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Abstract We model a charged anisotropic relativistic star
with a quadratic equation of state. Physical features of an ex-
act solution of the Einstein-Maxwell system are studied by
incorporating the effect of the nonlinear term from the equa-
tion of state. It is possible to regain the masses, radii and
central densities for a linear equation of state in our analy-
sis. We generate masses for stellar compact objects and per-
form a detailed study of PSR J1614-2230 in particular. We
also show the influence of the nonlinear equation of state
on physical features of the matter distribution. We demon-
strate that it is possible to incorporate the effects of charge,
anisotropy and a quadratic term in the equation of state in
modelling a compact relativistic body.

Keywords Einstein-Maxwell equations, compact bodies ·
Relativistic stars

1 Introduction

The Einstein-Maxwell field equations play a significant role
in several different applications in relativistic astrophysics.
The study of Bonnor (1965) showed that the electric field
is essential in describing the equilibrium of compact bod-
ies, and charge may even halt gravitational collapse. The
necessary requirement in relativistic astrophysics is to build
stable equilibrium solutions of the Einstein-Maxwell sys-
tem, and to generate models of different astrophysical ob-
jects with strong gravitational fields by choosing appropriate
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matter distributions. Models built in this way maybe useful
in describing the physical characteristics of compact stel-
lar objects such as gravastars, neutron stars, quark stars, etc.
Glendening (2000) has observed that all macroscopic bod-
ies are charge neutral or they may possess a small amount of
charge, so that the structure of the stellar body is not much
affected in the latter stages of its evolution. Nevertheless,
note that there are early phases in the evolution of a com-
pact star, in which immediate charge neutrality is not possi-
ble, but it is attained in later stages. This situation arises, for
example, at the birth of a compact star from the core collapse
supernova. In this case the electromagnetic field substan-
tially affects the structure of the star. A large charge distri-
bution can disrupt the structure of the stellar body. Ray et al.
(2003) showed from the balance of forces and the strength
of their coupling, that such huge charge disrupting the stel-
lar structure, has very little effect in the equation of state of
the content. Taking the protons as the carrier of the charge
in the stellar body, they demonstrated that one extra proton
in a sea of 1018 baryons, can generate a total charge that will
modify the stars structure. It is important to point out, that
there has been considerable recent improvements in obser-
vations relating to compact stellar bodies. The mass of many
compact stellar bodies have been found with a fair degree of
precision; the main challenge is to accurately determine the
radius of the star. Some recent studies have developed im-
proved techniques which give the accurate mass and the ra-
dius of some compact stellar objects. This improved obser-
vational information about such compact objects has gen-
erated much interest about the internal matter content and
consequently the spacetime geometry.

Solutions of the Einstein-Maxwell system with an equa-
tion of state are desirable in the description of realistic as-
trophysical objects. The importance of an equation of state
in a stellar model has been comprehensively investigated by

mailto:maharaj@ukzn.ac.za


464 Astrophys Space Sci (2014) 354:463–470

Varela et al. (2010). Studies in quark stars involve physics at
high densities described by a linear equation of state. Vari-
ous aspects of the phenomenological MIT Bag model with
linear quark equation of state have been considered by Wit-
ten (1984), Chodos et al. (1974) and Weber (2005). There
have been some attempts made recently to find exact an-
alytic solutions of the Einstein-Maxwell system for bound
matter configurations with a linear equation of state. These
include the treatments of Ivanov (2002), Sharma and Ma-
haraj (2007a), Thirukkanesh and Maharaj (2008), Mafa Tak-
isa and Maharaj (2013) and Thirukkanesh and Ragel (2013).
Models with a quadratic equation of state are rare because of
the increased nonlinearity in the field equations. The models
of Feroze and Siddiqui (2011) and Maharaj and Mafa Takisa
(2012) are recent examples that satisfy a quadratic equation
of state.

