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Abstract In this paper we have discussed the possibility of
forming anisotropic compact stars from cosmological con-
stant as one of the competent candidates of dark energy with
cylindrical symmetry. For this purpose, we have applied the
analytical solution of Krori and Barua metric to a particular
cylindrically symmetric spacetime. The unknown constants
in Krori and Barua metric have been determined by using
masses and radii of class of compact stars like 4U1820-30,
Her X-1, SAX J 1808-3658. The properties of these stars
have been analyzed in detail. In this setting the cosmolog-
ical constant has been taken as a variable which depends
on the radial coordinates. We have checked all the regular-
ity conditions, stability and surface redshift of the compact
stars 4U1820-30, Her X-1, SAX J 1808-3658.

Keywords Compact stars · Cylindrical symmetry · Krori
and Barua metric

1 Introduction

The spherically symmetric static exterior and interior
Schwarzschild solutions of the Einstein field equations are
well-known staples in the elementary courses of General
Relativity (GR). On the other hand cylindrically symmet-
ric static solutions (combining the translation along the axis
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and rotation around the axis) are less familiar among the
general relativists. The static spherically vacuum solutions
were found in early 20th century by Weyl (1917) and Levi-
Civita (1919). They were interested in the more general
problem of static geometries that are axially symmetric. In
this paper, we construct and study cylindrically symmetric
solutions of the anisotropic strange stars that the best candi-
dates of X-rays bluster. For this purpose, we established the
nonlinear differential equations for cylindrically anisotropic
source in the presence of varying cosmological constant and
find some analytic solutions which have been applied to a
class of strange stars.

Recent observational data and theoretical results in mod-
ern cosmology revealed the facts that dark energy might be
described in a scientific way by the cosmological constant.
The measurements obtained by the Wilkinson Microwave
Anisotropic Probe (WMAP) imply that three–fourth of total
mass-energy in our universe is dark energy (DE) (Perlmut-
ter et al. 1997, 1998, 1999 and Riess et al. 1998). The well-
known leading theory of DE is mainly based on the cos-
mological constant. characterized by the repulsive pressure
as defined by Einstein in 1917 for the formulation of static
universe model. Later on, Zeldovich (1967) interpreted cos-
mological constant as a vacuum energy of quantum fluctu-
ation which has a size of order of ∼ 3 × 10−56 cm−2 (Pee-
bles and Ratra 2003). Recent astronomical observations like
the study of type Ia supernova show that the expansion of
the universe is accelerating and it is believed that this may
be due to a non-vanishing positive cosmological constant.
These observations have attracted attention to the study of
astrophysical objects with cosmological constant.

In order to model the mass and radius of the Neutron star,
Egeland (2007) predicted that the existence of cosmological
constant depends upon the density of the vacuum. For this
purpose Egeland used the Fermi equation of state with the

mailto:ghulamabbas@ciitsahiwal.edu.pk
mailto:sumara.nazeer@yahoo.com
mailto:asad@ciitsahiwal.edu.pk


450 Astrophys Space Sci (2014) 354:449–455

relativistic equation of hydrostatic equilibrium. Motivated
by this fact, we introduced the cosmological constant in a
small scale to study the structure of strange stars and con-
cluded that cosmological constant can describes the class
of some strange stars for example X-ray bluster 4U1820-30
X-ray pulsar Her X-1, Millisecond pulsar SAX J 1808-3658
etc., in very good manners. Dey et al. (1998), Usov (2004),
Ruderman (1972), Mak and Harko (2002, 2003) and many
others have studied the structure of strange stars by using
different approaches.

Mak and Harko (2004) presented a class of exact so-
lutions of the field equation by using spherical symmetry.
They also found that energy density as well as tangen-
tial and radial pressure are finite and positive inside the
anisotropic star. Chaisi and Maharaj (2005) established an
algorithm with an anisotropic matter distribution. By us-
ing Chaplygin gas equation of state (EoS), Rahaman et al.
(2012) extended the Krori and Barua (1975) analysis of the
charge anisotropic static spherically symmetric spacetime.
Lobo (2006) generated the anisotropic exact models with a
barotropic EOS for compact objects. He also generalized the
Mazur–Mottola gravastar models by considering a match-
ing of an interior solution governed by the dark energy EOS
ω = p

ρ
< −1

3 to an exterior Schwarzschild vacuum solution
at a junction interface. In this paper, we have formulated the
cylindrically symmetric models of strange stars which have
been proposed earlier by Alcock et al. (1986) and Haensel
et al. (1986). Herrera and his collaborators (Herrera 1992,
Herrera et al. 2008a, 2008b, 2011) have discussed the sta-
bility and gravitational collapse of anisotropic stars. The re-
lated work in modified theory of gravity has also been done
by Sharif and Abbas (2013a, 2013b, 2013c). Hossein et al.
(2012) have studied the properties of the anisotropic com-
pact stars in the presence of cosmological constant.

