
Astrophys Space Sci (2014) 354:517–524
DOI 10.1007/s10509-014-2131-4

O R I G I NA L A RT I C L E

Quark star model with charged anisotropic matter

Jefta M. Sunzu · Sunil D. Maharaj · Subharthi Ray

Received: 27 July 2014 / Accepted: 12 September 2014 / Published online: 25 September 2014
© Springer Science+Business Media Dordrecht 2014

Abstract We find two new classes of exact solutions to
the Einstein-Maxwell system of equations. The matter dis-
tribution satisfies a linear equation of state consistent with
quark matter. The field equations are integrated by speci-
fying forms for the measure of anisotropy and a gravita-
tional potential which are physically reasonable. The first
class has a constant potential and is regular in the stellar in-
terior. It contains the familiar Einstein model as a limiting
case and we can generate finite masses for the star. The sec-
ond class has a variable potential and singularity at the cen-
tre. A graphical analysis indicates that the matter variables
are well behaved.

Keywords Gravitational potential · Linear equation of
state · Quark matter · Measure of anisotropy

1 Introduction

The nonlinear Einstein-Maxwell field equations are neces-
sary for the description of the behaviour of relativistic grav-
itating matter with or without electromagnetic field distri-
butions, and they are tools for modeling relativistic com-
pact objects such as dark energy stars, gravastars, quark
stars, black holes and neutron stars. With the help of diverse
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solutions of the field equations and different matter con-
figurations, the structure and properties of relativistic stel-
lar bodies have been investigated. This is reflected in sev-
eral investigations over the recent past. Models of neutral
compact spheres with isotropic pressures have been stud-
ied by Murad and Pant (2014), Mak and Harko (2005), and
Sharma et al. (2006). The case of neutral anisotropic mat-
ter was investigated by Paul et al. (2011), Harko and Mak
(2002) and Kalam et al. (2012, 2013). Charged isotropic
compact models are highlighted by Gupta and Maurya
(2011a, 2011b), Negreiros et al. (2009), Murad and Fatema
(2013), and Bijalwan (2011). The general model with charge
and anisotropy was analysed by Esculpi and Aloma (2010),
Mafa Takisa and Maharaj (2013a) and Rahaman et al.
(2012). Several interesting features of exact solutions to
the Einstein-Maxwell system for charged anisotropic quark
stars were highlighted in the treatments of Maharaj et al.
(2014) and Sunzu et al. (2014).

The effect of the electromagnetic distribution and pres-
sure anisotropy are important ingredients to be consid-
ered when undertaking studies of relativistic stellar ob-
jects. Ivanov (2002) highlighted the fact that the presence of
charge in a compact stellar matter contributes to changes in
the mass, redshift and luminosity. It was shown by Sharma
et al. (2001) that charged models could allow causal sig-
nals in the stellar interior over a wide range of parameters.
On the other hand, Dev and Gleiser (2002) demonstrated
that pressure anisotropy affects the physical properties, sta-
bility and structure of stellar matter. The stability of stel-
lar bodies is improved for positive measure of anisotropy
when compared to configurations of isotropic stellar objects.
Furthermore the maximum mass and the redshift depend
on the magnitude of the pressure anisotropy as illustrated
by Dev and Gleiser (2003) and Gleiser and Dev (2004).
They also showed that the presence of anisotropic pressures
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in charged matter enhances the stability of the configura-
tion under radial adiabatic perturbations when compared to
isotropic matter. There have been many recent investiga-
tions which include the presence of charge and anisotropy
in the stellar interior. For example, Maharaj and Mafa Tak-
isa (2012) presented regular models for charged anisotropic
stellar bodies, generalized isothermal models were found by
Maharaj and Thirukkanesh (2009), and superdense models
were investigated by Maurya and Gupta (2012). Other new
exact solutions for charged anisotropic stars are contained
in the treatment of Mafa Takisa and Maharaj (2013b). Some
other models describing anisotropic static spheres with vari-
able energy density include the works of Cosenza et al.
(1981), Gokhroo and Mehra (1994) and Herrera and Santos
(1997).

