2

0z3

2z(16π2z3E2
0 − 2m0)

− −32π2E2
0z3

2z(16π2z3E2
0 − 2m0)

)
+

(
c

z3
− cm0

z4
+ cQ2

2z5

)′

×
(

8πz3Pz0 + 2m0 − 32π2E2
0z3

2z(16π2z3E2
0 − 2m0)

+ 4πz3μ0 − m0 + 16π2E2
0z3

2z(8π2z3E2
0 − m0)

)]
+ κ2eE0

+ 4κc

z2

(
P⊥0 + 2πE2

0

)(
1 − m0

z
+ Q2

2z2

)

+ ze′ + 2e + 2κz(Pz0 − P⊥0)

(
c

z3

(
1 − m0

z
+ Q2

2z2

))′

− 4πκ

{
cE′

0

z

(
1 − m0

z
+ Q2

2z2

)

+ 2

(
c

z2

(
1 − m0

z
+ Q2

2z2

))′(
zE′

0 + 2E0
)

×
(

e

E0
− c

z3

(
1 − m0

z
+ Q2

2z2

))}
= 0. (54)

To obtain the instability conditions at N regime, we
choose μ0 � Pz0, μ0 � P⊥0 and neglect the ppN order
terms as

κzμ0

(
c

z3

)′
− 2πμ0κ

2ez2E0 + 2αc2

z3

(
1 + 2m0

z

)

− 32π
(
P⊥0 + 2πE2

0

) + 16π(a0 + a1z)
(
P⊥0 + 2πE2

0

)

− 2cκ
(
Pz0 + 2πE2

0

) + 4κc

z2

(
P⊥0 + 2πE2

0

) + 4πκeE0

− 2cακ

z2
+ κ2eE0 + ze′ + 2e + 2zκ(Pz0 − P⊥0)

(
c

z3

)′

− 4πκ

(
cE′

0

z

)
= 0. (55)

We know that pressure along z-direction decreases with the
evolution of expansion-free collapse, i.e., P ′

z0 < 0. Thus, the
above equation leads to

κzμ0

(
c

z3

)′
− 2πμ0κ

2ez2E0 − 32π
(
P⊥0 + 2πE2

0

)

+ 16π(a0 + a1z)
(
P⊥0 + 2πE2

0

) − 2cκ
(
Pz0 + 2πE2

0

)

+ 4κc

z2

(
P⊥0 + 2πE2

0

) + 4πκeE0 − 2cακ

z2
+ κ2eE0

+ ze′ + 2e + 2zκ(Pz0 − P⊥0)

(
c

z3

)′
− 4πκ

(
cE′

0

z

)



396 Astrophys Space Sci (2015) 355:389–397

+ 2αc2

z3

[
1 + 2

z

{
4π

∫ z

z
Σ(i)

μ0z
2dz

+ 8π

∫ z

z
Σ(i)

(
3z2E0dz + 2E0E

′
0

)
dz

}]
= 0. (56)

The instability analysis at N limit requires all the terms in
the above equation to be positive independently. Since the
quantities a0, a1 are positive constants, so the instability is
based on the positivity of the remaining terms, hence we can
have Pz0 > P⊥0 and E0 > 0. For the positivity of the last
terms, we require power law solution for charge distribution
and energy density, i.e., E0 = ηzm and μ0 = ξzw , where
η, ξ > 0 are constants and n,w lies in the interval (−∞,∞).
Consequently, the last term turns out to be

2αc2

z3

[
1 + 2

z

{
4π ×

∫ z

z
Σ(i)

μ0z
2dz

+ 8π

∫ z

z
Σ(i)

(
3z2E0dz + 2E0E

′
0

)
dz

}]

= 2αc2

z3

[
1 + 8ξπzm+2

3
+ 8π2z3E2

0

+ 4πξmz

3(m + 3)

(
zw+3 − zw+3

Σ(i)

)

+ 16π2η2mz

2m + 3

(
z2m+3 − z2m+3

Σ(i)

)]
. (57)

The above equation reduces for the positivity of each term
as follows

zw+3 > zw+3
Σ(i) , z2m+3 > z2m+3

Σ(i) . (58)

The above two inequalities yield the instability regions for
plane symmetric collapsing matter in the expansion-free
scenario. It is interesting to mention here that it depends on
the specific length of the planar geometry.

5 Concluding remarks

In this paper, we have discussed the issue of instability con-
straints of planar collapse in the presence of electromagnetic
field. For this purpose, we have considered charged plane
symmetric spacetime with pressure anisotropic source and
explored its evolution by means of expansion-free scenario.
The field equations, dynamical equations as well as junction
conditions are formulated using perturbation scheme. The
static and non-static forms of the set of governing equations
are found and written separately. The terms of O(c), O(c2)

and O(c4) are separated after expansion of static configura-
tion of the second dynamical equation. This equation is then
used to explore the stability conditions of the charged planar
expansion-free fluid upto pN regime.

We have also examined the role of adiabatic index in
the stability analysis of the system. Since the expansion-free
constraint makes fluid incompressible in the collapse, so the
adiabatic index is not involved in the instability conditions.
These conditions at both N and pN regimes depend on static
form of energy density, electric charge and anisotropic pres-
sure. We have seen that the system would be unstable as long
as it obeys (58) at N and pN approximations. We also note
that matter instability relies on the values of n, w and length
of the plane symmetric surface. It is found that the instabil-
ity of anisotropic plane diminishes in the presence of charge
and the system becomes more stable as the evolution pro-
ceeds. This result is well-consistent with Sharif and Yousaf
(2013d). Finally, one concludes that our results reduce to
charge-free case with s = 0 (Sharif and Azam 2014).
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