The study of the structure of compact stars requires un-
derstanding of the equation of state describing the stellar
matter under extreme conditions. High mass compact stars,
reported recently in the literature, provide strong constraints
on the properties of ultradense matter beyond the saturation
nuclear density. Even for the 1.44 M� mass or so compact
stars, we can still debate over the nature of the star, whether
it is composed of nuclear matter, or quark matter or a hy-
brid of the both. For the hybrid scenario, the core is made
of quark matter which has a softer equation of state, and the
outside is a stiffer nuclear matter equation of state. In nu-
clear physics or particle physics, it is often quite challeng-
ing to find a single equation of state of matter that smoothly
matches the quark matter core with the outer nuclear mat-
ter. In this context, it is also worth mentioning that Cottam
et al. (2002) and Özel (2006) showed that most of the cur-
rent equations of state describing quark matter are too soft
and so are unable to explain the existence and stability of
massive neutron stars. Rodrigues et al. (2006) pointed out
that only stiff equations of state describing normal nuclear
matter at high densities would be capable of explaining the
stability of high compact star masses with M ∼ 2 M�. Con-
sequently a lot of work has been carried out in hybrid stars
with modification to the equation of state in the past years
in order to address this issue. In our work, we have chosen a
quadratic equation of state, which is softer at low densities
and stiffer at higher densities, thus accommodating for a hy-
brid scenario, as we are more interested in finding the exact
solution in general relativity.

In this paper we utilise the quadratic equation of state in
a class of exact models found by Maharaj and Mafa Takisa
(2012) to study physical features. This enables us to con-
sider deviations from the linear case and the changes to ob-
servable quantities such as the mass of the star.

We use an exact solution of the Einstein-Maxwell system
found earlier by Maharaj and Mafa Takisa (2012) to study
physical features and show that this model is consistent with

observed objects. We intend to study the effects on a com-
pact object arising from nonlinearities in a quadratic equa-
tion of state. In Sect. 2, the Einstein-Maxwell field equations
are considered and the Maharaj and Mafa Takisa (2012)
model is presented. Some recent observations are reviewed
in Sect. 3. In Sect. 4, masses and radii are generated for par-
ticular parameter values in the absence of charge. These are
presented in Table 1. In Tables 2–4 in Sect. 5, we gener-
ate masses, radii and central densities for charged and un-
charged bodies. The connection to the astrophysical object
PSR J1614-2230 is made. Graphical plots of the physical
quantities are made in Sect. 6, and we discuss the signifi-
cance of the quadratic term in the equation of state.

2 The model

The line element for a static spherically symmetric interior
matter distribution has the form

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2), (1)

where ν = ν(r) and λ = λ(r) are the potentials. The energy
momentum tensor for an anisotropic charged imperfect fluid
sphere is of the form

T ab = diag

(
−ρ − 1

2
E2,pr − 1

2
E2,pt + 1

2
E2,pt + 1

2
E2

)
,

(2)

which describes a distribution with anisotropy and charge.
The quantities ρ, pr , pt and E are the density, radial pres-
sure, tangential pressure and electric field intensity respec-
tively. For a physically reasonable star we require that the
matter distribution satisfies a barotropic equation of state
pr = pr(ρ); the quadratic form is given by

pr = γρ2 + αρ − β, (3)

where β , α and γ are constants. When γ = 0 then we re-
gain a linear equation of state. The constants γ and α con-
strain the density via the sound speed causality condition
(ρ ≤ 1+α

2γ
). The gravitational interactions on the matter dis-

tribution and the electromagnetic field are determined by the
Einstein-Maxwell system

Gab = kT ab, (4)

Fab;c + Fbc;a + Fca;b = 0, (5)

Fab
;b = 4πJa, (6)

where we have set k = 8π (G = c = 1) in geometrised units.
The system (4)–(6) is highly nonlinear and governs the be-
haviour of the relativistic star in the presence of the charge.
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For the line element (1), the Einstein-Maxwell field equa-
tions (4)–(6) become

8πρ + 1

2
E2 = 1

r2

[
r
(
1 − e−2λ

)]′
, (7)

8πpr − 1

2
E2 = − 1

r2

(
1 − e−2λ

) + 2ν′

r
e−2λ, (8)

8πpt + 1

2
E2 = e−2λ

(
ν′′ + ν′2 + ν′

r
λ′ − λ′

r
− ν

)
, (9)

σ = 1

4πr2
e−λ

(
r2E

)′
, (10)

where σ = σ(r) is named the proper charge density and
primes indicate differentiation with respect to r . In the pres-
ence of charge the gravitational mass is defined by