On physical grounds for a stellar model we should in-
clude a barotropic equation of state so that the radial pres-
sure is a function of the energy density. Exact models of
charged anisotropic matter with a quadratic equation of state
were found by Feroze and Siddiqui (2011). Using the same
equation of state, Maharaj and Mafa Takisa (2012) generated
regular models for charged anisotropic stars. A strange star
model with a quadratic equation of state was recently gener-
ated by Malaver (2014). Polytropic models were analysed by
Mafa Takisa and Maharaj (2013b) for charged matter with
anisotropic stresses. Malaver (2013a, 2013b) found charged
stellar models with a Van der Waals and generalized Van
der Waals equation of state respectively. Anisotropic mod-
els with a modified Van der Waals equations of state are con-
tained in the paper by Thirukkanesh and Ragel (2014). Other
relativistic stellar models with a Van der Waals equation of
state are studied in the treatment of Lobo (2007). However
for a quark star we require a linear equation of state. The first
treatment of quark stars was undertaken by Itoh (1970) for
hydrostatic matter in equilibrium. Since then there have been
many investigations on the study of structure and properties
of quark matter by adopting a linear equation of state. It has
been shown by Witten (1984), Chodos et al. (1974), Farhi
and Jaffe (1984) that quark matter could be studied with the
aid of the phenomenology of the MIT bag model; these stud-
ies indicate that a linear quark matter equation of state with
a nonzero bag constant can be used. The review by Weber
(2005) described the astrophysical phenomenology of com-
pact quark stars. The study of nonradial oscillations of quark
stars was performed by Sotani et al. (2004) and Sotani and
Harada (2003). Charged isotropic models for quark stars are
described by Mak and Harko (2004) and Komathiraj and
Maharaj (2007). Particular models have been analysed to
study the effect of both the electric field and the anisotropy
in quark stars are those generated by Rahaman et al. (2012),
Kalam et al. (2013), Varela et al. (2010), Thirukkanesh and
Maharaj (2008), Maharaj and Thirukkanesh (2009) and Es-
culpi and Aloma (2010). However most charged anisotropic

models of quark stars have anisotropy always present and
do not regain isotropic pressures as a special case. Charged
anisotropic models for quark stars that allow anisotropy to
vanish have been found in the papers by Maharaj et al.
(2014) and Sunzu et al. (2014).

The objective of this paper is to find new exact solutions
to the Einstein-Maxwell system of equations with a linear
quark matter equation of state for charged anisotropic stars.
We build new models by specifying a particular form for one
of the gravitational potentials and the measure of anisotropy.
The model allows us to regain isotropic pressures as a spe-
cial case. To achieve this objective we structure this paper
accordingly. In Sect. 2 we give the fundamental equations
and transformation of the field equations according to Dur-
gapal and Bannerji (1983) and incorporate the linear quark
matter equation of state. We then specify a new form for one
of the gravitational potential and the measure of anisotropy
which are physically viable and reasonable. This helps to
deduce the master differential equation governing the be-
haviour of our model. In Sect. 3 we generate a regular model
and regain the Einstein model with isotropic pressures. We
show that this class produces objects with finite mass. In
Sect. 4 we find a second class of solutions. This class has
variable potentials and singularity at the centre. In Sect. 5
we give graphical analysis and make concluding remarks.

2 Fundamental equations

We intend to describe stellar structure with quark matter in
a general relativistic setting. The spacetime manifold must
be static and spherically symmetric. The interior spacetime
is given by the metric

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

where ν(r) and λ(r) are arbitrary functions. The Reissner-
Nordstrom line element describes the exterior spacetime

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2

+
(

1 − 2M

r
+ Q2

r2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2), (2)

where M and Q represent total mass and charge as measured
by an observer at infinity. The energy momentum tensor

Tij = diag

(
−ρ − 1

2
E2,pr − 1

2
E2,pt + 1

2
E2,

pt + 1

2
E2

)
, (3)
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describes anisotropic charged matter. The energy density ρ,
the radial pressure pr , the tangential pressure pt , and the
electric field intensity E are measured relative to a vector u.
The vector ua is comoving, unit and timelike.

