
Astrophys Space Sci (2015) 355:353–359
DOI 10.1007/s10509-014-2170-x

O R I G I NA L A RT I C L E

Exact solutions in (2 + 1)-dimensional anti-de Sitter space-time
admitting a linear or non-linear equation of state

Ayan Banerjee · Farook Rahaman · Kanti Jotania ·
Ranjan Sharma · Mosiur Rahaman

Received: 12 August 2014 / Accepted: 17 October 2014 / Published online: 2 December 2014
© Springer Science+Business Media Dordrecht 2014

Abstract Gravitational analyzes in lower dimensions has
become a field of active research interest ever since Baña-
dos, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69:1849,
1992) proved the existence of a black hole solution in (2+1)

dimensions. The BTZ metric has inspired many investi-
gators to develop and analyze circularly symmetric stellar
models which can be matched to the exterior BTZ metric.
We have obtained two new classes of solutions for a (2+1)-
dimensional anisotropic star in anti-de Sitter background
space-time which have been obtained by assuming that the
equation of state (EOS) describing the material composi-
tion of the star could either be linear or non-linear in nature.
By matching the interior solution to the BTZ exterior met-
ric with zero spin, we have demonstrated that the solutions
provided here are regular and well-behaved at the stellar in-
terior.
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1 Introduction

Lower dimensional gravity, due to its comparatively simpler
setting, plays a crucial role towards our understanding of
many conceptual issues relating to Einstein’s gravity. Grav-
itational analyzes in three dimensions got a tremendous im-
petus when Bañados et al. (1992) (henceforth BTZ) pro-
posed a model for a circularly symmetric charged body in
an anti-de Sitter back ground space-time which was found
to admit a black hole solution in the presence of a negative
cosmological constant. The BTZ metric is characterized by
its mass, angular momentum and charge.

The existence of a black hole in (2 + 1) dimensions has
inspired many investigators to construct and study circu-
larly symmetric star models. Different techniques have so
far been adopted to generate static interiors solutions cor-
responding to the BTZ exterior metric. For example, Cruz
and Zanelli (1995) have obtained an exact solution for an
incompressible fluid in (2 + 1) dimensions. For a given den-
sity profile, Cruz et al. (2005) have obtained new class of
solutions corresponding to exterior BTZ metric. Cataldo and
Salgado (1996) have analyzed an Einstein-Maxwell system
in (2 + 1) dimensions. For a polytropic equation of state
(EOS), Sá (1999) has proposed a formalism to obtain in-
terior solutions corresponding to the BTZ exterior metric.
Sharma et al. (2011) have assumed a particular mass func-
tion to obtain new class of solutions in (2 + 1) dimensions.
García and Campuzano (2003) have proposed a formalism
to obtain circularly symmetric solutions from known density
profile or EOS of the fluid source. Making use of Finch and
Skea (1989) ansatz in (2 + 1) dimensions, Banerjee et al.
(2013) have generated new class of physically acceptable
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interior solutions corresponding to the BTZ exterior. Ra-
haman et al. (2013) have studied the properties of BTZ black
hole by proposing new exact solutions of Einstein’s field
equations in (2 + 1) dimensional anti-de Sitter back ground
space-time in the context of non-commutative geometry.

Motivated by such developments, we propose here two
new classes of exact solutions describing the interior of a
circularly symmetric star with zero angular momentum in
an anti-de Sitter back ground space-time. In our construc-
tion, we assume that the material composition of the star is
anisotropic in nature and generate solutions for linear as well
as non-linear EOS. We analyze physical behaviour of the
model by matching the interior solution to the BTZ exterior
metric with zero spin and show that the solutions generated
here are regular and well-behaved at the stellar interior.

