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Abstract We present a class of new relativistic solutions
with anisotropic fluid for compact stars in hydrostatic equi-
librium. The interior space-time geometry considered here
for compact objects are described by parameters namely, λ,
k, A, R and n. The values of the geometrical parameters are
determined here for obtaining a class of physically viable
stellar models. The energy-density, radial pressure and tan-
gential pressure are finite and positive inside the anisotropic
stars. Considering some stars of known mass we present
stellar models which describe compact astrophysical objects
with nuclear density.

Keywords Relativistic Star · Compact object · Anisotropic
fluid

1 Introduction

The precision astronomical observations in the last couple
of decades predicted the existence of massive compact ob-
jects. A number of compact objects with very high den-
sities are discovered in the recent times (Lattimer 2010).
To describe such compact objects general theory of rela-
tivity is most useful. The theoretical investigation of such
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compact astrophysical objects has been a key issue in rela-
tivistic astrophysics over a couple of decades. Astrophysi-
cal objects with perfect fluid necessarily requires the pres-
sure inside is isotropic (Ivanov 2002). In general, a poly-
tropic equation of state (EOS) is used widely to describe a
white dwarf or a less compact star (Shapiro and Teukolosky
1983). However, theoretical understanding in the last couple
of decades made it clear that there is a deviation from local
isotropy in the interior pressure. At very high enough den-
sities with smaller radial size the anisotropic pressure plays
an important role in determining stellar properties (Ruder-
man 1972; Canuto 1974; Patel et al. 1997). The physical
situations where anisotropic pressure may be relevant are
very diverse for a compact stellar object (Ruderman 1972;
Canuto 1974; Maharaj and Maartens 1989; Bower and Liang
1974). By anisotropic pressure we mean the radial compo-
nent of the pressure (pr ) different from that of the tangen-
tial pressure (pt ). After the seminal work of Bower and
Liang (1974), a number of literature appeared considering
an anisotropic spherically symmetric static general relativis-
tic object. Ruderman (1972) and Canuto (1974) theoreti-
cally investigated compact objects and observed that a star
with matter density (ρ > 1015 gm/cc), where the nuclear
interaction become relativistic in nature, are likely to be
anisotropic. It is further noted that anisotropy in fluid pres-
sure in a star may originate due to number of processes e.g.,
the existence of a solid core, the presence of type 3A super
fluid etc. (Kippenhahm and Weigert 1990). Recently, Mak
and Harko (2004) determined the maximum mass and mass
to radius ratio of a compact isotropic relativistic star. Ma-
haraj and Maartens (1989), Bower and Liang (1974), Bayin
(1982) examined spherical distribution of anisotropic matter
in the framework of general relativity and derived a number
of solutions to understand the interior of such stars. A hand-
ful number of exact interior solutions in general relativity for
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both the isotropic and the anisotropic compact objects have
been reported in the literature (Delgaty and Lake 1998).
Delgaty and Lake (1998) analysed 127 published solutions
out of which they found that only 16 of the published re-
sults satisfy all the conditions for a physically viable stellar
model. In the case of a compact stellar object it is essential
to satisfy all the conditions outlined by Delgaty and Lake
as the EOS of the fluid of the compact dense object is not
known.