The Einstein-Maxwell equations with matter and charge
can be written as

1

r2

(
1 − e−2λ

) + 2λ′

r
e−2λ = ρ + 1

2
E2, (4a)

− 1

r2

(
1 − e−2λ

) + 2ν′

r
e−2λ = pr − 1

2
E2, (4b)

e−2λ

(
ν′′ + ν′2 − ν′λ′ + ν′

r
− λ′

r

)
= pt + 1

2
E2, (4c)

σ = 1

r2
e−λ

(
r2E

)′
, (4d)

where primes indicate differentiation with respect to the ra-
dial coordinate r . The quantity σ denotes the proper charge
density. Note that we are using units where the coupling con-
stant 8πG

c4 = 1 and the speed of light c = 1. The mass con-
tained within the charged sphere is defined by

m(r) = 1

2

∫ r

0
ω2(ρ∗ + E2)dω, (5)

where ρ∗ is the energy density when the electric field E = 0.
For a quark star we have a linear relationship between the
radial pressure and the energy density

pr = 1

3
(ρ − 4B), (6)

where B is the bag constant.
We transform the field equations to an equivalent form

by introducing a new independent variable x and defining
metric functions Z(x) and y(x) as

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (7)

where A and C are arbitrary constants. With this transfor-
mation the line element in (1) becomes

ds2 = −A2y2dt2 + 1

4xCZ
dx2 + x

C

(
dθ2 + sin2 θdφ2). (8)

The mass function (5) becomes

m(x) = 1

4C
3
2

∫ x

0

√
ω

(
ρ∗ + E2)dω, (9)

where

ρ∗ =
(

1 − Z

x
− 2Ż

)
C, (10)

and a dot represents differentiation with respect to the vari-
able x.

Then we can write the Einstein-Maxwell field equations
(4a)–(4d), with the quark equation of state (6), in the follow-
ing form

ρ = 3pr + 4B, (11a)

pr

C
= Z

ẏ

y
− Ż

2
− B

C
, (11b)

pt = pr + Δ, (11c)

Δ = 4xCZÿ

y
+ C(2xŻ + 6Z)

ẏ

y

+ C

(
2

(
Ż + B

C

)
+ Z − 1

x

)
, (11d)

E2

2C
= 1 − Z

x
− 3Z

ẏ

y
− Ż

2
− B

C
, (11e)

σ = 2

√
ZC

x
(xĖ + E). (11f)

The gravitational behaviour of the anisotropic charged quark
star is governed by the system (11a)–(11f). The quantity
Δ = pt − pr is called the measure of anisotropy. The sys-
tem of equations (11a)–(11f) consists of eight variables
(ρ,pr ,pt ,E,Z,y,σ,Δ) in six equations. The advantage of
the Einstein-Maxwell system (11a)–(11f) is that it has a sim-
ple representation: it is given in terms of the matter variables
(ρ,pr ,pt ,Δ), the charged quantities (E,σ ) and the gravi-
tational potentials Z and y. We rewrite (11d) in a more sim-
plified form as

Ż + (4x2ÿ + 6xẏ + y)

2x(xẏ + y)
Z = ( xΔ

C
+ 1 − 2xB

C
)y

2x(xẏ + y)
. (12)

This is a highly nonlinear equation in general. However if
y and Δ are given functions then the form (12) of the field
equation is linear in the variable Z. In order to find exact
solutions to this model we will specify the two quantities y

and Δ.
We choose the metric function as

y = 1 − axm

1 + bxn
, (13)

where a, b, m and n are constants. This choice guarantees
that the metric function y is continuous and well behaved
within the interior of the star for a range of values of m

and n. The metric function y is also finite at the centre of
the star. We specify the measure of anisotropy in the form

