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Abstract This paper investigates the periodic motion of a
particle in the doubly synchronous binary asteroid systems.
Two typical doubly synchronous systems, 809 Lundia and
3169 Ostro, are discussed in detail. Under the Roche fig-
ure assumption, the two bodies of doubly synchronous sys-
tem can be modeled as two triaxial ellipsoids. The Ivory’s
theorem is used to derive the gravitational potential of the
system. Then, a global numerical method, which combines
grid searching and differential correction, is developed for
systematically searching periodic orbits in the doubly syn-
chronous systems. A total of 30 and 28 families of periodic
orbits around Lundia and Ostro are found, respectively. Fur-
thermore, on the basis of the analysis of morphology, sta-
bilities and invariant manifolds, the potential applications
of these periodic orbit families are studied. Several quasi-
circular orbit families with low instability index are found to
be suitable for the observation of the two typical binary sys-
tems. The invariant manifolds of some periodic orbits near
the equilibrium points can provide the fuel-free trajectories
to achieve the ballistic landing to the surface of the asteroids
and transfer between the binary asteroids.
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1 Introduction

Nowadays exploring binary asteroids has gradually attracted
many scientists and engineers since the first binary asteroid
Ida–Dactyl was discovered by the Galileo spacecraft in 1993
(Helfenstein et al. 1996). Especially, one of the binary as-
teroids 1996 FG3 was selected as the backup target of the
MarcoPolo-R mission led by the European Space Agency
in recent years (Tardivel et al. 2013). The motivations of
these missions are abundant, mainly including the fact that
the origin of the binary asteroids may reveal the evolution of
the solar system and the formation of solar planets. The re-
search shows the binary asteroid systems have a delicate bal-
ance between disruption and cohesion forces (Tardivel and
Scheeres 2013). Sending a spacecraft to the system can re-
veal the scientific results on the formation and future evo-
lution of these bodies. Further, one of the benefits to go to
a binary is that information can be obtained about two as-
teroids for essentially the price of one. Thus there is a way
to access this information without affecting the mission cost
and risks (Tardivel et al. 2013).

Binary systems compose the considerable fraction about
15±4 % of the near-Earth asteroid population (Margot et al.
2002; Pravec et al. 2006), and about 2 % of the main belt
population (Merline et al. 2002). Other binaries are from
Mars crossing (Walsh et al. 2008), Trojan objects (Merline
et al. 2002), and even Kuiper-belt objects (Noll et al. 2006).
These binary systems can be simply sorted into three classi-
fications based on their morphologies and spin rates of both
components-asynchronous systems, synchronous systems,
and doubly synchronous systems. Synchronous and doubly
synchronous binaries are the most likely targets for human
exploration missions, because they have stable states, char-
acterized morphologies, and interesting dynamics. Different
from the Circular Restricted Three Body Problem (CRTBP),
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binary systems cannot simply be regarded as two mass parti-
cles due the close distance of two bodies. We must consider
the mass distribution and shapes of both bodies. Bellerose
and Scheeres (2008a) have used the ellipsoid-sphere model
to discuss the motion in synchronous binary system 1999
KW4. Because these synchronous binaries have elongated
secondary and nearly spherical primary with an equatorial
bulge (Pravec et al. 2006; Pravec and Harris 2007), the as-
sumed model is appropriate. However, more and more dou-
bly synchronous binary asteroids (DSBAs) have been dis-
covered in the last decade. Observations have found that
most of DSBAs satisfy the Roche figure, which is an equi-
librium figure of a rigidly spinning self-gravitating homoge-
neous fluid body (Descamps 2008). The Roche figures are
similar to the double ellipsoid shapes with their minimum
inertia axes aligned. Hence the two bodies of the DSBAs
can be modeled as two triaxial ellipsoids suitably.

The periodic motion around DSBAs is deserved to be
paid attention because it can relate to the dynamical mech-
anism of the systems, such as the further evolution of the
systems and the formation of the natural satellites. Periodic
orbits around the single asteroids have been researched in
decades abundantly. Some special families of periodic or-
bits around the asteroid 4769 Castalia were computed us-
ing a detailed gravitational model of a polyhedron (Scheeres
et al. 1996). A number of periodic orbits were also found in
the time-periodic system, such as the asteroid 4179 Toutatis
(Scheeres et al. 1998). Yu and Baoyin (2012a) discussed the
periodic orbits in the vicinity of equilibrium points around
the asteroid 216 Kleopatra. Recently, a total of 29 families of
global periodic orbits around this asteroid were found by a
hierarchical grid searching method (Yu and Baoyin 2012b).

Furthermore, the periodic orbits and their invariant mani-
folds can play a crucial role for the space mission design.
Dichmann et al. (2003) discussed the applications of the
Lyapunov, vertical, axial and ‘backflip’ orbits in the Earth-
Moon system; Lo and Parker (2004) classified the simple
planar periodic orbits in the CRTBP and applied their in-
variant manifolds for the transfer mission design. Making
use of the planar Lyapunov orbits and their invariant mani-
folds, a possible maneuver to orbit the asteroid to observe it
and later achieve vertical landing was proposed by Herrera-
Sucarrat et al. (2014).

In this paper, the periodic motion in two typical DSBAs,
809 Lundia and 3169 Ostro, are discussed. The two bodies
of the DSBA are modeled as two triaxial ellipsoids and their
gravitational potential is derived in Sect. 2. In Sect. 3, we
contribute to the investigation of the global periodic orbits
in the DSBAs by applying a numerical method combing the
initial grid searching and differential corrections. 30 fami-
lies of periodic orbits around Lundia and 28 families around
Ostro are found. Their morphology and stabilities are dis-
cussed. Further, the invariant manifolds of these periodic or-
bits are also computed. Section 4 deals with the potential

applications of these periodic orbits including space obser-
vation, ballistic landing and ballistic transfer.

2 Double ellipsoids model and equilibrium points

2.1 Roche figures of DSBAs

Doubly synchronous binary asteroids mainly include two
groups, as showed in Table 1. The two groups are dis-
tinguished by the shapes of lightcurve (Descamps 2008).
The first group consists of strictly speaking doubly syn-
chronous asteroids with nearly similar-sized components
preserving the same face towards each other all the time
(Descamps et al. 2008), such as 90 Antiope (Descamps et al.
2007a), 854 Frostia (Behrend et al. 2006) and 809 Lundia
(Kryszczyńska et al. 2009). The second group is composed
of so called doubly synchronous contact-binaries considered
as a special kind of double binaries with components so
near to one another that they overlap to form a single body
(Descamps et al. 2008), such as 3169 Ostro (Descamps et al.
2007b). Some orbital and physical properties for the selected
DSBAs are also given in Table 1.