The discovery of compact stellar objects, such as X-ray
pulsars, namely Her X1, millisecond pulsar SAX J1808.
43658, X-ray sources, 4U 1820-30 and 4U 1728-34 are im-
portant and interesting as these are considered to be proba-
ble strange star candidates. The existence of such character-
istics compact objects led to critical studies of stellar con-
figurations (Dey et al. 1999; Li et al. 1999; Knutsen 1988;
Maharaj and Leach 1996; Mukherjee et al. 1997; Negi and
Durgapal 1999; Bombaci 1997; Tikekar and Thomas 1998;
Tikekar 1990; Gupta and Jassim 2000; Jotania and Tikekar
2006; Tikekar and Jotania 2005; Finch and Skea 1989).
However, the equation of state (EOS) of matter inside a su-
perdense strange star at present is not known. In this con-
text Vaidya and Tikekar (1982) and Tikekar (1990) have
shown that in the absence of definite information about the
EOS of matter content of stellar configuration, an alterna-
tive approach of prescribing a suitable ansatz for the ge-
ometry of the interior physical 3-space of the configura-
tion leads to simple easily accessible physically viable mod-
els of such stars. Relativistic models of superdense stars
based on different solutions of Einstein’s field equations
obtained by Vaidya-Tikekar approach of assigning differ-
ent geometries with physical 3-spaces of such objects are
reported in the literature (Knutsen 1988; Mukherjee et al.
1997; Tikekar and Thomas 1998; Jotania and Tikekar 2006;
Tikekar and Jotania 2005). Pant and Sah (1985) obtained a
class of relativistic static non-singular analytic solutions in
isotropic form with a spherically symmetric distribution of
matter in a static space time. Pant and Sah solution is found
to lead to a physically viable causal model of neutron star
with a maximum mass of 4M�. Recently, Deb et al. (2012)
obtained a class of compact stellar models using Pant and
Sah solution in the case of spherically symmetric space time.
In this paper we obtain a class of new relativistic solutions
which accommodate anisotropic stars possessing mass rele-
vant for neutron stars. Usually a stellar model is obtained
using Einstein field equation for a known EOS and then
the geometry of the space-time is determined. In this paper
we follow an alternative approach (Synge approach) by first
making an ad hoc choice of the geometry and then explore
the EOS for matter. A class of new relativistic solutions are
discussed here which accommodate anisotropic star in hy-
drostatic equilibrium having mass and radius relevant for
neutron stars (Steiner et al. 2010).

The paper is organised as follows: In Sect. 2, we set up
the relevant field equations and its solutions. In Sect. 3,
physical properties of anisotropic star is presented. In
Sect. 4, we present physical analysis of stellar models with
the observational stellar mass for different model parame-
ters. Finally in Sect. 5, we give a brief discussion.

2 Field equation and solutions

The Einstein’s field equation is

Rμν − 1

2
gμνR = 8πG Tμν (1)

where gμν , R, Rμν and Tμν are the metric tensor, Ricci
scalar, Ricci tensor and energy momentum tensor respec-
tively.

We use spherically symmetric space time metric given by

ds2 = eν(r)dr2 − eμ(r)
(
dr2 + r2dΩ2) (2)

where ν(r) and μ(r) are unknown metric functions and
dΩ2 = dθ2 + sin2 θ dφ2. We assume an anisotropic pres-
sure distribution for the fluid content of the star. The energy
momentum tensor for such fluid in equilibrium is given by

T μ
μ = diag(ρ,−pr,−pt ,−pt) (3)

where ρ is the energy-density, pr is the radial pressure, pt

is the tangential pressure and 	 = pt − pr is the measure
of pressure anisotropy (Steiner et al. 2010). Using the space
time metric given by Eq. (2), the Einstein’s field equation (1)
reduces to the following equations:

ρ = −e−μ
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Using Eqs. (5) and (6) along with the definition of anisotropy
of fluid we obtain
(
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2
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2
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4
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2

)
= 	eμ. (7)

Equation (7) is a second-order differential equation which
admits a class of new solution with anisotropic fluid distri-
bution given by

e
ν
2 = A

(1 − kα + n r2

R2

1 + kα

)
, e

μ
2 = (1 + kα)2

1 + r2

R2

(8)
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where

α(r) =
√√√√ 1 + r2

R2

1 + λ r2

R2

(9)

with R, λ, k, A and n are arbitrary constants. It may be
pointed out here that n = 0 corresponds to a solution for
isotropic stellar model obtained by Pant and Sah (1985).
We consider here non-zero n to obtain an anisotropic stel-
lar model in hydrostatic equilibrium. Equation (8) permits
a relation amongst the parameters which is useful for ob-
taining stellar models. The allowed values of the parameters
are determined using the physical conditions imposed on the
stellar solution for a viable stellar model. The geometry of
the 3-space in the above metric is given by

dσ 2 = dr2 + r2(dθ2 + sin2 θdφ2)

1 + r2

R2

. (10)

It corresponds to a 3 sphere immersed in a 4-dimensional
Euclidean space. Accordingly the geometry of physical
space obtained at the t = constant section of the space time
is given by

ds2 = A2
(1 − kα + n r2

R2

1 + kα

)2

dt2

− (1 + kα)4

(1 + r2

R2 )2

[
dr2 + r2(dθ2 + sin2 θdφ2)]. (11)

The pressure anisotropy term becomes

	 = nα r2

R2 (8α(1 + λ r2

R2 )3 + k2αX + Y)