2 Interior space-time

We write the line element for a static circularly symmetric
star with zero angular momentum in the form

ds2 = −e2ν(r)dt2 + e2μ(r)dr2 + r2dθ2, (1)

where ν(r) and μ(r) are yet to be determined. The Einstein’s
field equations for an anisotropic fluid in the presence of a
negative cosmological constant (Λ < 0) are then obtained
as (we set G = c = 1)

2πρ + Λ = μ′e−2μ(r)

r
, (2)

2πpr − Λ = ν′e−2μ(r)

r
, (3)

2πpt − Λ = e−2μ
(
ν′′ + ν′2 − ν′μ′), (4)

where, ρ is the energy density, pr is the radial pressure and
pt is the tangential pressure. Equations (2)–(4) may be com-
bined to yield

(ρ + pr) + p′
r + 1

r
(pr − pt) = 0, (5)

which is analogous to the generalized Tolman-Oppenhei-
mer-Volkoff (TOV) equation in (3 + 1) dimensions. Defin-
ing the mass within a radius r as

m(r) =
∫ r

0
2πρ r̃ dr̃, (6)

Eq. (2) yields

2m(r) = C − e2μ(r) − Λr2, (7)

where C is integrating constant. Following an earlier treat-
ment (Sharma et al. 2011), we set C = 1 and assume

2μ(r) = Ar2 so as to ensure regular behaviour of the mass
function m(r) at the centre. The energy density is then ob-
tained as

ρ = 1

2π

[
Ae−Ar2 − Λ

]
. (8)

The constant A can be determined from the central density

ρc = ρ(r = 0) = 1

2π
[A − Λ]. (9)

To determine the unknown metric potential ν(r), we pre-
scribe an EOS corresponding to the material composition of
the star in the form

pr = pr(ρ,α1, α2), (10)

where α1 and α2 are two positive arbitrary constants con-
straining the EOS. The physical radius R of the star can be
obtained by ensuring that

pr

(
ρ(R),α1, α2

) = 0. (11)

The EOS (10) can be either linear or non-linear in nature and
accordingly we consider the two possibilities separately.

2.1 Case I: Solution admitting a linear EOS

Let us first assume a linear EOS of the form

pr = α1ρ + α2. (12)

For the choice (12), the system (2)–(4) can be solved analyt-
ically and we get

ν(r) = α1A

2
r2 −

(
α1Λ + Λ − 2πα2

2A

)
eAr2 + C1, (13)

pr = α1

2π

[
Ae−Ar2 − Λ

] + α2, (14)

pt = 1

2π

[
r2e−Ar2

(
α1A − (α1Λ + Λ − 2πα2)

2e2Ar2

+ α1A

r2
− α1A

2
)

− (α1Λ + Λ − 2πα2)
(
1 + Ar2) + Λ

]
, (15)

where C1 is integrating constant. We also have

� = pt − pr

= 1

2π

[
r2e−Ar2((

α1A − (α1Λ + Λ − 2πα2)e
Ar2)2

− α1A
2) − (α1Λ + Λ − 2πα2)Ar2], (16)

which is the measure of anisotropy. Note that the anisotropy
vanishes at the centre which is a desirable feature of a real-
istic star.
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2.2 Case II: Solution admitting a non-linear EOS

Assuming a non-linear EOS of the form

pr = γ1ρ + γ2

ρ
, (17)

where γ1 and γ2 are positive arbitrary constants, we solve
the system (2)–(4) and obtain

ν(r) = γ1A

2
r2 −

(
(γ1 + 1)Λ

2A

)
eAr2

− 2π2γ2

AΛ

(
eAr2 + A

Λ
ln

(
A − ΛeAr2)

)
+ C2, (18)

pr = γ1

2π

(
Ae−Ar2 − Λ

) + 2πγ2

(Ae−Ar2 − Λ)
, (19)

pt(r) = 1

2π

[(
(γ1 − 1)Ar2 + 1

)
γ1Ae−Ar2

− Λ(γ1 + 1)
(
1 + 2Ar2)

+ A(1 − 2γ1)

(
Λγ1 + Λ − 4π2γ2

Ae−Ar2 − Λ

)
r2

+
(

Λγ1 + Λ − 4π2γ2

Ae−Ar2 − Λ

)2

r2eAr2

+ 4π2γ2

(
1 + 2Ar2

Ae−Ar2 − Λ
+ 2A2r2e−Ar2

(Ae−Ar2 − Λ)2

)
r2

+ Λ

]
. (20)