The cylindrically symmetric models proposed here are
associated with cosmological constant and we have studied
the stability of the model by calculating the speed of sound
using the anisotropic property of the model. Finally, the sur-
face red shift has been calculated using the observational
data of a class of anisotropic stars. The plan of the paper
is following. In the next section, we present the anisotropic
source and Einstein field equations. Section 3 deals with the
physical analysis of the proposed model. In the last section,
the results of the paper are concluded.

2 Interior matter distribution and field equations

For solving Einstein equations with a cylindrically symmet-
ric spacetime, firstly, we must assume the line element with
which we would like to work. Let t denote a time coordinate,
for a fixed time t , a cylindrically symmetric spacetime can
be described as follows. There is a central axis of symme-
try, with z denoting the coordinate along the static solutions

of Einsteins equations. The general static cylindrically sym-
metric spacetime (Brito et al. 2012) is given by

ds2 = −eν(r)dt2 + eμ(r)dr2 + eα(r)dz2 + eβ(r)dθ2, (1)

where ν, μ, α and β are unknown functions. In analogy to
standard spherically symmetric spacetime, we define coor-
dinate r in such a way that co-efficient of dθ2 is equal to r2.
This transformation is called tangential gauge, thus by set-
ting eβ(r) = r2, metric (1) can be written as

ds2 = −eν(r)dt2 + eμ(r)dr2 + eα(r)dz2 + r2dθ2. (2)

Since co-efficient of dr2 and dz2 have same dimensions,
thus it is convenient to take eμ(r) = eα(r). Hence metric (2)
reduces to

ds2 = −eν(r)dt2 + eμ(r)
(
dr2 + dz2) + r2dθ2. (3)

In this equation μ(r) = Ar2 and ν(r) = Br2 +C (Krori and
Barua 1975) where A, B and C are arbitrary constants to be
determined by using some boundary conditions. The interior
of compact object may be defined in terms of anisotropic
fluid which has following form

Tαβ = (ρ + Pt )UαUβ + Ptgαβ + (Pr − Pt )ψαψβ, (4)

where Uα = e
ν
2 δ0

α , ψα = e
μ
2 δ1

α , ρ, Pt and Pr correspond to
the energy density, transverse and radial pressures, respec-
tively. In this case cosmological constant has radial depen-
dence such that Λ = Λ(r) = Λr . Therefore, the Einstein
field equations

Gαβ = Rαβ − 1

2
gαβR + gαβΛ ≡ 8πG

c4
Tαβ, (5)

for the metric in Eq. (3) (in the relativistic units G = c = 1)
are obtained as follows:

8πρ + Λr = 1

2

(
μ′′

eμ(r)

)
, (6)

8πPr − Λr = 1

4eμ

(
ν′2(r)r + 2rν′′(r) + 4ν′(r)

r

)
, (7)

8πPt − Λr = 1

4

[
ν′2(r) + 2μ′′(r) + 2ν′′(r)

eμ(r)

]
. (8)

We assume that radial pressure of the compact star is pro-
portional to the matter density, so

Pr = mρ, m > 0, (9)

where m is the equation of state parameter. Now, from the
metric (3) and Eqs. (6)–(8), we get the energy density ρ,
tangential pressure Pt , radial pressure Pr and cosmological
parameter Λr . These quantities are

ρ = (12B − A + 4B2r2)e−Ar2

8π(m + 1)
, (10)
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Fig. 1 Density variation of Strange star candidate 4U 1820-30

Pr = e−Ar2[(m − 7)(4B2r3 + 12Br) − 8Arm]
64πr(m + 1)

, (11)

Pt = e−Ar2[B2r2(m − 3) + B(m − 11) + A]
8π(m + 1)

, (12)

Λr = e−Ar2

m + 1

[
Am − 4B

(
Br2 + 3

)]
. (13)

The equation of state (EoS) parameters corresponding to
normal and transverse directions can be written as,

Pr = ωrρ,

then from Eqs. (9), we get

ωr(r) = m. (14)

Also, when

Pt = ωtρ,

then from Eqs. (10) and (12), we get

ωt(r) = B2r2(m − 3) + B(m − 11) + A

12B − A + 4B2r2
. (15)