The basic characteristics of both groups of DSBAs can be
described by the Roche figures: Assume that these binaries
are formed by the fission of a “rubble pile” asteroid which
is considered as a porous collection of gravitationally bound
chunks. Consequently the shapes of these binaries obey the
general results of rotating fluid mass theories (Descamps
2008). In 1849, a significant phenomenon that the equi-
librium figures of homogeneous hydrostatic bodies moving
synchronously around each other in circular orbit is found
by Eduardo Roche. Consequently, these hydrostatic bodies
are deformed into so called Roche ellipsoids (see Chan-
drasekhar 1969 for an extensive review). In addition, the
shapes of these binaries subordinated to the general results
of rotating fluid mass theories (Descamps 2008). Therefore,
the DSBAs can be regarded as Roche systems. Recently, the
Roche ellipsoid model is used to approximate the shapes
and physical properties of some doubly synchronous aster-
oids by many researchers (Descamps 2008; Descamps et al.
2007a, 2007b; Kryszczyńska et al. 2009).

In this paper, two typical doubly synchronous systems,
the double binary 809 Lundia, and the contact binary 3169
Ostro are discussed in detail. Their Roche ellipsoid solutions
are listed in Table 2 and the spatial views of their Roche
shapes are shown in Fig. 1.

2.2 Equations of motion

In this section, the equations of motion of a particle in the
rotating coordinate are established first. The mass of both
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Table 1 Orbital and physical
properties for the selected
doubly synchronous binary
systems

Notes. The data above refer to
the references Descamps et al.
2008;
Pravec and Harris 2007, and to
the database available on web
page http://www.asu.cas.
cz/~asteroid/binastdata.htm. a is
the semi-major axis, ρ is the
bulk density, Dp and Ds are the
mean diameters at the equatorial
of the primary and the
secondary, Porb is the orbital
period, Pp and Ps are primary
and secondary rotation periods.
Values in the parentheses are
estimated or derived using less
reliable data or with some
unusual assumptions

Asteroid a

(km)

ρ

(g/cm3)

Dp
(km)

Ds
(km)

Porb
(h)

Pp
(h)

Ps
(h)

Doubly synchronous asteroids

90 Antiope 171 1.19 86.7 82.8 16.5051 16.5051 16.5051

617Patroclus 680 1.3 101 93 102.8 (102.8) (102.8)

809 Lundia (15) 1.64 6.9 6.1 15.418 15.418 15.418

854 Frostia (24) 0.9 5.7 6 37.711 (37.711) (37.711)

1089 Tama (21) 2.5 9.1 8 16.4461 (16.4461) (16.4461)

1139 Atami (15) (2.0) 5 4.0 27.45 (27.45) (27.45)

1313 Berna (30) 1.2 9.5 9.2 25.464 (25.464) (25.464)

2478 Tokai (23) (2.0) 7.6 6.6 25.897 25.897 25.897

4492 Debussy (40) 0.9 12.6 12 26.606 (26.606) (26.606)

4951 Iwamoto (35) (2.0) 4.2 3.7 118.0 118.0 118.0

7369 Gavrilin (20) (2.0) 4.6 3.2 49.12 (49.12) (49.12)

Doubly synchronous contact-binaries

624 Hektor 1178 2.2 (225.0) 15.0 6.921 6.921 6.921

3169 Ostro 4.8 2.6 3.6 3.1 6.509 6.509 6.509

69230 Hermes (1.2) 1.9 0.6 0.54 13.894 (13.894) (13.894)

Table 2 Roche ellipsoid models of 3169 Ostro and 809 Lundia

Parameter Lundia Ostro

Separation 15.8 km 4.8 km

Mass ratio 0.5917 0.6151

Density 1.64 g/cm3 2.6 g/cm3

Primary

Largest axis (a1) 3.9 km 2.4 km

Intermediate axis (b1) 3.3 km 1.3 km

Shortest axis (c1) 3.2 km 1.2 km

Secondary

Largest axis (a2) 3.5 km 2.2 km

Intermediate axis (b2) 2.9 km 1.7 km

Shortest axis (c2) 2.8 km 1.6 km

ellipsoids can be represented by M1 and M2 respectively.
The mass ratio of the system is defined as

μ = M1

M1 + M2
(1)

The semi-major axes of both ellipsoids are a1, b1, c1 and
a2, b2, c2, respectively. Note that 0 ≤ c1 ≤ b1 ≤ a1 and 0 ≤
c2 ≤ b2 ≤ a2. R represents the distance between two bodies.
While R1 and R2 represent the position vectors from the
origin of the coordinate to the center of two bodies. And the
norm of R1 and R2 are

R1 = |R1| = (1 − μ)R (2)

R2 = |R2| = μR (3)

Fig. 1 Spatial views of the Roche models of Lundia and Ostro

We now consider a particle moving in the gravitational
field of the binary systems, where l stands for the position
vector of particle relative to origin, as shown in Fig. 2.

http://www.asu.cas.cz/~asteroid/binastdata.htm
http://www.asu.cas.cz/~asteroid/binastdata.htm
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Fig. 2 The double ellipsoids model of doubly synchronous binary sys-
tems

Scheeres and Augenstein (2004) presented the vector
form of the equation of motion in the rotating frame fixed
to the mass center of the system as

l̈ + 2� × l̇ + � × (� × l) = G(M1 + M2)
∂Ûsys

∂l
(4)

where G is the gravitational constant, Ûsys is the system’s
gravitational potential. � is the synchronous angular veloc-
ity. (Assume that the system rotates uniformly with �̇ = 0.)

On the other hand, because of synchronicity and conser-
vation, the binary system is an autonomous system, and the
gravitational potential satisfies Laplace’s equation. There-
fore, the system’s exterior potential can be superposed from
both ellipsoids. For a single uniform density ellipsoid with
size a, b, c, the exterior potential is derived in Ivory’s The-
orem, expressed as

Û (r) = 3

4
GM

∫ ∞

λ(r)

φ(r, υ)
dυ

�(υ)
(5)

φ(r, υ) = 1 − x2

a2 + υ
− y2

b2 + υ
− z2

c2 + υ
(6)

�(υ) =
√(

a2 + υ
)(

b2 + υ
)(

c2 + υ
)

(7)

where r = xi +yj +zk, λ(r) satisfies φ(r, υ) = 0. Accord-
ing to potential superposition, we can define the system’s
gravitational potential

Ûsys = Û1(l − R1) + Û2(l − R2) (8)

In order to simplify the analysis, we introduce the nor-
malizations. Take the maximum semi-major axis a1 of the
primary as the length scale, and the mean motion n =√

G(M1 + M2)/a
3
1 as the frequency scale. Thus the normal-

ized positions and angular velocity are

ρ = R

a1
, r1 = R1

a1
, r2 = R2

a1
, r = l

a1
(9)

ω = �

n
(10)

The normalized form of Eqs. (4) and (8) are

r̈ + 2ω × ṙ + ω × (ω × r) = ∂Usys

∂r
(11)

Usys = U1 + U2 = μU(r − r1) + (1 − μ)U(r − r2) (12)

with

U(r) = 3

4

∫ ∞

λ(r)

φ(r, υ)
dυ

�(υ)
(13)

The equations of motion Eqs. (11) and (12) can be restated
in an (x, y, z) coordinate system, i.e.

