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Abstract We present a numerical method based on the
polyhedral data of asteroid shape for simulation of individ-
ual grain’s dynamics around the asteroid surface, with ap-
plication to migration of regolith material on specific aster-
oid. Surface gravitational attraction and potential are com-
puted using polyhedral method with a correction on possible
singularities; asteroid surface is approximated with continu-
ous quartic Bézier patches based on the division of polyhe-
dral mesh, which provides sufficient geometrical informa-
tion for the simulation. Orbital motion and surface motion
are processed separately by checking if the particle touches
or leaves the surface. Collisions are treated as instantaneous
point-contact events with the local quartic curved surface.
The subpoint is recorded throughout the process to track the
ID of the particle. We provide full description of this method
including very detailed treatments in numeric. Several ba-
sic tests are conducted to examine the performance of this
method, and the potential application of this method is also
discussed. The test results of seismic regolith migration on
crater walls show consistent conclusions with former inves-
tigation.
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1 Introduction

It is established fact that the surfaces of most asteroids are
covered with an active layer of loose unconsolidated rocks
and dust, the regolith, which has formed from planetary ge-
ological processes since the solar system’s origin (Housen
et al. 1979; Housen and Wilkening 1982). And the mech-
anisms driving these dynamical processes are collectively
called space weathering, which has been widely discussed
during past decades (Clark et al. 2002). Measurements of the
spectra properties of asteroids provide important evidence
concerning the space weathering effects (Chapman 2004),
among which the most salient issue is so-called “S-type co-
nundrum” (Feierberg et al. 1982; Gaffey et al. 1993; Chap-
man 1995, 1996). The discovery of infilled, degraded craters
and retained marks of ejecta, obtained from in-situ explo-
rations of spacecrafts to several specific asteroids, shows
this weathering process is still at work (Sullivan et al. 1996;
Carr et al. 1994; Miyamoto et al. 2007; Veverka et al. 2001a,
2001b). Generally, for these airless small bodies of solar sys-
tem, the impingement by micrometeoroids and solar wind
particles is considered to be the dominant role in the space
weathering (Chapman 2004). The respective local interac-
tions could be very complicated and far-reaching in dynam-
ics: bombardment of different sizes of meteorites could be
accompanied with violent physical and chemical changes
such as seismic vibration, debris ejecting and reimpacting,
melting, vaporization and crystallization (Clark et al. 1992);
the energetic particles irradiating the surface of asteroids
could cause erosional changes and chemical modification,
including the iron implantation and sputtering (Moroz et al.
1996). Besides, for Near Earth Asteroids (NEA), the en-
counters with terrestrial planets are also considered to be
a factor of regolith resetting, that the tidal gravity may ex-
pose fresh materials on the surfaces (Nesvorny et al. 2010;
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Richard et al. 2010). It is also shown the thermal spin-up of
small bodies as a result of YORP effects can lead to regolith
motion on the surface (Scheeres et al. 2007).

A detailed look at the grains’ dynamics is apparently im-
portant and necessary for understanding of above weather-
ing processes, especially for the evolution of surface geol-
ogy for specific asteroid. A list of important applications
of granular dynamics in planetary science was mentioned
by Richardson et al. (2011), such as granular behaviors
under microgravity environment, effects of seismic vibra-
tion on regolith media, driving mechanisms for size sort-
ing/segregation of granular etc. (Rosato et al. 1987). New
particle-based numerical methods were presented and ap-
plied for the simulation of granular on small body and
planetary surfaces, with hard-sphere (HSDEM) and soft-
sphere (SSDEM) discrete elements employed respectively
(Schwartz et al. 2012). Flow models were applied to de-
scribe impact ejecta production and deposition behavior in
extremely low-gravity environment (Housen et al. 1983).
And Excavation Flow Properties Model (EFPM) was devel-
oped to individual impact’s properties after the Deep Impact
experiment at Comet Tempel 1 (Richardson et al. 2007).
Then a detailed three-dimensional Cratered Terrain Evolu-
tion Model (CTEM) was utilized to investigate the genera-
tion retention and migration of regolith (Richardson 2009).

Compared with the scope of holistic behaviors of numer-
ous particles or materials, a micro perspective is to exam-
ine the migration strategies of individual grain of the re-
golith during above processes, which would improve the un-
derstanding of local resurfacing effects for these physical
forces. This study needs to confront the challenges of com-
plexity of the dynamical environment and our poor knowl-
edge on the mechanical properties of asteroid regolith. The
irregular shape and heterogeneous constitution of asteroid
lead to an extraordinary global gravitational field near the
surface (Richardson et al. 2002; Ostro et al. 2002). The in-
teraction of grains with the rugged non-uniform surfaces
adds extreme random factors to the migrating motion, which
could be a mixed routine of hopping, sliding, twisting and
rolling. Under low gravity, the motion of grains might be-
come inertia-dominated, and other spatial forces, such as so-
lar pressure and van der Waals forces, might produce consid-
erable effects especially on the smaller-sized grains that pos-
sess relatively higher surface area (Richardson et al. 2011;
Scheeres et al. 2010; Richardson 2011). All these aspects
demonstrate the great importance of models with adequate
degree of sophistication; over-simplified models may lead
to the loss of essential properties of the migrating process.
Bellerose and Scheeres (2008) presented a general discus-
sion on dynamics of particles on the surface of a uniformly
rotating small body, which was modeled as a homogeneous
ellipsoid. Analytical tools for total migration distance were