(1 + λ r2

R2 )2(1 + kα)6(1 + n r2

R2 − kα)
(12)

where X = 8λ2 r6

R6 + 4λ(1 + 5λ) r4

R4 + 12λ− 4, Y = (15λ2 +
10λ − 1) r2

R2 + k(4 + 12λ + 16λ2) r6

R6 + 4λ(5 + 7λ) r4

R4 +
(15λ2 + 26λ + 7) r2

R2 . The geometry of 3-space obtained at
t = constant section of the space time metric (11) given
above incorporates a deviation in a spherical 3 space, k is
a geometrical parameter measuring inhomogeneity of the
physical space and n is related to the anisotropy. For k = 0
and n = 0, the space time metric (11) degenerates into that
of Einstein’s static universe which is filled with matter of
uniform density. The solution obtained by Pant and Sah cor-
responds to the case when n = 0 and k �= 0 (Pant and Sah
1985). It reduces to a generalization of the Buchdahl so-
lution, the physical 3-space associated with which has the
same feature. However, for λ > 0, the solution corresponds
to finite boundary models. In this paper we study physical
properties of compact objects filled with anisotropic fluid

(n �= 0) and determine the values of R, λ, k and A for a vi-
able stellar model as permitted by the field equation. The
exterior Schwarzschild line element is given by

ds2 =
(

1 − 2m

ro

)
dt2 −

(
1 − 2m

ro

)−1

dr2

− r2
o

(
dθ2 + sin2 θdφ2) (13)

where m represents the mass of spherical object. The
above metric can be expressed in an isotropic metric form
(Narlikar 2010)

ds2 =
(

1 − m
2r

1 + m
2r

)2

dt2 −
(

1 + m

2r

)4(
dr2 + r2dΩ2) (14)

using the transformation ro = r(1 + m
2r

)2 where ro is the
radius of the compact object. This form of the Schwarzschild
metric will be used here to match at the boundary with the
interior metric given by Eq. (11) at the boundary.

3 Physical properties of anisotropic compact star

The solution given by Eq. (8) is useful to study physical fea-
tures of compact objects with anisotropy in a general way
which are outlined as follows:

(1) In this model, a positive central density ρ is obtained for
λ < 4

k
+ 1.

(2) At the boundary of the star (r = b), the interior so-
lution should be matched with the isotropic form of
Schwarzschild exterior solution, i.e.,

e
ν
2 |r=b =

(
1 − m

2b

1 + m
2b

)
; e

μ
2 |r=b =

(
1 + m

2b

)2

(15)

(3) The physical radius of a star (ro), is determined knowing
the radial distance where the pressure at the boundary
vanishes (i.e., p(r) = 0 at r = b). The physical radius is
related to the radial distance (r = b) through the relation
ro = b(1 + m

2b
)2 (Narlikar 2010).

(4) The ratio m
b

is determined using Eqs. (8) and (14), which
is given by

m

b
= 2 ± 2A

(
1 − kα + ny2

√
1 + y2

)
(16)

where y = b
R

. In the above we consider only nega-
tive sign as it corresponds to a physically viable stellar
model.

(5) The density inside the star should be positive i.e., ρ > 0.
(6) Inside the star the stellar model should satisfy the con-

dition, dp
dρ

< 1 for the sound propagation to be causal.
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The usual boundary conditions are that the first and sec-
ond fundamental forms required to be continuous across the
boundary r = b. We determine n, k, λ and A which satisfy
the criteria for a viable stellar model outlined above. As the
field equations are highly non-linear and intractable to ob-
tain a known functional relation between pressure and den-
sity we adopt numerical technique. Imposing the condition
that the pressure at the boundary vanishes, we determine y

from Eq. (5). The square of the acoustic speed dp
dρ

becomes:

dp

dρ
= −

√
α(1 + k

√
α)(A + B√

α
+ C + D)

E
(17)

where
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Fig. 1 Radial variation of pressure for different k with n = 0.60,
λ = 1.9999 and A = 2. Red line for k = 0.55, blue line for k = 0.5
and dashed line for k = 0.4

Fig. 2 Radial variation of density for different k with n = 0.60, λ = 2
and A = 2. Blue line for k = 0.40, dashed line for k = 0.50 and red
line for k = 0.55

+ r2(5 + 6r2 + 27r4 + 2r6)λ3

+ (
4r8 − 2r6)λ4)).