3 Physical analysis

In this section, we shall discuss following features of our
model:

3.1 Anisotropic behavior

Taking derivative of Eqs. (10) and (11), we get

dρ

dr
= −

[
(24BAr − 2A2r + 8AB2r3)e−Ar2

8π(m + 1)

− 8B2re−Ar2

8π(m + 1)

]
< 0, (16)

dPr

dr
= −

[
(24BAr − B2r(1 + Ar2))e−Ar2

8π(m + 1)

Fig. 2 Density variation of Strange star candidate Her X-1

Fig. 3 Density variation of Strange star candidate SAX J
1808.4-3658(SS1)

Fig. 4 Radial pressure variation of Strange star candidate 4U 1820-30

− A2mre−Ar2

4π(m + 1)

]
< 0. (17)

At center r = 0, our model provides that

dρ

dr
= 0,

dPr

dr
= 0 (18)

d2ρ

dr2
< 0,

d2Pr

dr2
< 0 (19)

which indicate maximality of radial pressure and density.
This implies the fact that ρ and Pr are decreasing function
of r as shown in Figs. 1–6 for a class of strange star. Similar
behavior of Pt and Λr is shown in Figs. 7, 8, 9 and 10, 11,
12. The measure of anisotropy is

� = 2

r
(Pt − Pr),
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Fig. 5 Radial pressure variation of strange star candidate Her X-1

Fig. 6 Radial pressure variation of strange star candidate SAX J
1808.4-3658(SS1)

Fig. 7 Tangential pressure variation of Strange star candidate 4U
1820-30

which takes the form

� = 1

16πr

[
e−Ar2(

B
(
Br2 + 1

) + 2A
)]

. (20)

The anisotropy will be directed outward when Pt > Pr this
implies that � > 0 and directed inward when Pt < Pr im-
plying � > 0. In this case � > 0, for larger value of r for
a class of strange stars as shown in Figs. 13–15. This im-
plies that anisotropic force allows the construction of more
massive star while near the center there is attractive force as
� < 0 in Figs. 14, 15. Note that the bound on the EoS pa-
rameter 0 < ωt(r) < 1 is shown in Fig. 16. This shows that
star consists of ordinary matter and effect of cosmological
constant Λ.

Fig. 8 Tangential pressure variation of strange star candidate Her X-1

Fig. 9 Tangential pressure variation of strange star candidate SAX J
1808.4-3658(SS1)

Fig. 10 Behavior of cosmological constant for strange star candidate
4U 1820-30

3.2 Matching conditions

Here, we match the interior metric (3) to the vacuum exterior
cylindrically symmetric metric (Lemos and Zanchin 1996)
given by

ds2 = −
(

Λr2 − 4M

r

)
dt2 +

(
Λr2 − 4M

r

)−1

dr2

+ Λr2dz2 + r2dθ2, (21)

where Λ < 0 is cosmological constant. At the boundary r =
R continuity of the metric functions gtt , grr and ∂gtt

∂r
at the

boundary surface yield,

g−
t t = g+

t t , g−
rr = g+

rr ,
∂g−

t t

∂r
= ∂g+

t t

∂r
, (22)
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Fig. 11 Behavior of cosmological constant for strange star candidate
Her X-1

Fig. 12 Behavior of cosmological constant for strange star candidate
SAX J 1808.4-3658(SS1)

Fig. 13 Anisotropic behavior of strange star candidate 4U 1820-30

where − and +, correspond to interior and exterior solu-
tions. From the interior and exterior matrices, we get

A = 1

R2
ln

(
4M

R
+

√
16M2

R2
+ 4

)
, (23)

B = 1

R2

[
ΛR3 + 2M

ΛR3 − 4M

]
. (24)

For the given values of M and R for given star, the constants
A and B are given in Table 1.

Fig. 14 Anisotropic behavior of strange star candidate Her X-1

Fig. 15 Anisotropic behavior of strange star candidate SAX J
1808.4-3658(SS1)

Fig. 16 Behavior of EoS parameter for 4U1820-30, Her X-1 and SAX
J 1808.4-3658(SS1)

3.3 Stability

We define sound speed as,

υ2
SR = dPr

dρ
=

[
4BAr − B2r(1 + Ar2) − 2A2mr

24BAr − 2A2r + 8AB2r3 − 8B2r

]
(25)

υ2
ST = dPt

dρ

= [{
2B2r(m − 3) − 2Ar

(
B2r2(m − 3)