developed in order to design the control laws of landing ve-
hicles on asteroid surface, showing the great interest of mod-
eling migrating grains for the design of landers and devices
for surface exploration (Cottingham et al. 2009). Before, the
initial conditions of ejecta fields generated from impacts on
the asteroid surface was discussed by Geissler et al. (1996),
including simulating results of landing locations of ejecta
launched from the giant crater Azzurra on 243 Ida. A ho-
mogeneous polyhedral model of Ida was applied in the cal-
culation of near-field gravity, and the migration of particles
after reimpacts was neglected. Basically, numerical methods
for dynamics of grains on asteroid surface are still limited to
date. A major obstacle for this work is the lack of knowl-
edge on the mechanical properties of asteroid regolith. It
is hard to completely determine the mineralogy of diverse
asteroids through reliance on Earth-based telescope remote
sensing, because the space weathering might happen to dif-
ferent degrees, which has not been understood well enough.
Several space missions involving in-situ analysis or sam-
ple return have been proposed or implemented (Farquhar
et al. 2002; Landshof and Cheng 1995; Russel et al. 2005;
Kawaguchi et al. 2005). High-resolution images of the sur-
faces of target asteroids (951 Gaspra, 243 Ida, 433 Eros,
25143 Itokawa and 4 Vesta) revealed remarkable details on
the terrain of the regolith and size distribution of gravels
(Belton et al. 1992, 1994; Zuber et al. 2000; Saito et al.
2006). Samples returned by Hayabusa mission provided in-
formation on the regolith formation of Itokawa, that the me-
teoroid impacts form much of the regolith particles and the
seismic-induced grain motion on surface abrades them over
time (Miyamoto et al. 2007). However, the mechanical fea-
tures of grains are difficult to be uniformly approximated
with a few parameters, which should be crucial for the accu-
racy of model. A feasible scheme is to correct the model by
changing or adjusting the parameters with the criterion of
experiments and observations. Once it is validated by suc-
cessful comparison, the model can be broadly utilized in di-
verse practical circumstances unreachable by spacecraft or
remote observations (Richardson et al. 2011).

In this paper, we present our method to model the mi-
gration of individual grain on asteroid’s surface, along with
its application in the regolith movement in the steep slope
of crater walls on asteroid 433 Eros. A global valid method
for gravitational field’s calculation is developed by correct-
ing possible singularities based on conventional polyhedron
method. Classical Bézier Patches are employed to gener-
ate G1 continuous surface over the polyhedral shape model
of asteroid (Thomas and Stephen 2010). Then the motion
of individual particle in any vicinal area is implemented
by checking two routines, the orbital equations and surface
equations, with a key technique called “ground tracing” in
the process. In Sects. 2, 3 and 4, we introduced this method
in great detail. Section 5 includes some basic tests for this
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method, i.e., to examine the accuracy of modified gravita-
tional model and to check the morphology of trajectories
near specific small bodies etc. We also demonstrate a pos-
sible application of this method to model regolith migration
in crater Psyche of Eros and make a comparison with former
observation and analysis.

2 Global gravitational field

Various methods were applied to evaluate the Newton’s
volume integral of practical target objects, which are cus-
tomarily approximated by ideal geometries, an aggrega-
tion of small elements or entire polyhedron (Forsberg 1984;
Hubbert 1948). For asteroids of unusual shapes, Werner and
Scheeres compared three typical methods to model the exte-
rior gravitational field near them, and found a great advan-
tage of polyhedral method on the convergence near the aster-
oid surface (Werner and Scheeres 1997). As a classical issue
in mechanics, the procedure of computing the potential of
an arbitrary polyhedron was referred to over hundred years
ago (Rausenberger 1888). However, only with the improve-
ments in digital computer technology during last decades,
this methodology has been further evolved and become fea-
sible in practice since it requires decomposition into a large
number of elementary units.

Generally, there were two basic ideas for computing the
attraction of arbitrary polyhedra: one is to divide the object
into unit volume elements (e.g. prisms), of which the gravi-
tational potential and attraction can be determined with an-
alytical formulas (Nagy et al. 2000); the other is to trans-
form the volume integral into summation of line integrals,
inspired by Hubert in 1948. The latter was then brought into
full development and successfully applied into the analysis
of asteroid missions. Several pioneering work came from the
issue on computation of gravitational and magnetic fields of
planets by applying Gauss’ divergence theorem twice: first
to surface and then to line integrals (Paul 1974; Plouff 1976;
Barnett 1976). Analytical formulas for the gravitational po-
tential and its derivatives of homogeneous polyhedra were
presented in compact manner to suit for computer pro-
gramming (Petrović 1996). And optimum expressions were
presented to appropriate for efficient calculations (Pohánka
1988). Equivalent formulas of potential and derivatives up
to second order were proposed through a different param-
eterization by Werner and Scheeres (1997), for which they
induced the solid angle subtended by a face viewing from
the field point (Werner 1994). These formulas were used
to precisely evaluate the actual dynamical environments
about specific asteroids during several in-situ explorations
(Scheeres et al. 1998; Yeomans et al. 1997). Recently, this
method’s application has extended to polyhedra with lin-
early varying density distribution (Hamayun et al. 2009).

In this section, we review the derivations of Werner and
Scheeres’ formulas and pay special attention to the possible
singularities in global field regime, including the field point
inside, outside the polyhedra and in the polygonal faces
and edges. The close forms of polyhedral potential and its
1-order derivative at arbitrary field point outside the polyhe-
dron are

U = −1

2
Gσ

∑

e∈Edge

re · Ee · reLe

+ 1

2
Gσ

∑

f ∈Face

rf · Ff · rf ωf , (1)

�U = Gσ
∑

e∈Edge

Ee · reLe − Gσ
∑

f ∈Face

Ff · rf ωf . (2)

In Eq. (1) and Eq. (2), G is the gravitational constant, σ is
the bulk density, an assumption of homogeneous density dis-
tribution is made in this method. re and rf are vectors from
the field point to the polyhedral points on edge e and face f ,
respectively. Constant edge dyad Ee and face dyad Ff are
determined by edge unit normal vectors and face unit normal
vectors, and the expressions are represented in Eqs. (7)–(8).
� is the gradient operator. The formulas Eqs. (3)–(4) present
the edge factor Le and trigonal solid angle ωf obtained from
respective integrations Eqs. (5)–(6) (Werner and Scheeres
1997).