⎧⎪⎨
⎪⎩

ẍ − 2ωẏ − ω2x = −μ(x − r1)Ea1 − (1 − μ)(x + r2)Ea2

ÿ + 2ωẋ − ω2y = −μyEb1 − (1 − μ)yEb2

z̈ = −μzEc1 − (1 − μ)zEc2

(14)

The Ea,Eb,Ec expressions are the elliptic integrals, which
represent the mass distribution of both ellipsoids. The com-
puting methods of elliptic integrals are presented in Neutsch
(1979).

2.3 Zero velocity curves

Due to the explicit time independence of the Hamiltonian
function, an integral of generalized energy exists, which can
be expressed as

H = 1

2
ṙ · ṙ − 1

2
(ω × r) · (ω × r) − Usys (15)

Because H is time-invariant, it also allows for an important
integral constant, the Jacobi constant C, which describes to-
tal energy of a particle relative to the rotating frame, i.e.,

C = 1

2

(
ẋ2 + ẏ2 + ż2) − 1

2
ω2(x2 + y2)

− μU(r − r1) − (1 − μ)U(r − r2) (16)

where, (ẋ2 + ẏ2 + ż2)/2 is the kinetic energy relative to
the rotating frame; −ω2(x2 + y2)/2 represents the potential
energy of the centrifugal force induced by the rotation of
the reference frame; −μU(r − r1) and −(1 − μ)U(r − r2)

are the gravitational potential energies of the two ellipsoidal
bodies.

The solution of (ẋ2 + ẏ2 + ż2)/2 = 0 represents the ve-
locity of a particle reaching zero in the rotating frame coor-
dinate. In other words, the particle would collide with and
rebound off of the boundaries which are known as the zero-
velocity curves. Figure 3 demonstrates the zero-velocity
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Fig. 3 (a) Zero velocity curves of Lundia with five local extreme Ja-
cobi constants. (b) Zero velocity curves of Ostro with four local maxi-
mum Jacobi constants

curves around Lundia and Ostro in the equatorial plane re-
spectively. Note that the different colors on the graph rep-
resent different values of Jacobi constants for each zero-
velocity curve. We can find that one local minimum and
four local maximum Jacobi constants (C1,C2 ∼ C5) exist
around Lundia while four local maximum Jacobi constants
(C2 ∼ C5) exist around Ostro.

When C < C1 in the Lundia system, the zero-velocity
curve is made up of two isolated quasi-circular boundaries
which cling to and wrap the two bodies respectively. This re-
stricts a particle can only orbit the primary or the secondary
closely. Increasing C to C1, the two boundaries will connect.
It means that a particle orbiting a body have the opportunity
to transfer from one of the asteroids to the other one.

When C1 < C < C2 in the Lundia and C < C2 in
the Ostro system, the zero-velocity curve consists of two
branches—an inner one that entirely wraps around the two
bodies and an outer one that is quasi-circular and far away
from the system. It means that the allowable region is di-

Table 3 Equilibrium points of Lundia system

Equilibrium point (x, y, z) Jacobi constant

L1 (−0.5484, 0, 0) −0.4970

L2 (7.9354, 0, 0) −0.2105

L3 (−8.0461, 0, 0) −0.2089

L4 (−0.3436, 7.2077, 0) −0.1955

L5 (−0.3436, −7.2077, 0) −0.1955

Table 4 Equilibrium points of Ostro system

Equilibrium point (x, y, z) Jacobi constant

L1 – –

L2 (4.7494, 0, 0) −0.3472

L3 (−4.8030, 0, 0) −0.3439

L4 (−0.2782, 4.3758, 0) −0.3254

L5 (−0.2782, −4.3758, 0) −0.3254

vided into two parts: A particle will never approach the bod-
ies in the outer branch while the particle in the inner branch
will keep orbiting or end up colliding with the asteroids.

When C2 < C < C3 in both systems, the two allowable
regions merge into one. The particle can move from the in-
ner region into the outer one through the neck area which
is in the right side of the systems. The zero-velocity curve
splits into two branches again when C3 < C < C4, with the
upper branch and lower branch dividing the forbidden re-
gion into two parts. Then, increasing C until C > C4 leads
that all orbits in the equatorial plane are available.

2.4 Equilibrium points

The equilibrium points of Lundia and Ostro can be easily
found where the zero-velocity curves get self-intersected,
as shown in Fig. 3. These points represent the locations in
space where the particle’s velocity and acceleration are both
equal to zero. A particle placed there without any initial ve-
locity will keep stationary in the rotating frame. The equi-
librium points can be computed by the conditions

∂Usys(x, y, z)

∂x
= ∂Usys(x, y, z)

∂y
= ∂Usys(x, y, z)

∂z
= 0 (17)

Tables 3 and 4 give the locations of the equilibrium points
of Lundia and Ostro systems and their Jacobi constants re-
spectively. Note that all the data are in normalized form. It
can be seen that Lundia system has three collinear points,
L1, L2, L3, and two symmetric points L4 and L5, while
four equilibrium points except for L1 can be found in the
Ostro system. The position of L1 point can be derived from
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Eq. (14) with y = 0 and z = 0:

xL1 = μr1Ea1 − (1 − μ)r2Ea2

μEa1 + (1 − μ)Ea2 − ω2
(18)

Substituting the corresponding physical parameters of Os-
tro in to Eq. (18) can solve that xL1 = −0.6302. It can be
proved that the L1 point in the Ostro system is inside of the
secondary. In addition, the results also illustrate that all the
equilibrium points of both systems are located in the equa-
torial plane.

The stability of equilibrium points are also discussed be-
cause it determines the characteristics of motion of a parti-
cle in the vicinity of equilibrium points. The linear stability
of the equilibrium points can be judged by the eigenvalues
of its state transition matrix Φ . Let us rewrite our dynamic
equations Eq. (14) into the following form with six state ar-
guments X = (x, y, z, ẋ, ẏ, ż), the state transition matrix can
be expressed as

Φ = ∂f

∂X

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ω2 + Ue
xx Ue

xy Ue
xz 0 2ω 0

Ue
xy ω2 + Ue

yy Ue
yz −2ω 0 0

Ue
zx Ue

zy Ue
zz 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

where Ue
xx,U

e
xy, . . . ,U

e
zz represent the second derivatives of

the system potential at the equilibrium point. It is notewor-
thy that the Roche figure is used to approximate the shapes
and physical properties of real binary asteroids 809 Lundia
and 3169 Ostro. Under this assumption, the model is sym-
metric about xy-plane. For convenience, we can reduce the
state space to be four-dimensional with ignoring z and ż, and
the characteristic equation of the system can be obtained as

|λI − Φ| =

∣∣∣∣∣∣∣∣

λ 0 −1 0
0 λ 0 −1

−ω2 − Ue
xx −Ue

xy λ −2ω

−Ue
xy −ω2 − Ue

yy 2ω λ

∣∣∣∣∣∣∣∣
= λ4 + bλ2 + c (20)

where

b = 2ω2 − Ue
xx − Ue

yy

c = ω4 + ω2(Ue
xx + Ue

yy

) + Ue
xxU

e
yy − (

Ue
xy

)2

The eigenvalues are now can be obtained

λ1,2 = ±
√

−b + √
b2 − 4c

2
(21)