M(r) = 4π

∫ r

0

(
ρ(ω)unch + E2

8π

)
ω2dω, (11)

where ρ(ω)unch is the uncharged energy density (E = 0).
We remark that Eqs. (7)–(10) imply the generalised Tolman-
Oppenheimer equation

dpr

dr
= 2

r
(pt − pr) − r(ρ + pr)ν

′ + E

4πr2

(
r2E

)′
, (12)

showing that the gradient dpr

dr
is influenced by the anisotropy

and charge. The above equation is known as the Bianchi
identity representing hydrostatic equilibrium of the charged
anisotropic matter. These quantities can drastically change
physical quantities such as the surface tension as shown by
Sharma and Maharaj (2007b) and Horvat et al. (1984).

In this paper, we extend the linear treatment of Mafa Tak-
isa et al. (2014) by investigating the Maharaj and Mafa Tak-
isa (2012) model, and we include the effect of the quadratic
term on the structure of observed objects. On using the
quadratic equation of state (3), an exact solution to the
Einstein-Maxwell system (7)–(10) has the form

e2λ = 1 + ar2

1 + br2
, (13)

e2ν = A2D2(1 + ar2)2m[
1 + br2]2n

× exp
[
2F(r)

]
, (14)

ρ = (2a − 2b)(3 + ar2) − sa2r4

16π(1 + ar2)2
, (15)

pr = γρ2 + αρ − β, (16)

pt = pr + , (17)

8π = 4r2(1 + br2)

1 + ar2

[
m(m − 1)a2

(1 + ar2)2

+ 2mnab

(1 + ar2)(1 + br2)
+ maF ′(r)

r(1 + ar2)

+ b2n(n − 1)

(1 + br2)2
+ nbF ′(r)

r(1 + br2)

+ F ′′(r)
2r2

− F ′(r)
2r3

+ F ′(r)2

4r2

]

+
[
−2(a − b)r2

(1 + ar2)2
+ 4(1 + br2)

(1 + ar2)

]

×
[

am

1 + ar2
+ bn

1 + br2
+ F ′(r)

2r

]

− γ

32π

[
(a − b)(3 + ar2) − sa2r4

2(1 + ar2)2

]2

− 1

2(1 + ar2)2

[
2(a − b) + sa2r4

− 16πβ
(
1 + ar2)2]

− α

[
2(a − b)(3 + ar2) − sa2r4

2(1 + ar2)2

]
, (18)

E2 = sa2r4

(1 + ar2)2
, (19)

σ 2 = 4sa2(1 + br2)(2 + ar2)2

π(1 + ar2)5
. (20)

The mass function is

M(r) = 1

8

[
4(a − b)r3

(1 + ar2)

+ sr(−15 − 10ar2 + 2a2r4)

3a(1 + ar2)

+ 5s arctan(
√

ar2)

a3/2

]
. (21)

In the above A, a, b, and s are constants. The quantities F(r)

and the constants m and n are given by

F(r) = γ

[
2(2b − a)(1 + ar2) + (b − a)

2(1 + ar2)2

]

− sγ

[
(a − b)2(ar2 + 2)

4(a − b)(1 + ar2)2
− a(2a + s)(1 + ar2)

4(a − b)(1 + ar2)2

]

− sγ

[
s(a − b) + 3sb(1 + ar2)

32(a − b)2(1 + ar2)2

]

+ ar2

16b

[
s2γ − 2s(1 + α) − 4β

]
,

m = − s(1 + α)

8(b − a)
+ α

2

+ γ
[
2(a − b)

]2
[

b2

(b − a)3
+ b

(b − a)2
+ 1

4

]
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+ sγ

8(a − b)3

[
(a − b)

[
2s(a − b) + a + b

]

− 6ab2 + 2b3(2a − 1)
]
,

n = (1 + α)(a − b)

4b
− 2α(a − b)

4(b − a)
+ β(a − b)

4b2

+ γ
[
2(a − b)

]2
[

b2

(b − a)3
+ b

(b − a)2
+ 1

4

]

+ sγ

16b2(b − a)3

[
a4(s + 4b)

+ 2b
(
6a2b2 − 2a3b

)] + sa2(1 + α)

8b2(b − a)
.

The exact solution (13)–(20) of the Einstein-Maxwell sys-
tem is expressed in terms of elementary functions, which
helps in the physical analysis.