Le = ln
a + b + e

a + b − e
, (3)

ωf = 2 arctan
r1 · (r2 × r3)

r1r2r3 + r1 · r2r3 + r2 · r3r1 + r3 · r1r2
. (4)

Where a, b are the distances from the field point to the ends
of the edge and e is the length of the edge; ri and ri (i =
1,2,3) are the vector and distance from the field point to the
three vertices of the triangular faces.

Le =
∫

e

1

r
ds, (5)

ωf =
∫

f

�z

r3
dS. (6)

Two classes of singularities might be caused during the
calculation following above routines: the first is the appli-
cation of Gauss’s divergence theorem with the conditions
violated, which occurs when the field point locates inside
the polyhedron or on its surface, making the integrated field
function discontinuous at this point (Petrović 1996); the sec-
ond is the numerical exceptions from Eqs. (3)–(4), resulted
by the infinite integrals in Eqs. (5)–(6) when there are zero
denominators in the integral area.

The second class can be corrected through examining
these exceptions. The line integral Eq. (5) becomes singu-
lar only when the field point falls onto the responding edge,
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and then the result of Eq. (3) turns to be infinite. Back to
the expressions of Eqs. (1)–(2), the multiplier of Le should
be expanded as Eq. (7) to determine the actual value of the
term, in which nA, nB are the unit normal vectors of two
faces connected by edge e, and nA

e , nB
e are the unit nor-

mal vectors of edge e, locating in faces A, B respectively.
A well-known solution is to exclude a small neighborhood
δe around the zero point, and then calculate the normal in-
tegration over the remaining area e◦ and approach the limit
as δe → 0. Since the vector from the field point to the edge
point re is vertical to nA

e and nB
e , the value of edge related

term Eq. (7) tends towards 0 vector when the field point is
on the segment line of corresponding edge.

Ee · reLe = (
nAnA

e + nBnB
e

) · re

∫

e

1

r
ds

= lim
δe→0

(
nAnA

e + nBnB
e

) · re

∫

e◦
1

r
ds = 0. (7)

Similar operation is used to the surface integral Eq. (6),
which becomes singular when the field point is inside the
polygon or at the boundary. First, exclude a small neigh-
borhood δf around the zero point, then calculate the nor-
mal integration over the remaining area f ◦ and approach the
limit as δf → 0. As shown in Eq. (8), the multiplier of ωf is
determined by unit vector nf and the vector from the field
point to the face point rf , which are vertical in the case of
singularity stated above, thus the term Eq. (8) tends towards
0 vector.

Ff · rf ωf = nf nf · rf

∫∫

f

�z

r3
dS

= lim
δf →0

nf nf · rf

∫∫

f ◦
�z

r3
dS = 0. (8)

Besides, since the numerator and denominator of formula
Eq. (4) are both signed, Werner and Scheeres (1997) sug-
gested to represent it as separate arguments in a computer
atan2 function to calculate the solid angle, which reduce the
exception cases of Eq. (4) to the points on the borders of the
face polygon. Then the optimum expressions of the gravita-
tional potential and attraction are represented by Eqs. (9)–
(10) with corrections to these numerical exceptions.

U = −1

2
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re · Pe(r) + 1

2
Gσ
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f ∈Face

rf · Qf (r), (9)

�U = Gσ
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e∈Edge

Pe(r) − Gσ
∑

f ∈Face

Qf (r). (10)

Where Pe(r) is vector function related affiliated with edge
e and Qf (r) is vector function affiliated with face f , de-
fined as Eqs. (11)–(12). r is field point vector; the operator—
indicates taking the boundary of area; Le is calculated by

formula Eq. (3), and ωf is calculated by formula Eq. (4)
with atan2 as the computer function.

Pe(r) =
{

0 r ∈ e

Ee · reLe r /∈ e
, (11)

Qr (r) =
{

0 r ∈ f̄

Ff · rf ωf r /∈ f̄
. (12)

To detect in numeric whether a field point is on a specific
edge of the polyhedron, specific numeric treatments must be
performed. A finite neighborhood of edge e is carved out
to declare the field point is on e if it is inside this neighbor-
hood, which is to ensure the numerical continuity of data and
the global valid computation of polyhedral method. Thus the
numerical exceptions of the second class is avoided. Further,
the singularities of the first class, which is more essential and
influential to the determination of global gravitational field,
are examined numerically. It was noticed for a long time that
possible singularities may be induced due to the twice appli-
cations of Gauss’s divergence theorem (Petrović 1996), and
solutions were proposed based on the formulas of pure line
integrals (Tsoulis and Petrović 2001). Traditional methods
of integral area division were employed and certain correc-
tion terms were taken into account to fix respective singu-
larities. However, for the mixed formulas of line integrals
and solid angles (9), (10), the theorem violation when the
field point lies inside or on the polyhedron seems benign.
Werner and Scheeres (1997) suspected these expressions are
still correct in the interior. We present numerical proves to
show these formulas could work at any field point on the
surface and in the interior of polyhedron (see Sect. 5.1).

As an aside, this global valid method is crucial in the
modeling of migrating granular, which provides detailed
evaluation of the dynamical environment near the asteroid
surface and enables us to take a special look at the granular
motion under a good approximation of the actual gravita-
tional field.

3 Bézier patches over polyhedra

Hundreds of asteroids have been detected by radar to date
(Ostro et al. 2002), and tens of them got adequate coverage
so that detailed three-dimensional models can be derived
with reconstruction technique (Hudson 1993). Meanwhile,
high-resolution images of nine asteroids have been trans-
mitted back from in-situ explorations of spacecrafts (Far-
quhar et al. 2002). Based on these observations, global to-
pography models (GTM) are exported generally in triangle-
meshed polyhedron for further analysis of laboratory re-
search (Neese 2004). These piecewise models provide rather
detailed information on geology of the asteroid surface, but
are still insufficient for modeling the migration of grains on
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Fig. 1 Subdivision of the polyhedral face �P1P2P3 and Bézier
patches. Point O indicates the origin inside the polyhedron, Pi

(i = 1,2,3) are numbers of vertices of the face, Z is the centroid of
the triangle, and cubic boundaries P̂1P2, P̂2P3, P̂3P1, P̂0P1, P̂0P2, P̂0P3
lie in the planes OP1P2, OP2P3, OP3P1, OP0P1, OP0P2, OP0P3, re-
spectively

asteroids. An essential barrier is the inconsistent states in
two connected triangles when grains moving in the surface
cross the medium edge.