Table 5 Stability conditions of Lundia system

Stability
condition (10−4)

L1 L2 L3 L4 L5

b 1269.801 20.632 18.434 24.112 24.112

c −340.281 −0.031 −0.046 0.035 0.035

b2 − 4c 1521.843 0.166 0.218 −0.077 −0.077

Table 6 Stability conditions of Ostro system

Stability
condition (10−4)

L1 L2 L3 L4 L5

b – 63.576 80.031 19.638 19.638

c – −1.837 −1.062 1.334 1.334

b2 − 4c – 7.753 4.890 −1.688 −1.688

λ3,4 = ±
√

−b − √
b2 − 4c

2
(22)

Recall that if all the eigenvalues are pure imaginary number,
i.e. λ2 < 0, the corresponding equilibrium point is linear sta-
bility. In order to maintain λ2 < 0, the coefficients b and c

must satisfy
{

b2 − 4c > 0

−b ± √
b2 − 4c < 0

(23)

Solve the inequalities Eq. (23) and we can get the linear sta-
bility conditions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b = 2ω2 − Ue
xx − Ue

yy > 0

c = ω4 + ω2
(
Ue

xx + Ue
yy

) + Ue
xxU

e
yy − (Ue

xy)
2 > 0

b2 − 4c = −8ω2
(
Ue

xx + Ue
yy

) + (
Ue

xx − Ue
yy

)2

+ 4
(
Ue

xy

)2
> 0

(24)

The results of the two systems are illustrated in Tables 5
and 6 respectively. It can be seen that none of equilibrium
points satisfies Eq. (24), which indicates that all equilibrium
points are nonlinear unstable.

3 Periodic orbits and stability

Periodic orbits are the key to understanding the nature of the
dynamical system. Moreover, they are also significant for
space mission design because they can illustrate the avail-
able motion of a spacecraft around the celestial body. In
this paper, the global periodic orbits around DSBAs are dis-
cussed in detail. The periodic orbits are searched by a nu-
merical method which combines an initial grid searching
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and differential correction. If a dynamical system is of the
symmetrical characteristic, we can use it to reduce the huge
computing workload in searching process by decreasing the
in initial searching parameters. On the basis of Hénon’s
work, the symmetry of the system is discussed firstly.

3.1 Symmetries

Under the Roche figures assumption, the double ellipsoids
system is symmetrical about x-axis, xy-plane and xz-plane
in geometric properties. It can be derived from the symme-
tries that the equation of motion Eq. (14) is invariant under
the transformation S

S : (x, y, ẋ, ẏ, t) → (x,−y,−ẋ, ẏ, t)

Applying S to a planar periodic orbit can obtain that it is
also symmetrical about x-axis. Based on the planar periodic
orbit, the spatial ones are generated as follows. The planar
x-axis symmetric orbit crosses the x-axis perpendicularly
twice, at two points P and Q respectively. Let �z0,�ż0 be
the vertical perturbation at some crossing in P ;�z1,�ż1

the perturbation at the next crossing in Q; and �z2,�ż2 the
perturbation at the following crossing, which will be again
in P . According to the Hénon’s work (1973), the relation of
these various perturbations can be expressed as
[
�z1

�ż1

]
=

[
A B

C D

][
�z0

�ż0

]
,

[
�z2

�ż2

]
=

[
A′ B ′
C′ D′

][
�z1

�ż1

] (25)

and

A′ = D, B ′ = B, C′ = C, D′ = A

If B = 0 and a perturbed orbit have the initial condi-
tion �z0 = 0,�ż0 = ε (ε can be arbitrarily chosen), from
Eq. (25), we have

�z1 = 0, �ż1 = Dε, �z2 = 0, �ż2 = ε

It means the perturbed orbit closes back to its initial position
in phase space. Because of the invariant of z1, z2 and the
change of ż1, ż2, the spatial orbit is also symmetrical with
respect to x axis.

Similarly, if C = 0 and the initial condition is �z0 =
ε,�ż0 = 0, we find

�z1 = Aε, �ż1 = 0, �z2 = ε, �ż2 = 0

It means the orbit is symmetrical with respect to xz-plane.
For the case A = 0 and a perturbed orbit have the initial

condition �z0 = 0,�ż0 = ε we have

�z1 = 0, �ż1 = Cε, �z2 = −ε, �ż2 = 0

then we continue the motion after one revolution which is
symmetrical of the initial state with respect to xy-plane, we
have

�z3 = 0, �ż3 = −Cε, �z2 = ε, �ż2 = 0

where �z3,�ż3 and �z4,�ż4 are the vertical perturba-
tions at P and Q in the secondary revolution respectively.
It means that the orbit is periodic and has the doubly-
symmetrical characteristic which enjoys the xy-planar sym-
metry and x-axis symmetry.

From the discussion above, one type of planar symmet-
rical periodic orbit and three types of spatial symmetrical
periodic orbits can be found in the system. The symmetries
of the periodic orbits are the valuable characteristics, and
can be used to reduce the initial searching parameters in the
searching process, which is discussed in detail in the next
section.

3.2 Global searching

The global searching method targets to find large-scale peri-
odic solutions for the symmetrical and non-integrable sys-
tems in a given meshed region of initial conditions. Sys-
tem (14) indicates that a periodic orbit corresponds to a six-
dimensional state (x, y, z, ẋ, ẏ, ż) at the initial conditions
and a period T , which can be regarded as the searching
parameters. The symmetrical characteristic of the periodic
orbits can be used to reduce the initial conditions to four-
dimensional subspaces at least. Taking the planar and spatial
x-axis symmetrical periodic orbits for examples, the global
searching procedure is introduced as follows.

The search parameters are implemented in a triple grid
(x0, ẏ0, ż0). The system (14) is integrated numerically with
every neighboring mesh point in a given region using a step-
seventh-to eighth-order Runge-Kutta method. Since the pe-
riodic orbits are symmetrical, they will trace a mirror im-
age and re-encounter the x-axis with t = T/2. Therefore,
the xz-plane can be set as a Poincaré section. The integra-
tion terminates when the orbit encounters with the Poincaré
section. The final state of the orbit on the Poincaré section is

xf = (xT/2,0,0, ẋT /2, ẏT /2, żT /2)

an orbit is periodic if the conditions zT/2 = 0 and ẋT /2 =
0 are satisfied. For every mesh point (x0, ẏ

j

0 , żk
0), (j, k =

1,2, . . . , n), we define two intervals I1 = (z
j

T /2, z
j+1
T/2 ) and

I2 = (ẋk
T /2, ẋ

k+1
T/2 ). Only the occurrences of both zT/2 and

ẋT /2switching signs in I1 and I2 meanwhile can indicate the
existence of a periodic orbit, as shown in Fig. 4.