Δ = A1x + A2x
2 + A3x

3, (14)

where A1, A2, and A3 are arbitrary constants. A similar
choice of anisotropy was made by Maharaj et al. (2014).
This choice is physically reasonable as it is continuous and
well behaved throughout the interior of the star. It is finite at
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the centre of the star. It is possible to regain isotropic pres-
sures when A1 = A2 = A3 = 0. We then have Δ = 0 and the
anisotropy vanishes. Substituting (13) and (14) in (12) we
obtain the first order differential equation

Ż + [g(x) − 1 + axm(1 − g(x) + k(x))]
(1 + bxn)h(x)

Z

= − (
(A1x+A2x

2+A3x
3)x

C
+ 1 − 2xB

C
)l(x)

h(x)
, (15)

where we have set

g(x) = 2b
(−1 + n + 2n2)xn − b2(1 − 2n + 4n2)x2n,

k(x) = 4
(
m + bmxn

)2 − 2m
(
1 + bxn

)(
b(4n − 1)xn − 1

)
,

h(x) = 2x
[
b(n − 1)xn − 1

+ axm
(
1 + m + bmxn − b(n − 1)xn

)]
,

l(x) = (
1 − axm

)(
1 + bxn

)
,

for convenience.

3 A regular model

As solution to (15) is desirable. We can find a nonsingular
exact model for the choice of values of the parameters

m = 1, n = 1

2
, and a = b = 0.

With these values the potential y = 1 and (15) becomes

Ż + 1

2x
Z = A1x + A2x

2 + A3x
3

2C
+ 1

2x
− B

C
. (16)

Solving the above differential equation we obtain

Z = 1 + x

C

(
−2B

3
+ A1x

5
+ A2x

2

7
+ A3x

3

9

)
. (17)

Using the system (11a)–(11f) we obtain the exact solution
describing the potentials and matter variables as

e2ν = A2, (18a)

e2λ = 315

315 + φ(x)
, (18b)

ρ = 2B −
(

3A1x

5
+ 9A2x

2

14
+ 2A3x

3

3

)
, (18c)

pr = −
(

2B

3
+ A1x

5
+ 3A2x

2

14
+ 2A3x

3

9

)
, (18d)

pt = −2B

3
+ 4A1x

5
+ 11A2x

2

14
+ 7A3x

3

9
, (18e)

Δ = A1x + A2x
2 + A3x

3, (18f)

E2 = −
(

4A1x

5
+ 5A2x

2

7
+ 2A3x

3

3

)
, (18g)

where

φ(x) = x

C

(−210B + 63A1x + 45A2x
2 + 35A3x

3).

This model admits no singularity in the interior in the po-
tentials and in the matter variables. In addition Δ = 0 and
E2 = 0 at the stellar centre.

With this model the line element (8) becomes

ds2 = −A2dt2 + 1

4xC

(
315

315 + φ(x)

)
dx2

+ x

C

(
dθ2 + sin2 θdφ2). (19)

Using the system (18a)–(18g), the mass function (9) be-
comes

m(x) =
(

x

C

) 3
2
(

1

3
B − 9

50
A1x − 6

49
A2x

2 − 5

54
A3x

3
)

.

(20)

In this exact solution we regain the special case of vanishing
anisotropy and charge: Δ = 0 and E2 = 0. Then the poten-
tials and matter variables become

e2ν = A2, e2λ = 315C

315C − 210Bx
,

ρ = 2B, pr = pt = −2B

3
,

(21)

with the line element

ds2 = −A2dt2 +
(

315

4x(315C − 210Bx)

)
dx2

+ x

C

(
dθ2 + sin2 θdφ2), (22)

in terms of the variable x.
Note that we can write (22) in the equivalent form

ds2 = −A2dt2 +
(

1 − r2

Γ 2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2), (23)

where Γ 2 = 315
210B

. We observe that (23) is the familiar
uncharged Einstein model with isotropic pressure and the
equation of state pr = pt = − 1