The solution proposed in this section is to cover the poly-
hedron with patches of curved surfaces, which retain the
profile of the asteroid’s shape and portray more detailed ge-
ology of its surface. G1 continuous at the joint is required
for these patches in order to keep the position and veloc-
ity consistent as the particle crossing two connected sur-
faces. An algorithm is developed by Shirman and Séquin
(1987) to generate the local interpolated surface for meshes
of cubic curves, which is directly applied to the triangle-
meshed polyhedral model of asteroid. A union of geomet-
rically continuous quartic Bézier patches is represented via
two steps: first to construct the cubic curves between the
polyhedral vertices and the second is to fill the mesh with
Bézier patches. A brief report was published later to fix the
errors of original triangular patch subdivision scheme and
present an improved quadrilateral subdivision scheme (Shir-
man and Séquin 1991).

For arbitrary face of the polyhedral model, this algorithm
starts by subdividing the face into three small triangles as
shown in Fig. 1. Then 31 control points are determined on
these flat subpatches to generate coplanar cubic curves with
the pyramid faces. Three Bézier patches can be filled be-
tween these cubic boundaries to satisfy the geometric conti-
nuity (G1) on them.

The derivation of the Bézier patches are omitted here
and referred to Shirman and Séquin (1991) The expressions
of these subpatches are represented in local affine frame
(u, v), as illustrated in Fig. 2. Unique ID, composed of face
number and patch number, is assigned to each subpatch,
which is identified in turns of the vertex number of the
face. Local frame (u, v) is defined with analogue orienta-
tion as Fig. 2, and the ranges of coordinates are normalized:
0 � u � 1, 0 � u � 1 − v. Then the uniform expressions of
the three Bézier patches over arbitrary face are represented

Fig. 2 Identification of the three patches of arbitrary face f and corre-
sponding local associated local frames. The patch numbers follow the
order of vertices P1, P2, P3 of face f

in Eq. (13).

r = S
(
u,v;ai

1,ai
2, . . . ,ai

15

)
. (13)

Where subscript i = ID2 = 1,2,3 indicates the correspond-
ing subpatch, the residual w = 1−u−v, and ai

1,ai
2, . . . ,ai

15
are vector parameters determined by the control points of
face f , and their expressions are omitted here (Shirman and
Séquin 1991). In addition, Eq. (13) is represented as quartic
homogeneous polynomial of u, v and w, which is C∞ con-
tinuous in the subpatches and G1 continuous on the cubic
boundaries. Actually, since the three patches of each face are
coplanar for our polyhedron, the Bézier triangles are proved
to be C1 continuous on the boundaries (Wilson 2007).

These patched quartic Bézier triangles construct a global
surface of asteroid out of the polyhedral model, and provide
fine smoothness to meet our requirements of simulation of
migrating grains on asteroids. An important reason for us
to consider this tedious geometric processing is: abundant
actual geographic information taken into account may help
to sketch the broad outlines of what happened during the
surface migration of specific asteroid. And this would give
us more detailed evidences on several significant events of
the asteroid evolution.

4 General strategy

In our approach, the motion paths in/above different sub-
patches are traced via projecting to the polyhedral surface
at each integration step, thus the current ID and local coor-
dinates are always recorded. A classical Runge-Kutta inte-
grator with two time steps in used: the great step is adopted
in the integration of orbital motion in far-field regime for
efficiency, and the small one is adopted for integration of
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motion in and near the curved surfaces. A unit massive par-
ticle is considered for processible geometries, and its global
trajectory could be seen as a chain of orbiting and sliding
above/on the surface with links of instantaneous collision or
liftoff. The equations of orbital motion and surface motion
are represented respectively in the asteroid body-fixed frame
and in the local frames associated with the subpatches. Col-
lision searches are performed during the trajectory in near
field by comparing the distances of field point and the pro-
jective point at each step. The switches between two modes,
orbiting and sliding, are triggered primarily when the sign
of normal contact force alternates: for a liftoff from slid-
ing to orbiting, it is + to −; for a touchdown from orbit-
ing to sliding, which is more complicated, the amplitude of
the next hop should be first measured, when it is negligi-
ble and the contact force is +, the switch will be triggered.
And due to the complex gravity field and irregular shape
of surface, there is no analytical solution for the particle
motion and all these operations will be conducted numeri-
cally.

4.1 Motion equations

4.1.1 Orbital motion

Considering the main perturbations in the near field, the mo-
tion equations are stated in the body-fixed frame, which is
rotating uniformly about the pole axis of asteroid. Scheeres
et al. (1998) presented a complete form of orbital equa-
tions of a unit massive particle around asteroid in the body-
fixed Cartesian frame, which describe an autonomous sys-
tem Eq. (14).

r̈ + 2ω × ṙ + ω × (ω × r) = − � U. (14)

Where ω is the angular velocity vector of asteroid. Consider-
ing the near-regime field motion, the perturbations from the
sun and planets are ignored in Eq. (14). Introduce the defi-
nition of effective potential Eq. (15) which is the combina-
tion of the centrifugal and gravitational potentials, Eq. (14)
is then represented by Eq. (16).

V = −1

2
(ω × r) · (ω × r) + U, (15)

r̈ + 2ω × ṙ = − � V, (16)

J = 1

2
rṙ − 1

2
(ω × r) · (ω × r) + U. (17)

Noticing the dissipationless form of system Eq. (16), it
can be proved to be a Hamiltonian system, and the general-
ized energy integral value Eq. (17) could be used as a verifi-
cation of the simulation.