In Eq. (18), C2 is an integration constant.
The measure of anisotropy in this case turns out to be

� = pt − pr

= 1

2π

[
(γ1 − 1)γ1A

2r2e−Ar2 − 2Λ(γ1 + 1)Ar2

+ A(1 − 2γ1)

(
Λγ1 + Λ − 4π2γ2

Ae−Ar2 − Λ

)
r2

+
(

Λγ1 + Λ − 4π2γ2

Ae−Ar2 − Λ

)2

r2eAr2

+ 4π2γ2

(
2Ar2

Ae−Ar2 − Λ
+ 2A2r2e−Ar2

(Ae−Ar2 − Λ)2

)]
, (21)

which vanishes at the centre.

3 Exterior space-time and boundary conditions

We assume that the exterior space-time of our circularly
symmetric star is described by the BTZ metric (with zero

angular momentum)

ds2 = −(−M0 − Λr2)dt2 + (−M0 − Λr2)−1
dr2 + r2dθ2,

(22)

where M0 is the conserved charge associated with asymp-
totic invariance under time displacements. At the boundary
r = R, continuity of the metric potentials yield the following
junction conditions:

e2ν(R) = −M0 − ΛR2, (23)

e−2μ(R) = −M0 − ΛR2. (24)

Moreover, the radial pressure must vanish at the boundary,
i.e., pr(r = R) = 0. These three conditions can be utilized to
fix the values of the constants A, C and R for two different
cases, namely solution admitting a linear EOS (Case I) and
solution admitting a non-linear EOS (Case II).

3.1 Case I

A = − 1

R2
ln

(−M0 − ΛR2), (25)

C1 = α1Λ + Λ − 2πα2

2A(−M0 − ΛR2)
−

(
1 + α1

2

)
AR2, (26)

R = 1√
A

[
ln

(
Aα1

α1Λ − 2πα2

)] 1
2

. (27)

3.2 Case II

A = − 1

R2
ln

(−M0 − ΛR2), (28)

C2 = Λ(γ1 + 1)

4A(−M0 − ΛR2)
− ΛR2(γ1 + 1)

2

+ 2π2γ2

AΛ

[
1

(−M0 − ΛR2)

+ A

Λ
ln

(
A − Λ

(−M0 − ΛR2)

)]
, (29)

R = 1√
A

[
ln

(
A

√
γ1

Λ
√

γ1 + √−4π2γ2

)] 1
2

. (30)

4 Physical acceptability and regularity of the model

For a physically acceptable model, we impose the following
restrictions:
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Fig. 1 Energy density plotted against the radial parameter r

• Regularity of the curvature invariants.
• Energy-density and pressure should be monotonically de-

creasing functions of r .
• Radial sound speed and transverse sound speed should be

less than unity i.e.,

0 < v2
sr

(
= dpr

dρ

)
< 1, 0 < v2

st

(
= dpt

dρ

)
< 1.

4.1 Case I

From Eqs. (5) and (6), we obtain

dρ

dr
= −A2

π
re−Ar2

, (31)

dpr

dr
= −A2α1

π
re−Ar2

, (32)

d2ρ

dr2

∣∣∣∣
r=0

= −A2

π
< 0, (33)

d2pr

dr2

∣∣
∣∣
r=0

= −A2α1

π
< 0. (34)

Eqs. (31)–(34) show that, for α1 > 0, both energy-density
and radial pressure decrease from their maximum values at
the centre. Variations of energy-density and the two pres-
sures have been shown in Figs. 1 and 2, respectively. The
Ricci scalar assumed the following form

R = 2e−Ar2[
(1 − 2α1)A + (1 − α1)α1A

2r2

− (α1Λ + Λ − 2πα2)
2r2e2Ar2

+ (α1Λ + Λ − 2πα2)
(
2 + (1 + 2α1)Ar2)eAr2]

. (35)

Fig. 2 Radial and transverse pressures are plotted against the radial
parameter r for linear EOS

One can note that R is regular at the origin and well behaved
in the stellar interior.