+ B(m − 11) + A
)}

× {
24BAr − 2A2r + 8AB2r3 − 8B2r

}−1]
. (26)
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Table 1 Values of constant for given Masses and Radii of stars

Strange quark star M R (km) M
R

A (km−2) B (km−2)

Her X-1 0.88 M� 7.7 0.168 0.00749431669 0.017062831

SAX J 1808.4-3658 1.435 M� 7.07 0.299 0.010949753 0.020501511

4U 1820-30 2.25 M� 10.0 0.332 0.005715628647 0.0101366226

Fig. 17 Variation of v2
ST − v2

SR of Strange star candidate
4U1820-30, Her X-1 and SAX J 1808.4-3658(SS1)

Fig. 18 Behavior of redshift of Strange star candidate 4U1820-30,
Her X-1 and SAX J 1808.4-3658(SS1)

These quantities are shown in Fig. 17, in this figure I =
R,S. From the above equations, we get

υ2
ST − υ2

SR

= {
2B2rm − 5B2r − 2B2Ar3m + 5B2Ar3

+ 18ABr − 2ABrm − 2A2r + 2A2rm
}

× {
24BAr − 2A2r + 8AB2r3 − 8B2r

}−1
, (27)

which can be simplified to the following form

υ2
ST − υ2

SR

= {
B2(2rm − 5r − 2Ar3m + 5Ar3)

+ 2B(9Ar − 2Arm) − 2A2r(1 − m)
}

× {
24BAr − 2A2r + 8AB2r3 − 8B2r

}−1
. (28)

From Fig. 17, we can see that |υ2
st −υ2

sr | ≤ 1. This is used to
check whether local anisotropic matter distribution is stable
or not. For this, we use the cracking concept (Herrera and
Santos 1997) which explain that potentially stable region is
that region where radial speed of sound is greater than the
transverse speed of sound. Hence, our proposed compact
star model is stable.

3.4 Surface redshift

The compactness of the star is given by

u = M

b
= 1

2(m + 1)

[
2B2e−Ar2

A2

−
√

πErf [√Ab](2B2 − A(A − 12B))

2bA
5
2

]
, (29)

where b = r . The surface redshift (Zs) corresponding to the
above compactness (u) is obtained

1 + Zs

= [1 − 2u]− 1
2 =

[
1 − 1

(m + 1)

(
2B2e−Ar2

A2

−
√

πErf [√Ab](2B2 − A(A − 12B))

2bA
5
2

)] 1
2

. (30)

The maximum surface redshift for the compact objects is
given by Fig. 18.

4 Conclusion

In GR cylindrically symmetric solution turns out to be anal-
ogous to spherically symmetric solutions in many ways but
also remain quite different in many aspects. The first well-
known static spherically symmetric vacuum solution of Ein-
stein Field equation is Schwarzschild exterior solution char-
acterized by mass, but there are some static vacuum cylindri-
cally symmetric solutions other than cone or cosmic string
solutions characterized by the defect angle. A cone solution
is Lorentz-invariant along the cylinder axis and hence cannot
arise from a matter source unless the matter source satisfies
the physical equation of state.
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In this paper, we have constructed analytical solutions for
the compact stars with more general interior source and ex-
terior geometry. The analysis has been done by considering
that stars are anisotropic in their internal configuration. The
present day acceleration of the Universe in the form of DE
allows us to consider the cosmological constant as a variable
in its character. The interior configuration of the cylindrical
star has been treated by metric assumption. By the phys-
ical interpretation of the results, we conclude that bound
on effective EoS parameter is given by 0 < ωi < 1 which
is in agreement with normal matter distribution. The den-
sity and pressure attain the maximum value at the center. It
has been found that the anisotropy will be directed outward
when Pt > Pr this implies that � > 0 and directed inward
when Pt < Pr implying � > 0. In this case � > 0, for larger
value of r for a class of strange stars as shown in Figs. 13–
15. This implies that anisotropic force allows the construc-
tion of more massive star while near the center of the interior
configuration there is attractive force as � < 0 in Figs. 14,
15. The range of Zs for the compacts objects in this case
lies in the range 0 < Zs ≤ 0.003. In case of isotropic inte-
rior configuration without cosmological constant this range
turnout to be Zs ≤ 2. Hence in present configuration redshift
has been decreased to a certain range. According to Böhmer
and Harko anisotropic stars in the presence of cosmological
constant has the redshift value in the range Zs ≤ 5, which is
consistent with the Ivanov (2002) bound Zs ≤ 5.211. On the
basis of the cracking concept, we have discussed the stabil-
ity of the proposed model and found that present model is
stable.
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