Fig. 3 The local frame on surface of Bézier patch ID = (f, i). The
origin locates at the position of the particle and three axis vectors point
to Su, Sv and n. The khaki plane indicates the tangent plane of surface
at the particle position

4.1.2 Surface motion

Obviously, the particle’s travel in the curved surface can be
resolved into that of each Bézier patch in our approach. For
arbitrary subpatch ID = (f, i), we define the local affine
frame fixed at the contact point of the particle and surface
(see Fig. 3). Su and Sv indicate the partial derivatives vectors
of surface equation Eq. (13) respect to the local coordinates
(u, v), and n is the unit normal vector of the patch pointing
out of the asteroid body, determined by Eq. (18).

n = Su × Sv

‖Su × Sv‖ . (18)

Note n points in the direction of the surface gradient, and
Su, Sv span the tangent plane and constitute its bases, so the
velocity of the particle can be expressed as Eq. (19).

ṙ = Suu̇ + Svv̇. (19)

Formula Eq. (19) can be seen as the first-order time
derivative of Eq. (13), and the second-order time derivative
yields Eq. (20).

r̈ = Suuu̇
2 + 2Suvu̇v̇ + Svvv̇

2 + Suü + Svv̈, (20)

where Suu, Suv and Svv are the second-order partial deriva-
tives vectors of Eq. (13). Relatively, the surface motion turns
to be two-dimensional, and the contact force from the sur-
face should be introduced to system. Thus, the motion equa-
tions in body-fixed frame of asteroid are obtained by adding
terms of contact force to Eq. (16). In Eq. (21), a simplified
version of rigid contact force is applied to the massive par-
ticle model, which includes one-sided supportive force and
linear kinetic friction.

r̈ + 2ω × ṙ = − � V + Nn − μN ˆ̇r. (21)

Where N is the amplitude of normal supportive force, and
μ is the coefficient of dynamic friction. The expression of
Eq. (21) contains three terms of Coriolis force, potential
force and the contact force, which dominates a dissipative
system. Since Eq. (21) has a redundant degree of freedom,
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it should be represented with local coordinates (u, v). Sub-
stituting Eq. (13), Eq. (19), Eq. (20) to Eq. (21), it yields

Suü + Svv̈ = Nn − F, (22)

F = �V ◦ S + μN
Suu̇ + Svv̇

‖Suu̇ + Svv̇‖ + 2ω × (Suu̇ + Svv̇)

+ Suuu̇
2 + 2Suvu̇v̇ + Svvv̇

2. (23)

Where F is a collection of terms for brevity, as presented
in Eq. (23). ◦ indicates compound operation between func-
tions. Noticing n · Su = 0 and n · Sv = 0, Eq. (22) does dot
product with Su and Sv , respectively, it yields

[
Su · Su Su · Sv

Sv · Su Sv · Sv

][
ü

v̈

]
= −

[
Su · F
Sv · F

]
. (24)

Since Su and Sv are always independent, the coefficient
matrix of this two-dimensional system is nonsingular, which
determines the solution to Eq. (24) is unique. Therefore,
Eq. (24) describes an explicit form of autonomous dynami-
cal system, which is easy to deal with during integration.

N = n · F. (25)

The normal supportive force should be calculated at ev-
ery integral step to check the facility of the surface motion.
Only positive value of N indicates valid motion on surface,
since the constraint is one-sided. The expression of N yields
Eq. (25), derived from Eq. (22) with dot product by n.

4.1.3 Collision

The condition for the particle to collide with the surface be-
tween two steps is

‖rk‖ >
∥∥S(uk, vk)

∥∥ ∩ ‖rk+1‖ �
∥∥S(uk+1, vk+1)

∥∥. (26)

Where rk , rk+1 are the position vectors at steps tk and tk+1,
(uk, vk) and (uk+1, vk+1) are respective local coordinates at
current subpatch. This condition is inspected for every step
during the orbiting motion in the near field. Since the time
step is really tiny, local linear approximation is applied to
determine the position and velocity at collision following
routines Eqs. (27)–(31).

λ1 = (‖rk‖ − ‖S(uk, vk)‖)‖rk+1‖
‖rk‖‖S(uk+1, vk+1)‖ − ‖rk+1‖‖S(uk, vk)‖ , (27)

λ2 = (‖rk‖ − ‖S(uk, vk)‖)‖S(uk+1, vk+1)‖
‖rk‖‖S(uk+1, vk+1)‖ − ‖rk+1‖‖S(uk, vk)‖ , (28)

(
u0, v0) = (1 − λ1)(uk, vk) + λ1(uk+1, vk+1), (29)

r− = S
(
u0, v0), (30)

ν− = λ2ṙk + (1 − λ2)ṙk+1. (31)

Fig. 4 Dynamics of collisions for particle on the tangent plane at the
contact point. ν−, ν+ are the relative velocities before and after the
collision, coplanar with the normal vector n. t is the tangent vector of
the surface in the velocity plane. The red arrows indicate the contact
forces during collision

Where the virtual position r0 is used as an intermediate vari-
ant to determine the local coordinates of the contact point
(u0, v0), and the approach is illuminated in Sect. 4.2. The
position and velocity vectors at contact point is determined
by Eqs. (30)–(31).

As illustrated in Fig. 4, particle impacting on the tan-
gent plane at the contact point has an incoming velocity ν−
and a outcoming velocity ν+, which are coplanar with the
norm direction of surface at the point. Collisions are treated
as instantaneous events with a configurable amount of en-
ergy loss due to restitution and surface coupling. The normal
restitution is parameterized by coefficient εn, s.t. 0 � εn � 1,
where 0 indicates perfectly inelastic collision, and 1 indi-
cates ideal elastic collision. The tangent coupling of surface
is parameterized by coefficient εt , s.t. −1 � εt � 1, where
−1 indicates reversal of tangent velocity, 0 indicates com-
plete damping of tangent motion and 1 indicates no tangent
coupling.