3ρ. We can therefore inter-
pret the exact solution (18a)–(18g) as a generalized Einstein
model with charge and anisotropy. This possibility arises
only because the energy density at the boundary is a nonzero
constant in a quark star.
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Table 1 Particular stellar objects obtained for various parameter values using a regular model

B̃ C̃ Ã1 Ã2 Ã3 Radius (km) Mass (M�) Model

28.0 1.0 1.1 2.2 1.8 9.46 2.86 Mak and Harko (2004)

13.0 1.0 11.0 9.0 5.0 10.99 2.02 Negreiros et al. (2009)

17.0 1.0 13.5 10.0 8.0 9.40 1.67 Freire et al. (2011)

30.54 1.0 20.51 25.0 30.0 7.60 1.60033 Sunzu et al. (2014)

34.0 1.0 28.6 35.0 20.0 7.07 1.433 Dey et al. (1998)

33.93 1.0 40.4 24.0 20.0 6.84 1.28994 Sunzu et al. (2014)

22.18 1.0 10.5 4.0 5.0 7.07 0.94 Thirukkanesh and Maharaj (2008)

The solutions found in this section do represent finite
masses that can be related to observed objects. To show this
we introduce the transformations

Ã1 = A1R
2, Ã2 = A2R

2,

Ã3 = A3R
2, B̃ = BR2, C̃ = CR2.

Based on these transformations we choose values of param-
eters to generate stellar masses and radii in Table 1. For
computation purposes we have set R = 43.245. Therefore
we generate masses in the range 0.94–2.86M� contained
in the investigations of Mak and Harko (2004), Negreiros
et al. (2009), Freire et al. (2011), Sunzu et al. (2014), Dey
et al. (1998) and Thirukkanesh and Maharaj (2008). There-
fore the exact solutions of this section do in fact produce fi-
nite masses consistent with masses of physically reasonable
astronomical objects.

4 Generalized models

It is possible that other exact solutions exist, in addition
to those found above, and which may be obtained us-
ing the approach of this paper. Clearly these new solu-
tions will correspond to different matter distributions, and
consequently have different energy density profiles to the
Einstein-Maxwell model considered in Sect. 3. The choice
of parameters we made in Sect. 3 led to constant y. Here
we again choose m = 1, n = 1

2 but we take a = b2. Then the
gravitational potential y is no longer constant. Consequently
(15) can be written in the form

(1 − 3b
√

x)Z

x(2 − 3b
√

x)
= (b

√
x − 1)(C + x(Δ − 2B))

Cx(3b
√

x − 2)
. (24)

Equation (24) is more complicated than (16) but it can be
integrated. Solving (24) we obtain the function

Z = 2 − b
√

x + x
C

(B(b
√

x − 4
3 ) + f (x))

2 − 3b
√

x
, (25)

where

f (x) = A1x

(
2

5
− b

√
x

3

)
+ A2x

2
(

2

7
− b

√
x

4

)

+ A3x
3
(

2

9
− b

√
x

5

)
.

Note that when f (x) = 0 then we have isotropic pressures.
The function (25) demonstrates that there are other exact so-
lutions to the differential equation (12) in terms of elemen-
tary functions.

Using the field equations indicated in the system (11a)–
(11f) we obtain the following exact solution

e2ν = A2
(

1 − b2x

1 + b
√

x

)2

, (26a)

e2λ = 2 − 3b
√

x

2 − b
√

x + x
C

[B(b
√

x − 4
3 ) + f (x)] , (26b)

ρ =
3C( 6b√

x
− 10b2 + 3b3√x)

2(2 − 3b
√

x)2(b
√

x − 1)

+ B(−16 + 47b
√

x − 48b2x + 18b3x
3
2 )

2(2 − 3b
√

x)2(b
√

x − 1)

+ 3fr(x)

2(2 − 3b
√

x)2(b
√

x − 1)
, (26c)

pr =
C( 6b√

x
− 10b2 + 3b3√x)