We study the physical properties of anisotropic com-
pact objects numerically and follow the following steps. For
given values of λ and k, the size of the star is estimated from
the condition that pressure vanishes at the boundary which
follows from Eq. (5). The mass to radius m

b
of a star is de-

termined from Eqs. (8) and (14), which in turn determines
the physical size of the compact star (ro). For a given set
of values of the parameters λ, A, k, n, and the mass (m),
the radius of an anisotropic compact object is obtained in
terms of the model parameter R. Thus for a known mass of
a compact star R is determined which in turn determines the
corresponding radius.

The radial variation of pressure and density of anisotropic
compact objects for different parameters are plotted in
Figs. 1–4. In Figs. 1 and 2, variation of radial pressure is
plotted for a given set of values of A, n and λ for differ-
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Fig. 3 Radial variation of pressure for different n with k = 0.31, λ = 2
and A = 2. Blue line for n = 1.22, dashed line for n = 0.95 and red line
for n = 0.8

Fig. 4 Radial variation of density for different λ with k = 0.641,
n = 0.60 and A = 2. Blue line for λ = 1.9999, and red line for λ = 1.1

ent k. It is noted that the pressure increases with an increase
in k whereas the density decreases. The central density also
found to increases with decrease in the value of k. The ra-
dial variation of pressure with n is plotted in Fig. 3. It is
evident that although the pressure inside the star decreases
with an increase in n, the density remains invariant. The ra-
dial variation of density with λ is plotted in Fig. 4. Both
the density and the pressure are found to increase with an
increase in λ value showing an increase in corresponding
central density. But the difference between central density
with that of surface density reduces with increase in λ. It
is noted that both the pressure and the density are indepen-
dent on A. The radial variation of pressure for different λ is
shown in Fig. 5, it is evident that the decrease in radial pres-
sure near the boundary is sharp for higher values of λ. The
variation of both radial and transverse pressure are plotted in
Fig. 6, it is noted that the value of transverse pressure at the
boundary is more than that of radial pressure although they
begin with same central pressure at the centre. Figure 7 is a
plot of squared speed of sound i.e., dp

dρ
with different n val-

Fig. 5 Variation of radial pressure for different λ with k = 0.641,
n = 0.60 and A = 2. Blue line for λ = 1.0, dashed line for λ = 1.5
and thick line for λ = 1.9999

Fig. 6 Radial variation of transverse and radial pressure with λ = 10,
n = 0.8, A = 2 and k = 0.31. Blue line for radial pressure and red line
for transverse pressure

Fig. 7 Radial variation of dp
dρ

with different n for k = 0.61669, λ = 2,
A = 2. Red line for n = 0.4, dashed line for n = 0.3 and blue line for
n = 0.2

ues. It is found that dp
dρ

is positive inside the star and obeys
causality condition. It shows stability of the stellar models.
To check the strong energy condition we plot the radial vari-
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Fig. 8 Variations of parameter n with radial distant r (in km) for SEC
(ρ − 3p). Blue line for n = 0.7 and red line for n = 1

Fig. 9 Variations of parameter k with radial distance r (in km) for
SEC (ρ − 3p). Blue line for k = 0.4 and red line for k = 0.50

Fig. 10 Radial variations of SEC i.e., (ρ − 3p) with different n for
k = 0.641, λ = 2 and A = 2. Dashed line for n = 0.8, red line for
n = 0.7 and thick line for n = 0.67

ation of (ρ − 3p) for different values of n, λ and k values in
Figs. 8–12. In Figs. 8 and 9 it is observed the SEC is obeyed.
But from Figs. 10, 11 and 12, it is noted that there exist a

Fig. 11 Radial variations of SEC i.e., (ρ − 3p) with different λ for
k = 0.641, n = 0.65 and A = 5. Dashed line for λ = 2, blue line for
λ = 1.8 and thick line for λ = 1.7

Fig. 12 Radial variations of SEC i.e., (ρ − 3p) with different k for
n = 0.65, λ = 1.8 and A = 5. Blue line for k = 0.641 and thick line for
k = 0.6

region near the center of the star where SEC is not obeyed.
It is further noted that the radius of that region increases
with an increase in the parameter values n, k and λ. This is
interesting as two distinct regions are found to exist in the
compact objects corresponding to the solution obtained here
which may be useful for constructing a core-envelope model
of the star. The radial variation of anisotropy inside the star
for different n values are plotted in Fig. 13. It is evident that
the anisotropy of a star increases with increase in value of
the parameter n.