ν− = ν−
n + ν−

t , (32)

ν+ = −εnν
−
n + εtν

−
t . (33)

Equations (32)–(33) represent the normal and tangent
components of the incoming and outcoming velocities dur-
ing collision. For instance, εn = 0, εt = 0 means the particle
is stuck when touching the surface; εn = 1, εt = 1 means
perfect bouncing by smooth surface. In practice, it is more
likely that the particle has slight restitutions both in the nor-
mal and tangent directions, meaning εn and εt take some
values between 0 and 1.

4.2 Ground trace

According to our model, the particle motion is a mixed rou-
tine of orbiting and sliding linked by instantaneous colli-
sion and liftoff. An obvious difficulty is to build a simulation
scheme which enables automatic conversion between differ-
ent motion modes. Since the orbital motion is represented
in asteroid body-fixed frame, and the surface motion is rep-
resented with local coordinates of patches of the polyhedral
surface, it is necessary to identify the subpatch beneath the
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Fig. 5 The ground trace (white line) of arbitrary trajectory (dark line).
r is point of the trajectory, Q is the projection on the polyhedral sur-
face, points 1, 2, 3 are the positions of crossing different patches

particle at each step. Then the local coordinates of the par-
ticle’s projection on the Bézier subpatch can be derived and
the surface motion connected with the orbital motion will
continue. A barrier in numeric should be noticed that search-
ing the subpatch ID through all the faces of the polyhedron
at each step during orbiting would cost too much both be-
cause of the tiny step value and the huge number of faces
for real asteroid model. In this section, we will present our
solution to implement efficient global tracing of the particle
motion.

Our approach is based on a class of objects called star-
shaped, meaning there exists a point in the interior of the
object from where the whole object is visible. In practice,
most asteroid polyhedral models have this property, so it is
still of wide universality. As illustrated in Fig. 5, each point
of the trajectory, either on orbit or in surface, can be uniquely
mapped to the two-dimensional projection on the patched
polyhedral surface, named ground trace, which is evidently
continuous on the triangle patches for any trajectories of the
particle. It means the local coordinates of the ground trace
are continuous as the particle moving, though local ID is
being updated sporadically. Thus the ground trace will play
as a link between different motion modes. Specifically, the
sliding part of the trajectory possesses the same ID and lo-
cal coordinates (u, v) with its ground trace, which adds no
calculation amount; for orbiting part, it takes some cost to
position its projection in ground trace: since the initial ID
is provided and all the crossing events will be recorded and
marked, we ensure the patch ID will never lost during the
motion. Then the local coordinates (u, v) are determined by
projecting formulas Eqs. (34)–(35).

u = − r × p1 · (p3 − p1)

r × (p2 − p1) · (p3 − p1)
, (34)

v = − r × p1 · (p2 − p1)

r × (p3 − p1) · (p2 − p1)
. (35)

Fig. 6 Six boundaries of
arbitrary patch

Table 1 Regions of the boundaries

Boundary Coordinates

B1 0 � v � 1, u = 0

B2 0 � u� 1, v = 0

B3 u + v = 1, u � 0, v � 0

B4 u = 0, v = 0

B5 u = 1, v = 0

B6 u = 0, v = 1

Where p1, p2, p3 are the vectors of three vertices of the
triangle patch with the ID given. The triple product of the de-
nominator is nonzero due to the assumption of star-shaped.
Figure 5 also shows when the ground trace touches the
boundaries of the triangle patches. We defined six bound-
aries for any patch, as illustrated in Fig. 6, and the corre-
sponding regions of local coordinates are listed in Table 1.

B1, B2, B3 are edge boundaries and B4, B5, B6 are ver-
tex boundaries. With current ID given, the ground trace lo-
cates in the patch only if 0 � u � 1 and 0 � v � 1 − u,
therefore the crossing events are detected only when this
criterion is broken. The ID should be first updated with
the ID of the neighbor patch sharing the same boundary,
as illustrated in Fig. 7. Nevertheless, the two cases, cross-
ing through edges (Fig. 7(a)) and crossing through vertices
(Fig. 7(b)), must be treated separately. For the vertex case,
because there are more than one neighbor patches at the
crossing vertex, searching is required to find the real next
patch that the ground trace will pass. Here a convenient way
is to compare the edge vectors by projecting all neighbor
patches to the current plane. After the new ID determined,
the local coordinates at k +1 step should be reset back to the
crossing point (u0, v0) to avoid skipping the real next patch,
and then the new local coordinates (u′

k+1, v
′
k+1) of crossing

point could be calculated with the updated ID following the
correspondences in Table 2.

The continuous ground trace ensures consistent states of
the particle when crossing between different patches. Linear
interpolation is applied to approximate the states at the cross
point by following Eqs. (36)–(41), respectively for orbiting
part and sliding part.

η = (u0 − uk)(uk+1 − uk) + (v0 − vk)(vk+1 − vk)

(uk+1 − uk)2 + (vk+1 − vk)2
, (36)

(
u0, v0) → (

u′
k+1, v

′
k+1

)
. (37)
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Fig. 7 Two cases when the ground trace crosses the boundary of cur-
rent patch. k is the current step and k + 1 is the first step to violate the
inside criterion. f1, i1 and f2, i2 are the ID of the current patch and
next patch, respectively

Table 2 Local coordinates on boundaries belonging to two connected
patches

ID = (f1, i1) (u0, v0) ID = (f2, i2) (u′
k+1, v

′
k+1)

B1 (0, v) B3 (1 − v, v)

B2 (u,0) B2 (1 − u,0)

B3 (u,1 − u) B1 (0,1 − u)

B4 (0,0) B4 (0,0)

B5 (1,0)

B5 (1,0) B4 (0,0)

B5 (1,0)

B6 (0,1) B6 (0,1)

For surface motion, Eqs. (38)–(39) are carried out to de-
termine the sliding velocity in local frame.