4.2 Case II

Here,

dρ

dr
= −A2

π
re−Ar2

, (36)

dpr

dr
= −A2γ1

π
re−Ar2 + 4πA2γ2

(Ae−Ar2 − Λ)2
re−Ar2

, (37)

d2ρ

dr2

∣
∣∣∣
r=0

= −A2

π
< 0, (38)

d2pr

dr2

∣∣∣∣
r=0

= −A2γ1

π
+ 4πA2γ2

(A − Λ)2
< 0. (39)

Though it is not straight forward, we note that Eq. (39) holds
for appropriate choices of the values of γ1 and γ2. Equa-
tions (36)–(39) show that both energy-density and radial
pressure decrease from their maximum values at the cen-
tre. Behaviour of two pressures have been shown in Fig. 3
and the Ricci scalar is given by

R = 2e−Ar2
[
(1 − 2γ1)A + γ1A

2r2

+
(

(γ1 + 1)Λ + 4π2γ2

Λ

)(
1 + Ar2)eAr2

− 4π2γ2A

Λ(A − ΛeAr2
)
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Fig. 3 Radial and transverse pressures are plotted against the radial
parameter r for non linear EOS

×
(

1 − Ar2 + A(1 + 2Ar2) − ΛeAr2

(A − Λe−Ar2
)

)
eAr2

−
(

γ1Ar −
(

(γ1 + 1)Λ + 4π2γ2

Λ

)
reAr2

+ 4π2γ2A

Λ(A − ΛeAr2
)
reAr2

)2]
(40)

which is also regular at the stellar interior. Another impor-
tant ‘physical acceptability condition’ is the causal property
of the radial and tangential sound speeds which have been
addressed in the following sub-sections.

4.3 Case I

Combining Eqs. (31)–(34), we obtain

v2
sr = dpr

dρ
= α1, (41)

v2
st = dpt

dρ
= 1 − (

α2
1 − α1

)(
1 − Ar2)

+ (2α1 + 1)

(
α1Λ + Λ − 2πα2

A

)
eAr2

−
(

α1Λ + Λ − 2πα2

A

)2(
1 + Ar2). (42)

In Fig. 4, we have shown the nature of two sound speeds
for specific choices of the model parameters which clearly
shows regular behaviour of both the radial and transverse
sound speeds.

Fig. 4 Radial and tangential sound speeds plotted against r (Case I)

4.4 Case II

From Eqs. (36)–(39), we determine

v2
sr = dpr

dρ
= γ1 − 4π2γ2

(Ae−Ar2 − Λ)2
, (43)

v2
st = dpt

dρ
=

[
−γ1

(
(γ1 − 1)

(
1 − Ar2) − 1

)

+ 2Λ(γ1 + 1)

A
eAr2 − (

3 − A(1 − 2γ1)r
2)

×
(

4π2γ2

(Ae−Ar2 − Λ)2

)

− eAr2

A

(
Λγ1 + Λ − 4π2γ2

Ae−Ar2 − Λ

)

×
(

(1 − 2γ1) − 8π2Ar2

(Ae−Ar2−Λ)2

)

− (1 + Ar2)e2Ar2

A2

(
Λγ1 + Λ

− 4π2γ2

Ae−Ar2 − Λ

)2

− 2π2γ2e
Ar2

A2r

×
(

4Ar

Ae−Ar2 − Λ
+ 8A4r3e−2Ar2

(Ae−Ar2 − Λ)3

)]
. (44)

Figure 5 shows regular behaviour of radial and transverse
sound speeds for the non-linear case as well for specific
choices of the model parameters.
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Fig. 5 Radial and tangential sound speeds plotted against r (Case II)

5 Some features of the model

We rewrite Eq. (5) in the form

−MG(ρ + pr)

r
e

μ−ν
2 − d

dr

(
pr − Λ

2π

)
+ 1

r
(pt − pr) = 0,

(45)

where MG(r) is the Tolman-Whittaker mass (Ponce de León
1993) and is given by

MG(r) = re
ν−μ

2 ν′. (46)

Equation (45) provides the equilibrium condition which im-
plies that the stellar configuration will be in equilibrium un-
der the combined impacts of gravitational force (Fg), hy-
drostatic force (Fh) and another force term due to pressure
anisotropy (Fa) given respectively by

Fg = −MG(ρ + pr)

r
e

μ−ν
2 , (47)

Fh = − d

dr

(
pr − Λ

2π

)
, (48)

Fa = 1

r
(pt − pr). (49)

In Figs. 6 and 7, the nature of the three forces have been
shown for Case I and Case II, respectively.