We observe that the parameters a, b, s, have the dimen-
sion of length−2. This suggests that in numerical calcula-
tions we should utilise the following transformations:

ã = aL2, b̃ = bL2, s̃ = sL2,

where L is a parameter with dimension of length. The re-
quirements for a physically relevant star, in the absence of
charge, are given by Delgaty and Lake (1998); the condi-
tions for a charged star were considered by Fatema and Mu-
rad (2013) and Murad and Fatema (2013).

The values of ã, b̃, s̃ should be chosen in the way that
the charged, anisotropic star is well behaved. The energy
density ρ should be positive inside the stellar object. The ra-
dial pressure pr should vanish at the boundary of the sphere
where pr(ε) = 0 and ε is the boundary. The tangential pres-
sure pt should be positive in the interior of the stellar ob-
ject. The gradient of pressure dpr

dr
< 0 in the interior of the

stellar object. The speed of sound should respect the con-
dition v2 = dpr

dρ
≤ 1. At the centre the radial pressure and

the tangential pressure should be equal (pr(0) = pt (0)) and
the measure of anisotropy should vanish ((0) = 0). The
metric functions e2λ, e2ν and the electric field intensity E

should remain positive and regular in the interior of the stel-
lar object. At the centre the ρ(0) = ρc must be finite and
positive. The energy condition ρ − pr − 2pt > 0 should
be satisfied within the interior of the stellar object. At the
boundary r = ε we require

e2ν(ε) = 1 − 2M
ε

+ Q2

ε2
,

e2λ(ε) =
(

1 − 2M
ε

+ Q2

ε2

)−1

,

M(ε) = M,

for continuity of the potentials.

The interior spacetime is described by the Reissner-
Nordström metric

ds2 = −
(

1 − 2M
r

+ Q

r2

)
dt2

+
(

1 − 2M
r

+ Q

r2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2). (22)

The spacetime (1) and (22) must match smoothly at the stel-
lar boundary r = ε. Then from the above we obtain the con-
ditions

1 − 2M
ε

+ Q2

ε2
= 1 + aε2

1 + bε2
, (23)

(
1 − 2M

ε
+ Q2

ε2

)−1

= A2D2(1 + ar2)2m[
1 + br2]2n

× exp
[
2F(r)

]
. (24)

This is a system of two equations in the parameters a, b, s,
A, D, m, n, α, β and γ for a specified radial distance ε.
There is sufficient freedom in the parameters to ensure that
(23)–(24) is always satisfied.

3 Recent observations

Jacoby et al. (2005) and Verbiest et al. (2008) utilised the
detection of the general relativistic Shapiro delay to calcu-
late the masses of both the neutron star and its companion
in a binary system. This was done to a high degree of preci-
sion. Demorest et al. (2010) followed this approach to make
radio timing observations of the binary millisecond pulsar
PSR J1614-2230, which displayed a strong Shapiro delay
signature. They implied that the pulsar mass 1.97±0.08 M�
is the highest mass measured to date with accurate preci-
sion. Freire et al. (2011) utilised the Arecibo and Green
Bank radio timing observations to make a very precise mea-
surement of the apsidal motion, and found new constraints
on the orbital orientation of the binary system. This was
done in the content of a full determination of the relativistic
Shapiro delay. With the help of a comprehensive analysis,
they found new restrictions on the mass of the pulsar PSR
J1903+0327 and its companion and presented it’s accurate
mass as 1.667 ± 0.02 M�. Recently Rawls et al. (2011)
presented an improved method for determining the mass
of neutron stars in eclipsing X-ray pulsar binaries. They
used a numerical code based on Roche geometry which
they supplemented with new spectroscopic and photomet-
ric data for 4U 1538-52. This allowed for more accurate
modelling of the eclipse duration leading to improved values



Astrophys Space Sci (2014) 354:463–470 467

Table 1 Variation of mass,
radius and central density in
term of γ in the absence of
charge. The parameter γ is
variable and α is fixed

γ ã − b̃ s̃ α M M/R R

(km)
ρc

(×1015 g cm−3)