(
u̇0, v̇0) = η(u̇k+1, v̇k+1) + (1 − η)(u̇k, v̇k), (38)

Su

(
u′

k+1, v
′
k+1

)
u̇′

k+1 + Sv

(
u′

k+1, v
′
k+1

)
v̇′
k+1

= Su

(
u0, v0)u̇0 + Sv

(
u0, v0)v̇0. (39)

For orbital motion, Eqs. (40)–(41) are carried out to de-
termine the position and velocity vectors in asteroid body-
fixed frame.

r0 = ηrk + (1 − η)rk+1, (40)

ṙ0 = ηṙk + (1 − η)ṙk+1. (41)

Thus the uniform global trajectory of the particle is de-
termined by following the ground trace between different
patches. The remaining problem is to switch between or-
biting and sliding modes, which will finally implement the
simulation of the particle’s free motion on/around the as-
teroid surface. According to our model, a simple principle
is adopted for a quick switch between two motion modes.
As illustrated by Fig. 8, the sliding particle lifts off the sur-
face only if N turns negative, determined by Eq. (25). Then
the following trajectory should be obtained by integrating
orbital equations Eq. (16), with the initial conditions deter-
mined using Eq. (13) and Eq. (19). On the other hand, colli-

Fig. 8 Switches between the orbiting mode and sliding mode. The
red line indicates the surface trajectory and the dark line indicates the
orbital trajectory. The dotted line in (a) indicates a ‘tricking’ surface
trajectory with negative N ; the dotted line in (b) indicates a ‘tricking’
hop which is neglected in numeric

sion is detected when the orbiting particle falls down to the
surface, and the following motion mode depends on the nor-
mal and tangent components of the outcoming velocity ν+:
the normal component ν+

n represents a hop in the normal di-
rection, and the necessary condition for sliding is this hoping
time should be small enough to be ignored. In our numeri-
cal operation, a comparability criterion Eq. (42) is derived
with parabolic approximation, which implies the resolution
of the numerical integral is insufficient to capture the shape
of this slight hop. Meanwhile, if the tangent component ν+

t

satisfies the condition of positive N , the switch will be per-
formed.

2
ν+
n

an

∼ δt. (42)

Where δt is the integral step and an is the normal component
of the potential force − � V .

5 Basic tests

A suite of simple tests was developed to examine the per-
formance of the methodology proposed in this paper. Ex-
amples include testing the validity of the modified gravita-
tional model near the surface of the polyhedron, checking
the morphology of orbits in different working conditions,
and applying the method to survey the seismic behaviors of
regolith material on the inner walls of a specific crater.

5.1 The gravitational field of a homogeneous sphere

A homogeneous sphere is first considered for its gravita-
tional potential and attraction are analytically determined
both at exterior and interior. Figure 9 presents two poly-
hedral models of a unit homogeneous sphere with different
surface grids. Figure 9(a) indicates a standard grid gener-
ated following the latitude and longitude, including 2114
vertices and 4224 faces, and Fig. 9(b) indicates a grid gen-
erated following a random strategy, including 2048 vertices
and 4096 faces. This section will check the approximation
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Fig. 9 The surface grids of the unit sphere generated with different
divisions

Fig. 10 The comparison of the gravitational potential and attraction
derived from analytical formulas and modified polyhedral model. The
solid line indicates the theoretical value, the crosses indicate the re-
sults from the polyhedron of standard grid, and the circles indicate the
results from the polyhedron of random grid

of the modified polyhedron method with these two grids em-
ployed (both of high resolution).

Assuming the density of the unit sphere is 1, the gravi-
tational potential and attraction in arbitrary radial direction
are

U =
{

2π
3 (r2 − 3) r � 1

− 4π
3 r > 1

, (43)

�U =
{

4π
3 r r � 1
4π

3r2 r > 1
, (44)

where r is the distance from the center of the sphere to the
field point. Figure 10 illustrates the theoretical values of the
gravitational potential and radial attraction for r from 0 to 2,
together with the results derived from the modified gravita-
tional model with different surface grids.

As shown in Fig. 10, the values at the test points are ex-
actly consistent from the interior to the exterior, especially

Fig. 11 The typical motions near/on the surfaces of a homogeneous
sphere and the model of asteroid 2063 Bacchus. The numbered trajec-
tories marked with different colors indicate the typical motion patterns

for the test point at the edge/face of the polyhedron where
the singularity has been fixed.

5.2 Example trajectories near small bodies

This section gives some examples for trajectories near/on
the surface of specific small bodies, to check the perfor-
mance of our method to mimic the motions in different
working conditions, and to demonstrate the possible patterns
of these motions. Figure 11 illustrates the typical motions
around a non-rotating homogeneous sphere (a) and those
around asteroid 2063 Bacchus (b).

The polyhedral model of unit sphere with random surface
grid is applied (see Fig. 9(b)). Figure 11(a) shows three tra-
jectories initialized at the same position and with the same
velocity direction: trajectory 1 indicates the escaping mo-
tion when the initial velocity exceeds the escaping speed;
trajectory 2 indicates the elliptic periodic orbit surrounding
the central sphere when the magnitude of the initial velocity
is moderate; and trajectory 3 indicates the collisional orbit
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when the initial velocity is quite small, followed by hopping
on the spherical surface and damped out eventually.

A normalized polyhedral model of Bacchus is used in
this section, including 2048 vertices and 4092 faces. Hy-
pothetically, take the bulk density 2.44 g/cc and the period
14.9 h, and assume the dynamic friction coefficient μ = 0.6,
the static friction coefficient μS = 0.7, the normal restitu-
tion coefficient εn = 0.6 and the tangent coupling of sur-
face εt = 0.9. Figure 11(b) shows four trajectories initialized
at the same position with different velocities. Trajectories 1
and 2 have similar initial velocities and experience a serious
separation after collisions, which indicates a high sensitivity
to the initial conditions, thus the mixed orbital motion and
surface motion can be very unstable in dynamics. Trajec-
tory 3 indicates a general conversion from orbital motion to
surface motion, experiencing a transition composed of a se-
quence of hops, and then the test mass point stops at the bot-
tom of a crater. Trajectory 4 indicates the conversion from
surface motion to orbital motion, when the sliding speed ex-
ceeds the local separating speed and then the mass point lifts
off Bacchus’ surface.