2(2 − 3b
√

x)2(b
√

x − 1)

+ B( 16
3 − 27b

√
x + 40b2x − 18b3x

3
2 )

2(2 − 3b
√

x)2(b
√

x − 1)

+ fr(x)

2(2 − 3b
√

x)2(b
√

x − 1)
, (26d)

pt =
C( 6b√

x
− 10b2 + 3b3√x)

2(2 − 3b
√

x)2(b
√

x − 1)

+ B( 16
3 − 27b

√
x + 40b2x − 18b3x

3
2 )

2(2 − 3b
√

x)2(b
√

x − 1)
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+ ft (x)

2(2 − 3b
√

x)2(b
√

x − 1)
, (26e)

Δ = A1x + A2x
2 + A3x

3, (26f)

E2 =
C(2b2 + 3b3√x − 2b√

x
) + B(b

√
x − 2b2x)

(2 − 3b
√

x)2(b
√

x − 1)

+ fe(x)

(2 − 3b
√

x)2(b
√

x − 1)
, (26g)

where we have set

fr(x) = A1x

(
8

5
− 64

15
b
√

x + 18

5
b2x − b3x

3
2

)

+ A2x
2
(

12

7
− 141

28
b
√

x + 67

14
b2x − 3

2
b3x

3
2

)

+ A3x
3
(

16

9
− 82

15
b
√

x + 82

15
b2x − 9

5
b3x

3
2

)
,

ft (x) = A1x

(
−32

5
+ 416

15
b
√

x − 192

5
b2x + 17b3x

3
2

)

+ A2x
2
(

−44

7
+ 755

28
b
√

x − 521

14
b2x + 33

2
b3x

3
2

)

+ A3x
3
(

−56

9
+ 398

15
b
√

x − 548

15
b2x + 81

5
b3x

3
2

)
,

fe(x) = A1x

(
16

5
− 64

5
b
√

x + 84

5
b2x − 7b3x

3
2

)

+ A2x
2
(

20

7
− 313

28
b
√

x + 101

7
b2x − 6b3x

3
2

)

+ A3x
3
(

8

3
− 154

15
b
√

x + 196

15
b2x − 27

5
b3x

3
2

)
,

for convenience.
Based on our exact solution in the system (26a)–(26g),

the line element in (8) becomes

ds2 = −A2
(

1 − b2x

1 + b
√

x

)2

dt2

+ 1

4xC

(
2 − 3b

√
x

2 − b
√

x + x
C

(B(b
√

x − 4
3 ) + f (x))

)
dx2

+ x

C

(
dθ2 + sin2 θdφ2). (27)

The mass function has the form

m(x) = x
5
2

b4C
3
2

(
−2b4A1

15
+ 47b2A2

2520
+ 113A3

12150

)

− x
7
2

b2C
3
2

(
5b2A2

56
− 5A3

378

)

+ x3

b6C
3
2

(
b6B

6
+ b4A1

30
+ b2A2

56
+ A3

90

)

+
(

3b8C

2
− b6B

2
+ b4A1

10
+ 3b2A2

56

+ A3

30

)(
ln(1 − b

√
x)

b9C
3
2

)

+
(

2b8C

3
− 4b6B

27
+ 64b4A1

3645
+ 80b2A2

15309

+ 512A3

295245

)(
1

2b9C
3
2

(
2

3b
√

x − 2
+ 1

))

+ x3

3b3C
3
2

(
13b2A3

240
x − b3

5
x

3
2 + b2A2

14
+ 17A3

540

)

+
(

b8C − 2b6B

9
+ 32b4A1

1215
+ 40b2A2

5103

+ 256A3

98415

)(
1

b9C
3
2

ln

(
2

2 − 3b
√

x

))

+ x2

b5C
3
2

(
13b4A1

360
+ 101b2A2

6048
+ 55A3

5832

)