For a given x0, the {ẏ0, ż0} space is searched. In general,
the solutions appear as points in the ẏ0ż0-plane. This process
is repeated for a sufficient number of x0values. When all the
solutions are plotted in the spatial {x0, ẏ0, ż0} space, families
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of solutions appear as planar lines. For a slice of constant x0,
Fig. 5 illustrates the interior mesh points in the ẏ0ż0-plane
and example periodic solutions.

Russell (2006) proposed a ‘six-step method’ to find the
periodic solutions in the interior mesh grid. However, this
method requires great refinement mesh, which will lead the
significant increase of the computing workload. In this pa-
per, the mesh grids are divided into three cases in detail
by the distributions of the periodic solutions. The nearest-
solution criteria for the three cases are established to approx-
imate the initial conditions of periodic orbits as follows.

Case 1: The two boundaries intersect four different lines of
a mesh in the ẏ0ż0-plane, as shown in Fig. 5(a). The nearest
solution is selected at the center of the mesh.

Case 2: The two boundaries intersect three lines of a mesh
in the ẏ0ż0-plane, as shown in Fig. 5(b). The black dia-
monds in Fig. 6(b) indicate the crossing points of which a
line is intersected by both boundaries. Using the bisection

Fig. 4 Illustration of the x-axis symmetrical periodic orbits. Note that
the orbit 1 starts with the initial conditions (x0, ẏ

j

0 , żk
0), orbit 3 starts

with the initial conditions (x0, ẏ
j+1
0 , żk

0) or (x0, ẏ
j

0 , żk+1
0 ), while orbit

2 is the periodic orbit

method developed by Vrahatis and Iordanidis (1986) when
only the change of sign for ẋT /2 or żT /2 is focused on, the
coordinates of these points can be computed. The nearest
solution is selected at the midpoint of the segment which is
connected by the two crossing points.

Case 3: The two boundaries intersect only two lines of a
mesh in the ẏ0ż0-plane, as shown in Fig. 5(c). The two
boundaries intersect the lines and form two segments, d1

and d2. Note that the coordinates of the endpoints of the
two segments are also computed by the bisection method.
We record the midpoints of the two points as A and B . The
solution is located at the center of the segment AB .

The errors still exist even the nearest solutions are found
by the presented approach. Hence, a local differential cor-
rector is applied to target the accurate initial conditions of
periodic orbits. The differential corrector of the spatial x-
axis symmetrical orbits attempts to remove the unwanted
zT/2 and ẋT /2 by adjusting ẏ0 and ż0. In the meanwhile,
x0 should be kept constant. The iteration equation can be
expressed as

[
δ̃ẏ0

δ̃ż0

]
=

[
Φzẏ − żΦyẏ/ẏ Φzż − żΦyż/ẏ

Φẋẏ − ẍΦyẏ/ẏ Φẋż − ẍΦyż/ẏ

]−1

T/2

[−zT/2

−ẋT /2

]

The iteration process is continued until the conditions
|zT/2| < 10−10 and |ẋT /2| < 10−10 are satisfied meanwhile.
Generally, only three or four iterations are required. The cor-
rected initial conditions can be considered as the accurate
periodic solutions for spatial x-axis symmetrical orbits.

To obtain the planar periodic orbits, one of the initial con-
ditions z0 is set to be zero, and then the searching procedure
can be simplified to a bisection method. For the xz-plane
symmetrical and doubly symmetrical spatial periodic orbits,
the searching procedure of global periodic orbits is simi-
lar with the case of spatial x-axis symmetry. However, the
changes occur on the initial searching parameters, the cut-
off time and the periodic conditions, as illustrate in Table 7.
Their corresponding differential correctors are also adjusted
according to the symmetrical characteristics.

3.3 Families and stability

The large-scale periodic orbits around 809 Lundia and 3169
Ostro are searched by using the aforementioned approach,

Fig. 5 Interior mesh grid in
ẏ0ż0-plane at a given x0. Notes,
the dash line is the boundary
which ẋT /4 switches sign, the
solid line is the boundary which
żT /4 switches sign. The red
pentangle and the red diamond
indicate the periodic solution
and the nearest solution to the
periodic one respectively
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Fig. 6 Periodic orbits of 30 families around Lundia system varying as the Jacobi constant of the corresponding range, shown in the bod-fixed
frame. The shadowed ellipsoids indicate the shapes of Lundia and the bold line indicates a representative orbit of each family
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Table 7 Searching parameters
for different symmetrical
periodic orbits

Planar x-axis symmetry xz-plane symmetry Doubly symmetry

Initial conditions (x0, ẏ0) (x0, ẏ0, ż0) (x0, z0, ẏ0) (x0, ẏ0, ż0)

Poincaré section xz-plane xz-plane xz-plane xz-plane

Cut-off time T/2 T/2 T/2 T/4

Periodic conditions ẋT /2 = 0 zT/2 = 0, ẋT /2 = 0 ẋT /2 = 0, żT /2 = 0 ẋT /4 = 0, żT /4 = 0

respectively. A 10 × 10 × 10 cubic in the both systems in
configuration space are selected as the search regions. It is
noted that all the values are normalized form. The period T

can be replaced by the integer-value N because the terminal
conditions for all orbits occur at xz-plane crossing. Thus for
a given initial condition, the trajectory is integrated forward
and terminated on the N th crossing of the xz-plane. For the
final run, Nmax is chosen to be 3 of the planar case and to
be 1 of the spatial case. Finally, over 186000 grid points are
evaluated in the both systems. 94163 solutions of the Lun-
dia and 89013 solutions of the Ostro are found spending ap-
proximately 23 hours of total computer time on Intel Core
i5 PC with 3.20 GHz processors. According to the topolog-
ical structures in the configuration space of the periodic or-
bits, the results can be classified to 30 families orbits exist
around Lundia and 29 families exist around Ostro. These pe-
riodic orbit families distributed on different ranges of Jacobi
constant are shown in Figs. 6 and 7.

The results show the diversity of periodic orbits in the
both systems. These periodic orbits can be distinguished by
morphology preliminarily. It can be found that both the com-
monness and distinction of periodic orbits exist in the two
systems. A total of 15 families which have similar morphol-
ogy exist in the both systems. These families can be divided
into five classifications: the periodic orbits near equilibrium
points L2,3 including the Lyapunov and Halo orbits (Fam-
ilies 1–2, Families 22–24 of Lundia and 18–20 of Ostro);
the retrograde and prograde quasi-circular orbits (Families
3, 4); the double-circle orbits in the equatorial plane (Fam-
ily 5); the quasi-circular periodic orbits which contact or en-
circle the collinear points (Families 6–11); and the spatial
quasi-circular orbits (Family 25 of Lundia and 21 of Ostro).
In addition, although the morphology of Family 21 of Lun-
dia and Family 17 of Ostro are obvious different, both of
the families are quasi-symmetrical to yz-plane about them-
selves.