5.3 Regolith transport in crater Psyche of 433 Eros

High-resolution images of Eros from the NEAR Shoemaker
spacecraft have revealed variant albedo, especially on steep
crater walls (Veverka et al. 2001a, 2001b), which indicates
the downslope movement of the weathered material. Metic-
ulous survey shows several features of these bright and dark
patterns such as the distribution and thickness of the weath-
ered layer, and the general connection with the gravitational
slope (Thomas et al. 2002). Analysis on the mechanism re-
sponsible for the regolith transport suggests the degree and
rate to expose the bright region should be a key factor since
the space weathering is meanwhile going on. The impact-
related processes are considered as an important mechanism
responsible for the downslope movement of regolith because
the impacting event lofts local particles and causes a seis-
mic shaking which makes wide and continuous effects on
the landslide of the regolith (Mantz et al. 2004). Cheng et al.
(2002) applied simplified model to demonstrate the depen-
dence of slope failure on the strength of seismic shaking.
The analysis shows the downslope motion is sensitive to
the local gradient, such as on ponds and crater walls. And
the observed contrast boundaries of the bright region seems
more like to be formed in repeated small disturbance such as
seismic shaking than in direct impacting (Mantz et al. 2004).

We survey the seismic behavior of regolith material on
crater walls with our method employed. Due to the obser-
vation, the shifts of grains in regolith do not cover the en-
tire length of long slopes, so downslope movement should
be low-momentum that the migrating grains must be halted
by friction of the surface before reaching the bottom of the

Fig. 12 Map of the 5.3 km crater Psyche. Color map (a) shows the
slope of the crater walls ranging (2°, 35°); gray map (b) shows the
topography of Psyche and the vectors indicate the shifts of the sample
particles following initial disturbance

crater. And the bright albedo regions form by accumulation
during frequent seismic shaking. Richardson et al. (2004)
stated the activity of impact-induced seismic on Eros sur-
face modification process and developed global modeling
method to analyze the response of regolith covered craters.
In this section, the crater Psyche on Eros is examined for
distinct bright and dark markings are presented in its inner
walls (Mantz et al. 2004). The surface seismogram depends
on the size of the impactor and the distance away from the
impacting point. Comparing with the magnitude of surface
gravity of Eros 10−4 g, a relatively large disturbance from
seismic shaking is adopted that the initial lifting velocity
is uniformly set to 10−1 m/s normal to the surface. Fig-
ure 12(a) illustrated the slope map in crater Psyche, which
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is determined from the gravitational attraction, centrifugal
force and the local topography based on the global shape
model of Eros (Gaskell and Neese 2008) with a surface res-
olution of ∼ 110 m. This colormap correlates with the bright
and dark regions on large scales while not on finer scales,
implying the gravity, centrifugation and topography are ma-
jor factors for general trends of regolith movement and other
mechanisms take effects more locally.

The critical values of friction coefficient determined from
the slopes are used to estimate proper value in our model.
Uniform dynamic friction coefficient μ is set as 0.6; static
friction coefficient μS is 0.7. And setting the normal restitu-
tion coefficient εn = 0.6 and the tangent coupling of sur-
face εt = 0.9, Monte Carlo simulations are carried out
throughout the crater area. ∼5000 particles are employed
to sketch the regolith movement at relative high resolution.
Figure 12(b) illustrates the distribution of the shift vectors at
sample particles.

In Fig. 12, the distribution of the shifting vectors caused
by seismic shaking is slope related: particles originally at
steep slope shift farther than those at gentle slope, which is
consistent with the analysis by Mantz et al. (2004); the shift-
ing directions are generally correlated with local gradient
towards the shallower of the crater. To take a detailed look
at the connection between the slope and shift, sample parti-
cles are projected into a polar coordinate system. The local
mean slope and mean shift at each polar area are illustrated
in Fig. 13(a) and Fig. 13(b), which are in similar trend: the
value (mean slope and shift) grows as the polar radius in-
crease, and double peaks at large radius around ∼120° and
∼250°.

The connection between high albedos and steep slopes
has been established for crater walls on 433 Eros (Thomas
et al. 2002; Mantz et al. 2004). Above simulations survey
this problem from a view of individual particle behaviors,
and the results show: the movement of regolith is primarily
slope dependent, steep slopes lead to much faster shifting
of the regolith material down to the shallower than gentle
ones; this downslope movement caused by seismic shaking
is basically low-momentum, and the steady state of the re-
golith is achieved as a balance with weathering effects; ir-
regular boundaries and multiple units of the large-shifting
region (similar as the high albedo region in Psyche) suggest
the mobilized regolith is halted by friction and changes in
topography. Consequently, the results support that seismic
shaking should be a key factor in the formation of the high
albedo regions in crater walls on Eros, which also work as a
test of this method.

6 Conclusions

New numerical method based on the polyhedral shape data
of asteroid is developed for simulating the migration of re-

Fig. 13 Histograms of slope (a) and shift (b) in polar coordinates, with
mean values of data in z-axis

golith material. Possible singularities on the surface in for-
mer gravitational polyhedral method are fixed and Bézier
patches are used to generate geometrically continuous sur-
face. Ground trace is employed as a numerical technology
to locate the particle on and above the piecewise surface
model. The validity of the modified gravitational model is
verified using a homogeneous sphere, which enables a com-
parison with the theoretical results. Example trajectories
near/on the surface of specific small bodies are generated in
numeric, demonstrating the possible motion patterns in dif-
ferent working conditions. Applications of this method are
finally discussed, especially for grains’ seismic migration on
crater walls of asteroid 433 Eros, showing good match of the
regolith behaviors from former analysis and observation. In
summary, our approach currently is still crude for examin-
ing very detailed geographic processes on specific asteroid,
since it adopted globally uniform surface parameters of me-
chanics and simple particle model of grains in regolith. The
advantage is irregular topography and relatively precise sur-
face gravity are introduced into modeling of the grains’ dy-
namics, which could be profitable for revealing the nature of
regolith migration in diversified terrains.
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