+ x

b7C
3
2

(
−b6B

6
+ 13b4A1

324

+ 649b2A2

27216
+ 2059A3

131220

)

+
√

x

b8C
3
2

(
b8C

2
− 5b6B

18
+ 179b4A1

2430

+ 1867b2A2

40824
+ 6049A3

196830

)
. (28)

Therefore we have obtained another exact solution to the
Einstein-Maxwell system of equations (11a)–(11f) with a
quark equation of state. Other solutions to (15) are possible
for different choices of parameters m, n, a and b. It is not
clear that other choices are likely to easily produce tractable
forms for gravitational potential Z. The advantage of the ex-
act solutions (18a)–(18g) and (26a)–(26g) is that they have
a simple form. They are expressed in terms of elementary
functions. The model (26a)–(26g) is singular at the centre.
This is a feature that is shared with the quark star model of
Mak and Harko (2004) but the stellar mass and electric field
remain finite.

5 Discussion

In this section we indicate that the exact solution of the
field equations (26a)–(26g) is well behaved away from the
centre. To do this we consider the behaviour of the grav-
itational potentials, matter variables and the electric field.
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Fig. 1 The potential e2ν against radial distance

Fig. 2 The potential e2λ against radial distance

We note that ρ′ < 0, p′
r < 0 and p′

t < 0, so that the en-
ergy density, the radial pressure and the tangential pressure
are decreasing functions. The gradients are greatest in the
central core regions. This happens because the profiles for
ρ, pr and pt are dominated by the presence of the term
containing the factor x−1/2. Other choices for the parame-
ters m, n, a and b in (15) could lead to models with gradi-
ents where the rate of change is more gradual. The Python
programming language was used to generate graphical plots
for the remaining quantities of physical interest for the par-
ticular choices b = ±0.5, A = 0.664, B = 0.198, C = 1,
A1 = −0.6, A2 = −0.15, and A3 = 0.2. The graphical plots
generated are for the potential e2ν (Fig. 1), potential e2λ

(Fig. 2), measure of anisotropy Δ (Fig. 3), the electric field
E2 (Fig. 4) and the mass m (Fig. 5). All figures are plotted
against the radial coordinate r . Most of these quantities are
regular and well behaved in the stellar interior except for the
electric field which is divergent at the centre. In this case our
exact solutions may describe the outer regions, away from

Fig. 3 Anisotropy against radial distance

Fig. 4 Electric field against radial distance

the centre, in a core envelope model. However, note that the
gravitational potentials, the measure of anisotropy and the
mass remain finite, regular and well behaved throughout the
interior of the stellar structure. In general the measure of
anisotropy Δ is finite and a continuous decreasing function
as shown in Fig. 3. A similar profile of the anisotropy was
obtained by Kalam et al. (2013) and Karmakar et al. (2007).
The mass is an increasing function of the radial distance as
indicated in Fig. 5.

We have found exact solutions for the Einstein-Maxwell
equations for anisotropic charged quark matter. We have
considered the spacetime geometry of the stellar interior to
be static and spherically symmetric. The linear equation of
state, consistent with quark matter, has been incorporated in
our models. The solutions to the field equations are found
after making a reasonable physical choice for the measure
of anisotropy and one of the gravitational potentials. We
have analysed two models: the first is regular throughout
the interior in the matter variables and gravitational poten-



524 Astrophys Space Sci (2014) 354:517–524

Fig. 5 Mass against radial distance

tials, and the second is a generalized model that admits a
singularity in some of the matter variables at the centre of
the stellar object. We have regained masses and radii consis-
tent with the Mak and Harko (2004), Negreiros et al. (2009),
Freire et al. (2011), Sunzu et al. (2014), Dey et al. (1998)
and Thirukkanesh and Maharaj (2008) models. We believe
that our toy models may facilitate studies of anisotropic
quark stars with an electromagnetic field distribution and
provide room for further studies of other relativistic matter
distributions. This may be achieved with a specific equation
of state, spacetime geometry and metric functions different
from what we have considered in this paper.
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