Due to the existence of L1, some families of periodic
orbits can only be found in the Lundia system: The Lya-
punov (Families 12, 27, 28 of Lundia) and Halo (Family 26
of Lundia) orbit near L1 are found in Lundia system. Some
quasi-circular orbits which encircle one body of the binary
(Families 13 and 14 of Lundia) and ‘8’ formal orbits which
revolve around both bodies (Family 15 of Lundia) also ex-
ist. In addition, the periodic orbits of Families 16–18, which

pass through the gap between the two bodies, can only be
found in the Lundia system.

It is interesting that a number of specific quasi-circular
periodic orbits which encircle L4,5 (Families 12–15, 23–24
of Ostro) only exist around Ostro. Families 23 and 24 can be
considered as the Families 12 and 13 added a vertical mode
of motion. Moreover, some periodic orbits around Ostro are
more complex than around Lundia. The shapes of Ostro (two
bodies get much closer) lead to the special gravitational field
near y-axis, which may be the main causes to generate these
periodic orbits.

The stability of periodic orbits is deserved to be paid at-
tention because it also relates to the motion of a particle on
the orbit. If a periodic orbit is stable, the trajectory keeps
its original location and will not diverge exponentially. If a
periodic orbit is unstable, the trajectory will diverge expo-
nentially from the orbit and wander over a region of phase
space in general. According to the Floquet theory, the stabil-
ity of periodic orbits is determined by the nature of the state
transition matrix. Koon et al. (2000) proved that the matrix is
symplectic for the systems and their eigenvalues λi have the
form {λ,λ−1, λ̄, λ̄−1,1,1}. On the basis of the eigenvalues,
a single, real scalar instability index is proposed in Eq. (26)

ρ = max
1≤j≤6

|λj | (26)

This index can judge the stability of periodic orbits and
measure how far a particular unstable orbit is from the sta-
bility boundary. If ρ > 1, the periodic orbit is unstable while
ρ ≤ 1 the periodic orbit is stable. The instability index ρ of
the periodic orbits varying with Jacobi constants are calcu-
lated. The stability curves are shown in Fig. 8.

The stability curves of the periodic orbits around Lundia
are shown in Fig. 8(a). According to the distributions of the
instability indexes and Jacobi constants of the periodic or-
bits, the families of periodic orbits can be divided into four
classes. Nearly half of the families (46 %) concentrate on
a small range of Jacobi constants (−0.25 ∼ −0.1) and they
are defined as Class 1. It is noted that these families have low
instability indexes. Although the Jacobi constants of Fami-
lies 8, 9, 11, 15, 20 and 21 also lie in the range roughly same
as that of Class 1, they are classified as Class 2 because of
the high instability indexes. In other words, these orbits will
diverge exponentially when perturbed. The stable periodic
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Fig. 7 Periodic orbits of 28 families around Lundia system varying as the Jacobi constant of the corresponding range, shown in the bod-fixed
frame. The shadowed ellipsoids indicate the shapes of Ostro and the bold line indicates a representative orbit of each family
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Fig. 8 (a) The stability curves of Lundia. (b) The stability curves of
Ostro

orbits can be found in the Class 3 which includes the ret-
rograde and prograde quasi-circular orbits (Families 3 and
4), the double-circle orbits in equatorial plane (Family 5),
and the vertical Lyapunov orbits near L3 (Family 24). It is
noted that all the stable periodic orbits have relative high en-
ergy levels. Class 4, including the Lyapunov and Halo orbits
near L1 (Families 12 and 26), is a special class that only
exist in Lundia system. These periodic orbits have high in-
stability indexes as well as low energy levels.

The stability curves of Ostro system (Fig. 8(b)) are quite
different from Lundia. It can be seen that three main classes
of periodic orbits are classified. Class 1 contains larger por-
tion of families (about 78 %) varying as the Jacobi constants
from −0.4 to −0.2. The periodic orbits with high instabil-
ity indexes also can be found in Class 2, which contains
Families 8, 11, 25 and 27. It is noteworthy that the com-
plex morphology always means that the periodic orbit has

high instability index. Only the prograde quasi-circular or-
bits (Families 3), the double-circle orbits in equatorial plane
(Family 5), and the vertical Lyapunov orbits near L3 (Fam-
ily 20) are stable and they are classified as Class 3. Similar
with the case in the Lundia system, the stable orbits are also
of high energy level.

3.4 Invariant manifold structures

In the following, the invariant manifolds associated with pe-
riodic orbits are discussed to gain further insight into the
dynamical nature and the potential applications. The in-
variant manifold is a multidimensional surface embedded
in the whole phase space of the system, and orbits start-
ing on the surface will always remain on that same sur-
face (Baoyin and McInnes 2006). The computation of the
stable and unstable manifolds associated with periodic or-
bits can be accomplished numerically. The nonlinear differ-
ential equations Eq. (14) is linearized to get the equation
Ẋ = AX, where A is the coefficient matrix and has eigen-
pairs (λi, vi). The linear space spanned from vector vi with
positive or negative real part is called the unstable or stable
manifold respectively (Gong et al. 2007). It is assumed that
X0 is a point on the periodic orbit, Then the stable eigenvec-
tor Y s(X0) and unstable eigenvector Yu(X0) of A is easy to
get. The initial conditions of the stable and unstable mani-
fold at X0 can be obtained as

Xs(X0) = X0 ± εY s(X0)

Xu(X0) = X0 ± εYu(X0)

Note that ε is a small displacement from X0 (about the value
of 10−6 in normalized form in this paper). The dynamical
system (14) is then integrated with these initial conditions
to obtain the unstable and stable manifolds. The stable and
unstable manifolds of all unstable periodic orbits presented
in Sect. 3.4 are computed. We find that the distributions of
the invariant manifolds of most periodic orbits are chaotic in
the configuration space, however, except for the Families 1,
2, 12, 26 of Lundia and the Families 1, 2 of Ostro.

As shown in Fig. 9, the stable and unstable manifolds of
the periodic orbits of Family 12 around Lundia link the sur-
faces of the primary and the secondary. These trajectories on
the manifolds are propagated for approximately 5 hours. The
similar spatial tube-like structures generated from the invari-
ant manifolds of the Family 26 also exist around Lundia. On
the basis of the characteristics, a particle has the opportunity
to launch from one body to the periodic orbit guided by the
stable manifolds and then land on the other body guided by
the unstable manifolds, which is discussed in detail in the
next section.