0.100 46.44 0.0 0.33 2.55 0.230 11.07 4.0

0.126 44.60 0.0 0.33 2.37 0.218 10.85 3.84

0.132 42.50 0.0 0.33 2.18 0.206 10.60 3.66

0.140 40.01 0.0 0.33 1.97 0.191 10.30 3.45

0.148 37.73 0.0 0.33 1.77 0.177 9.99 3.25

0.154 36.47 0.0 0.33 1.667 0.170 9.82 3.14

0.163 34.30 0.0 0.33 1.49 0.157 9.51 2.95

0.177 31.62 0.0 0.33 1.29 0.141 9.13 2.72

0.189 29.70 0.0 0.33 1.14 0.129 8.83 2.55

0.196 28.61 0.0 0.33 1.07 0.124 8.65 2.46

0.200 24.92 0.0 0.33 0.89 0.111 8.04 2.14

Table 2 Different masses and
radii for PSR J1614-2230 for
the uncharged case. The
parameters γ and α are variable

γ ã − b̃ s̃ α M M/R R

(km)
ρc

(×1015 g cm−3)

0.0 40.01 0.0 0.99 1.97 0.191 10.30 3.45

0.140 40.01 0.0 0.33 1.97 0.191 10.30 3.45

0.158 40.01 0.0 0.24 2.02 0.192 10.50 3.45

0.163 40.01 0.0 0.21 2.06 0.192 10.70 3.45

0.177 40.01 0.0 0.15 2.10 0.193 10.90 3.45

0.196 40.01 0.0 0.06 2.13 0.193 11.06 3.45

0.200 40.01 0.0 0.04 2.14 0.193 11.09 3.45

for the neutron star masses: 1.77 ± 0.08 M� for Vela X-1,
1.29 ± 0.05 M� for LMC X-4 and 1.29 ± 0.08 M� for Cen
X-3.

There have been similar observations for other stars.
However for this investigation, we restrict ourselves to pul-
sar PSR J1614-2230, a binary millisecond large pulsar.

4 Stellar masses

In this section, we use the analytical solutions (13)–(21),
with the quadratic equation of state (16), to study the ef-
fect of the quadratic term γ on the model. We wish to com-
pare the outputs to the recent results of Mafa Takisa et al.
(2014) who considered the linear case. We choose γ such
that the causality condition v2 = dpr

dρ
≤ 1 is satisfied and take

the parameter values: ã = 53.34, L = 43.245 km, α = 0.33,
β = 0.5α×1015 g cm−3 and s̃ = 0.0. We are concerned here
with uncharged bodies. The parameter α has the fixed value
α = 1

3 but the quadratic parameter γ is allowed to vary. We
obtain different masses, radii and central densities for dif-
ferent parameter values. The results are given in Table 1.
We note that the compactification factor is in the range of
M
R

∼ 1
10 to 1

4 ; this corresponds to neutron stars and ultra-
compact stars as pointed out by Mafa Takisa and Maharaj

(2013). We find that a variety of stellar masses are gener-
ated which correspond to acceptable values of the central
density ρc and the M

R
ratio. Of particular interest are the

values γ = 0.140, α = 0.33, R = 10.30, M
R

= 0.191 and
ρc = 3.45×1015 g cm−3 which give the corresponding mass
of the PSR J1614-2230. These values are underlined in Ta-
ble 1. Therefore this astronomical object is consistent with a
quadratic equation of state. Note that the same mass is con-
tained in the analysis of Mafa Takisa et al. (2014) with a
linear equation of state.

5 The pulsar J1614-2230

The analysis of Mafa Takisa et al. (2014) was shown to be
consistent with observational objects such as Vela X-1, SMC
X-1, Cen X-3, PSR J1903+327 and PSR J1614-2230. Our
intention in this treatment is to focus on the particular object
PSR J1614-2230 (1.97 ± 0.08 M�), since this mass is so far
the highest yet measured with accurate precision. We have
shown in Sect. 4 that PSR J1614-2230 is consistent with a
nonlinear equation of state. Our analysis can be similarly
applied to other pulsar objects. We compute the quantities
M , M

R
, R and ρc by allowing the parameters γ and α to

be variable. The relevant values are contained in Tables 2–4.
The masses in Table 2 are uncharged whilst the masses in
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Table 3 Different masses of
PSR J1614-2230 and radius for
the charged case. The
parameters γ and α are variable

γ ã − b̃ s̃ α M M/R R

(km)
ρc

(×1015 g cm−3)