The total gravitational mass M(r = R) in our model can
be obtained from Eq. (7). Plugging in C = 1 and 2μ(r) =
Ar2 in Eq. (7), we obtain

Fig. 6 Behaviour of three different forces acting on the fluid in static
equilibrium at the stellar interior (Case I)

Fig. 7 Behaviour of three different forces acting on the fluid in static
equilibrium at the stellar interior (Case II)

m(r) = 1

2
− e−Ar2

2
− Λr2

2
, (50)

which can be utilized to determine the compactness of the
star as

M

R
= 1 − ΛR2 − e−AR2

2R
. (51)

For R = 2.5, the compactness M
R

is found to be 0.172 for
Λ = −0.002 and 0.194 for Λ = −0.02.



Astrophys Space Sci (2015) 355:353–359 359

The corresponding surface red-shift

Zs =
(

1 − 2M

R

)− 1
2 − 1, (52)

turns out be 0.234 and 0.279, respectively.

6 Discussions

In this work, we have generated new analytic solutions for a
circularly symmetric star which admits a linear or non-linear
equation of state. The matter composition of the star has
been assumed to be anisotropic in nature. The values of the
constants in our solution have been fixed by matching the in-
terior solution to the BTZ exterior metric. The cosmological
constant Λ remains a free parameter in our construction. In
the absence of any definite value of Λ, we have made some
specific choices of the cosmological constant and shown that
the solutions provided here are well behaved and can be uti-
lized to develop physically acceptable model of a static cir-
cularly symmetric star in AdS space-time.

Acknowledgements FR, KJ and RS would like to thank the Inter-
University Centre for Astronomy and Astrophysics (IUCAA), Pune,
India, for awarding Visiting Research Associateship. FR is grateful to
UGC, Govt. of India, for financial support under its Research Award
Scheme.

References

Bañados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849
(1992)

Banerjee, A., Rahaman, F., Jotania, K., Sharma, R., Karar, I.: Gen. Rel-
ativ. Gravit. 45, 717 (2013)

Cataldo, M., Salgado, P.: Phys. Rev. D 54, 2971 (1996)
Cruz, N., Zanelli, J.: Class. Quantum Gravity 12, 975 (1995)
Cruz, N., Olivares, M., Villanueva, J.R.: Gen. Relativ. Gravit. 37, 667

(2005)
Finch, M.R., Skea, J.E.F.: Class. Quantum Gravity 6, 467 (1989)
García, A.A., Campuzano, C.: Phys. Rev. D 67, 064014 (2003)
Ponce de León, J.: Gen. Relativ. Gravit. 25, 1123 (1993)
Rahaman, F., Kuhfittig, K.P.K.F., Bhui, B.C., Rahaman, M., Ray, S.,

Mondal, U.F.: Phys. Rev. D 87, 084014 (2013)
Sá, P.M.: Phys. Lett. B 467, 40 (1999)
Sharma, R., Rahaman, F., Karar, I.: Phys. Lett. B 704, 1 (2011)


	Exact solutions in (2+1)-dimensional anti-de Sitter space-time admitting a linear or non-linear equation of state
	Abstract
	Introduction
	Interior space-time
	Case I: Solution admitting a linear EOS
	Case II: Solution admitting a non-linear EOS

	Exterior space-time and boundary conditions
	Case I
	Case II

	Physical acceptability and regularity of the model
	Case I
	Case II
	Case I
	Case II

	Some features of the model
	Discussions
	Acknowledgements
	References