The stable and unstable manifolds of the periodic or-
bits of Families 1 (the Lyapunov orbits near L2) around
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Fig. 9 The stable (red) and unstable (blue) invariant manifolds of a
Lyapunov orbit near L1 around Lundia that has a Jacobi constant of
−0.4813

Fig. 10 The stable (red) and unstable (blue) invariant manifolds of a
Lyapunov orbit near L2 around Lundia that has a Jacobi constant of
−0.2076

Lundia systems are shown in Fig. 10, which also present
the planar tube-like structures. The motion of a particle on
these invariant manifolds can be divided into three types: ap-
proaching the surface of one body directly; reaching the sur-
face of the other body after reflecting on the zero-velocity
surface; and escaping to the outer region. It is notewor-
thy that the stable and unstable manifolds of the Family 2
around Lundia and the Families 1 and 2 around Ostro also
present the similar characteristics. Based on the character-
istics, we can carry out a ballistic landing for a spacecraft
using the unstable manifolds, which is discussed in the next
section.

4 Applications to space mission

The periodic orbits described above may offer a variety of
possible applications to space missions. Due to the morphol-
ogy and stable characteristics, some quasi-circular orbits can
provide the potential applications for scientific space obser-
vation. Because the invariant manifolds of the planar Lya-
punov and Halo orbits near collinear points intersect the
surface of one or both asteroids, they can be used to ap-
proach the surface of asteroids and transfer between two
bodies. According to Yu’s work (2014), the radiuses of the
globular region where the orbital motion near the asteroid is
dominated by its own gravitational field can be obtained as
5.31 km of Lundia and 2.05 km of Ostro respectively. Both
of the radiuses are smaller than the dimensions of most of
the periodic orbits. Indeed, the motion of a spacecraft on
the periodic orbits will be affected by the perturbations such
as radiation pressure and the gravitational field of the Sun.
However, it is that the dynamical behavior based mainly fo-
cused on in this paper, which may provide some valuable
references for the real space mission designs.

4.1 Space observation

To enhance our knowledge of the DSBAs, it is necessary
to carry out the lone-time space observation to the bodies.
In this section, we discuss whether some periodic orbits are
appropriate to be used to observe the binary system. Con-
sidering the diversity of the periodic orbits, it is complicated
for us to select the suitable periodic orbits for observation.
To do this, we define three criteria for choosing and assess-
ing a periodic orbit.

1. The orbit should revolve around one or both bodies at
least once.

2. The period of the orbit is less than 2 days.
3. The instability index of the orbit should satisfy 1 ≤ ρ ≤

50.

Criterion 1 ensures the spacecraft to observe the entire aster-
oids. Criterion 2 limits the period to be an acceptable value
for the observation. Criterion 3 indicates how sensitive the
orbit is to perturbations. Generally, station-keeping costs are
small if an orbit has low instability index or is stable. Ac-
cording to the defined criteria, the periodic orbits of Families
3–5, 13–14, 25 around Lundia and Families 3–5, 21 around
Ostro can be chosen as the candidates for the observation
mission.

The distance between the asteroids and the spacecraft is
a significant factor for high resolution about the asteroids.
Hence it can be used to characterize the observation abil-
ity of a periodic orbit. rp1 and rp2 indicate the distances
between the spacecraft and the primary or the secondary re-
spectively.
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Fig. 11 The distance curves of some periodic orbits around Lundia

Varying as the period of an orbit in the Lundia system,

the distances to the primary and the secondary appear as the

blue and green curves respectively, as shown in Fig. 11. Note

that the analysis for the Ostro system is similar. The two bor-

derline periodic orbits with the largest and smallest Jacobi

constants in a family, which are indicated by the solid and

dash lines respectively, are selected to assess the observation

abilities of the family.

According to the distance curves, these periodic orbits

can be used to carry out four kinds of observation missions.

The periodic orbits of Families 3 and 4 are appropriated to

be used to observe the global system because the distances to

the primary are almost equal to the corresponding distances

to the secondary. The distance curves of the periodic orbits

of Family 13 are shown in Fig. 11(b), it can be easily seen

that the distance to the secondary keeps closer than it to the

primary. Hence these periodic orbits are suitable to observe

the secondary. Similar, the periodic orbits of Family 14 are

suitable to observe the primary. The distance curves of the

double-circle orbits are shown in Fig. 11(c). The distance to

the secondary is much closer than it to the primary at the

time T/2. In the rest of time, the minimum and maximum

distances to both bodies are almost equal. That is to say,

the double-circle orbits (Family 15) can not only obtain the

global information about the system, but also carry out the

observation to the secondary especially. The distance curves

of the spatial quasi-circular orbits are similar to the planar

cases, as shown in Fig. 11(d). However, a spacecraft on the

orbits can observe higher or lower latitude region of the sur-

face. Moreover, although the periodic orbits of Families 23

and 24 are of the relatively long period, they can also carry

out the three-dimensional observation to the global system

of Ostro.
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4.2 Ballistic landing

Because of the weak gravitational field of the asteroids, it is
possible for a spacecraft to carry out the ballistic landing on
the surface of bodies. According to the aforementioned in-
variant manifold structures, one can easily see that the unsta-
ble manifolds of the periodic orbits of Families 1, 2 around
both systems intersect the surfaces of two bodies. Therefore,
these unstable manifolds may offer the fuel-free trajectories
to approach the surface of the asteroids. The example of
the periodic orbits of Family 2 (The Lyapunov orbits near
L2) around Lundia and Ostro are illustrated in Fig. 12. Two

Fig. 12 The unstable manifolds of the planar Lyapunov orbits near L2
near Lundia (a) and Ostro (b)

types of the ballistic landing trajectories can be found: the
direct trajectories to the secondary and the indirect trajecto-
ries to the primary. It is noteworthy that the dimensions of
the landing trajectories are out of the range of the aforemen-
tioned globular region. In fact, the perturbations should be
taken into consideration and will affect the landing trajec-
tories which are obtained in our systems. However, in this
paper these trajectories can be regarded as a guide role for
the real landing mission design. Consequently, a spacecraft
has the opportunities to land on the surface of both bodies
guided by these unstable manifolds.

A lander with large speed would most likely bounce back
and even escape after hitting the surface. Hence it is neces-
sary to analyze the landing velocity to find out whether the
braking manoeuver is required for safety landing. The aver-
age longest axis of two bodies is defined as the character-
istic radius of the system. Then the escape velocity of the
system can be computed by the characteristic radius and the
total mass of two bodies. We obtain vescape is 2.9368 m/s of
Lundia and is 1.7533 m/s of Ostro. Bellerose and Scheeres
(2008b) proposed that the lander will slightly deform from
the impact with the asteroid and have a coefficient of restitu-
tion between 0 and 1. It means that the energy consumption
of a spacecraft will occur in the landing process. Therefore,
the velocity after impact is less than the landing velocity.
The largest landing velocities of the direct and indirect tra-
jectories are demonstrated in Table 8. One can easily see that
both the landing velocities of the Lundia and Ostro systems
are less than their corresponding escape velocities respec-
tively. Hence, the unstable manifolds of the Lyapunov orbits
near L2,3 are able to provide the fuel-free to achieve the bal-
listic landing to the surface of the asteroids.