0.0 40.01 7.5 0.99 1.98 0.204 9.67 3.45

0.140 40.01 7.5 0.33 1.98 0.204 9.67 3.45

0.158 40.01 7.5 0.24 2.07 0.205 10.07 3.45

0.163 40.01 7.5 0.21 2.13 0.205 10.37 3.45

0.177 40.01 7.5 0.15 2.18 0.206 10.56 3.45

0.196 40.01 7.5 0.06 2.19 0.206 10.65 3.45

0.200 40.01 7.5 0.04 2.22 0.207 10.74 3.45

Table 4 Different masses and
radii for PSR J1614-2230 for
the charged case. The
parameters γ and α are variable

γ ã − b̃ s̃ α M M/R R

(km)
ρc

(×1015 g cm−3)

0.0 40.01 14.5 0.99 2.13 0.231 9.21 3.45

0.140 40.01 14.5 0.33 2.13 0.231 9.21 3.45

0.158 40.01 14.5 0.24 2.32 0.232 10.05 3.45

0.163 40.01 14.5 0.21 2.34 0.232 10.10 3.45

0.177 40.01 14.5 0.15 2.35 0.232 10.15 3.45

0.196 40.01 14.5 0.06 2.36 0.232 10.18 3.45

0.200 40.01 14.5 0.04 2.36 0.232 10.19 3.45

Tables 3 and 4 are charged. The underlined values in these
tables represent the corresponding values that we expect for
the object PSR J1614-2230 when γ = 0.

Tables 2–4 have been generated with the objective of re-
gaining a central density of ρc = 3.45 which is associated
with PSR J1614-2230. In Table 2 the quantities M , M

R
and

R have been found in the absence of charge. Different val-
ues of the parameters γ and α produce uncharged massive
objects which are physically reasonable. In Table 3 we sim-
ilarly generate stellar structures which are reasonable in the
presence of charge s̃ = 7.5. The values in Table 4 are also
consistent with observations but with a higher value for the
charge s̃ = 14.5. The presence of charge in Tables 3 and 4
also produces physically reasonable charged objects for dif-
ferent values of the parameters γ and α. The presence of
charge has an effect on the mass and the radius of the object.

6 Discussion

This physical analysis is completely new, extending the
Mafa Takisa et al. (2014) result and showing interesting fea-
tures that arise when the quadratic term is present in the
equation of state. To illustrate the effect of the quadratic
term of the equation of state with γ �= 0 in the interior of
PSR J1614-2230, we have plotted the energy density ρ,
radial pressure pr , tangential pressure pt , the measure of
anisotropy , speed of sound v2 = dpr

dρ
, and the quantity

ρ − pr − 2pt in Figs. 1–6 respectively. The presence of γ

has only a slight effect on the radial pressure, the tangential

Fig. 1 Energy density ρ(r) versus radius

Fig. 2 Radial pressure pr versus radius

pressure and the measure of anisotropy profiles. The pro-
files in the presence of charge and non-zero γ are similar
to the Mafa Takisa et al. (2014) analysis with a linear equa-
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Fig. 3 Tangential pressure pt versus radius

Fig. 4 Anisotropy  versus radius

Fig. 5 Speed of sound dpr/dρ versus radius

tion of state. The speed of sound is positive and decreasing
throughout the star and the causality condition is maintained
in Fig. 5. The variation ρ − pr − 2pt is positive within the
star in Fig. 6 and the energy condition is satisfied. For E = 0
and γ = 0.200, we point out a small of increase for the ra-
dius and the mass of 4 % and 4.5 % respectively. The cor-
responding results for the charged (E �= 0) case are given
in Tables 3 and 4. For the maximum value of γ = 0.200,
we note the increase of 8 % for the radius and 9 % for the
mass with E = 7.5. It is clear that the quadratic term γ leads
to an increase of 11 % in the mass of a stellar object for
the maximum value of E = 14.5. We observe that for both
cases E = 0 and E �= 0, the quadratic term γ has the ef-

Fig. 6 Variation of ρ − pr − 2pt versus radius

fect of increasing the compactification factor M
R

slightly. We
have shown the relevance of the quadratic equation of state
to relativistic objects, in particular to the observed object
PSR J1614-2230.
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