4.3 Ballistic transfer

To detect the inner structures of both bodies of DSBAs on
site or take samples return to the earth, the spacecraft should
be given the ability to transfer between two bodies. As dis-
cussed in Sect. 3.4, the stable and unstable manifolds of the
periodic orbits of Family 12 and 26 provide the ‘conduits’ to
connect the two bodies of the Lundia system. Thus a space-
craft can be guided by the stable manifolds to reach the pe-
riodic orbit from the asteroid, and then land on the other
asteroid guided by the unstable manifolds. In this section,

Table 8 The largest landing
velocities of direct and indirect
trajectories varying as the Jacobi
constants

Velocity (m/s) C = −0.2088 C = −0.2076 C = −0.2064

Lundia Direct Trajectory – 2.9282 2.9310

Indirect Trajectory 2.9068 2.9137 2.9293

Ostro Direct Trajectory 1.7093 1.7184 1.7391

Indirect Trajectory 1.7092 1.7157 1.7321
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Fig. 13 The transfer trajectories guided by the stable and unstable
manifolds of the planar (a) and spatial (b) Lyapunov orbits near L1
around Lundia

Fig. 14 Illustration showing location and orientation of velocity vec-
tor as it intersects the surface

the major parameters of the planar and spatial transfer tra-
jectories, including the launching area, the landing area and
velocity are discussed.

For the planar cases, the transfer trajectories from the pri-
mary to the secondary are shown in Fig. 13(a) for instance.
Specifying the Jacobi constant gives the velocity magnitude
for each trajectory, whereas the location of the trajectory and

Fig. 15 The launching and landing velocities varying as their cor-
responding areas. (a) Transfer from the primary to the secondary.
(b) Transfer from the secondary to the primary

the orientation of the velocity are specified using α and θ , as
shown in Fig. 14. The variable α corresponds to the location
of the transfer trajectory on the surface of an asteroid, and θ

indicates the direction of landing velocity.
Figure 15 illustrates the landing and launching areas

varying as α at different energy levels. It is noted that
Fig. 15(a) demonstrates the transfer trajectories from the pri-
mary to the secondary while Fig. 15(b) shows the trajecto-
ries from the secondary to the primary. The color coded red
to indicate the stable manifolds and the blue dots indicate
the unstable manifolds. In addition, the different Jacobi con-
stants are represented by the different symbols. The landing
areas on the primary and the launching areas on the sec-
ondary are grouped mainly from α = 100◦ to α = 250◦,
namely, the left side of the body. On the other hand, the
launching areas of the primary and the landing areas of the
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Fig. 16 The launching and landing areas as well as velocities of spatial transfer trajectories varying as the Jacobi constants. Note that the (a) ∼
(c) and (d) ∼ (f) belong to the primary and the secondary respectively
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Table 9 The areas with the
lowest landing velocity on the
surface of asteroids

C = −0.3040 C = −0.3927 C = −0.4660

Primary (α,β) (degree) (331.6, 0.8) (220.8, 0.6) (196.1, 2.0)

Velocity (m/s) 2.63 2.48 2.24

Secondary (α,β) (degree) (125.3, −1.8) (50.1, 3.2) (19.3, −1.4)

Velocity (m/s) 2.37 2.15 1.86

secondary concentrate on from α = 0◦ to α = 80◦ and α =
280◦ to α = 360◦, or the right side of the body. As the energy
level increases, the invariant manifolds are shown to provide
the growing-larger coverage of landing and launching. The
landing velocity keeps from 1.8112 m/s to 2.6324 m/s vary-
ing as different Jacobi constants, as shown in Fig. 15. Ap-
parently, the spacecraft guided by the invariant manifolds is
unable to escape from the system when landing on the sur-
face of the body. Furthermore, the lowest landing velocities
can be found at the equator and opposite of binary alone x-
axis. Therefore, if we intend to minimize the impact effect of
a spacecraft as much as possible, the areas near the equator
are the suitable selection.

The planar transfer trajectories provide a convenient
framework to understand the ballistic transfer trajectories,
but the design of the real-world equivalent trajectories of-
ten requires a landing or launching at either higher or lower
latitudes. The spatial ballistic transfer trajectories using the
periodic orbits of Family 26 and their invariant manifolds
are shown in Fig. 13(b) It is noted that the same definition in
the planar problem is applied for α and β is measured like
latitude and is positive above the xy-plane.

The landing and launching areas as illustrated in Fig. 16.
The dash lines indicate the projection of the landing and
launching velocities on the surface of asteroids. The color of
the line indicates the elevation angle of the velocity, which
varies from −90° (blue) to 90° (orange). It can be imme-
diately seen that the landing and launching areas present
two ellipsoids in αβ-plane. As the energy level increases,
the areas become boarder. However, when the Jacobi con-
stant reaches a specific values (−0.3040 of Lundia), the ar-
eas become irregular and mainly group on the leading edge
α = 90◦ and the trailing edge α = 270◦ for both bodies.

The landing areas with the lowest velocity of Lundia are
also discussed, as shown in Table 9. It demonstrates that
these areas also exist near the equator of the asteroids. More-
over, the ‘velocity jump’ areas are found in Fig. 16. A space-
craft on these areas will change its direction of landing or
launching velocity suddenly. Probably it will lead a space-
craft be out of control when landing or launching. Thus the
further mission design of ballistic transfer should take these
points into consideration to ensure the success of landing
and launching processes.

5 Conclusion

This paper investigates the periodic orbits in the gravita-
tional field of the doubly synchronous binary asteroid sys-
tems. Two typical DSBAs, 809 Lundia and 3169 Ostro, are
discussed prominently. According to the observational char-
acterization, the two systems are modeled as two triaxial el-
lipsoids. The gravitational potential of the systems is calcu-
lated based on the Ivory’s theorem. The zero-velocity curves
and equilibrium points of the systems are discussed and all
of the equilibrium points of the systems proved to be non-
linearly unstable. Next, systematic searches of global pe-
riodic orbits around Lundia and Ostro are conducted by a
numerical method combing grid searching and differential
correction. A total of 30 families of periodic orbits around
Lundia and 28 families of periodic orbits around Ostro are
generated. By characterizing the morphology, stabilities and
invariant manifolds of these periodic orbits, the potential
applications in space mission are discussed. Several quasi-
circular orbit families with low instability index are found
to be suitable for the observation of the DSBAs. Further-
more, some periodic orbits near equilibrium points and their
invariant manifolds are proved to be able to offer the fuel-
free landing and transfer trajectories for binary exploration
mission.
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