The reduced size of a star (b̃ = b
R

) is tabulated for differ-
ent n and λ values in Table 1. It is evident that for a given λ

if one increases n the reduced size of a star increases. On the
other hand for a isotropic star as λ increases for a given n the
reduced size increases but in the case of an anisotropic star
the reduced size decreases in this case as one increases λ. In
Table 2 reduced size of a star is tabulated for different k and
λ values. It is evident that for a given λ as we increase k the
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Fig. 13 Radial variations of anisotropic parameter 	 for different n.
Blue line for n = 0.7 and red line for n = 1

Table 1 Variation of b̃ = b
R

for given n = 0,0.55,0.58,0.60 with dif-
ferent λ

λ n = 0 n = 0.55 n = 0.58 n = 0.60

4 0 0.333416 0.342962 0.34913

4.1 0.051703 0.332378 0.341709 0.347747

5 0.140301 0.323293 0.331121 0.336233

6 0.172643 0.314019 0.32075 0.325177

7 0.188117 0.305681 0.311647 0.31559

8 0.196376 0.298192 0.303591 0.307174

9 0.200904 0.291437 0.296399 0.299702

10 0.203298 0.285311 0.289924 0.293002

Table 2 Variation of reduced size b̃ = b
R

with λ for different k

λ k = 0.60 k = 0.62 k = 0.63

1 0.472227 0.497719 0.509691

2.5 0.423942 0.436794 0.442986

3 0.410826 0.422278 0.427808

4.5 0.38013 0.389138 0.393505

5.6 0.363177 0.371156 0.375029

6.1 0.356535 0.364154 0.367855

7.5 0.340542 0.347378 0.350702

8.3 0.332752 0.339243 0.342401

9.5 0.322458 0.328523 0.331477

10 0.318578 0.324491 0.327371

reduced size increases. However for a given k on increasing
λ the reduced size of the compact object decreases.

4 Physical analysis

For a given mass of a compact star, it is possible to estimate
the corresponding radius in terms of the geometric parame-

Table 3 Variation of size of a star with m
b

for k = 0.641, n = 0.697,
λ = 1.9999 and A = 2

m
b

R in km Radius (ro in km)

0.3 8.169 8.311

0.28 8.574 8.828

0.26 9.048 9.424

0.25 9.317 9.757

0.20 11.096 11.925

Table 4 Density profile ρ(b)
ρ(0)

of compact objects

ρ(b)
ρ(0)

ρ(b)
ρ(0)

ρ(b)
ρ(0)

λ n = 0.697 n = 0.60 n = 0.50

k = 0.641 k = 0.63 k = 0.52

1 0.449 0.508 0.633

1.1 0.447 0.505 0.619

1.2 0.444 0.502 0.607

1.3 0.444 0.498 0.597

1.4 0.436 0.494 0.589

1.5 0.432 0.490 0.580

1.7 0.429 0.475 0.565

1.9999 0.409 0.466 0.545

ter R. To obtain stellar models we consider compact objects
with observed mass (Lattimer 2010) which determines the
radius of the star for different values of R with given set
of values of n, A, k and λ. It is known that the radius of
a neutron star is ≤(11–14) km (Steiner et al. 2010), there-
fore, to obtain a viable stellar model for compact object the
upper bound of the size is fixed accordingly. In the next sec-
tion we consider three stars whose masses (Dey et al. 1999;
Li et al. 1999; Lattimer 2010) are known from observations
to explore suitability of the solutions considered here.

Model 1 For X-ray pulsar Her X-1 (Lattimer 2010; Dey
et al. 1999; Sharma and Maharaj 2007) characterized by
mass m = 1.47M�, where M� = the solar mass we ob-
tain a stellar configuration with radius ro = 8.31106 km, for
R = 8.169 km. The compactness of the star in this case is
u = m

ro
= 0.30. The ratio of density at the boundary to that

at the centre for the star is 0.128 which is satisfied for the
parameters λ = 1.9999, k = 0.641, A = 2 and n = 0.697. It
is found that compactness factor u = 0.2 accommodates a
star of radius ro = 11.925 km. However, stellar models with
different size and compactness factor with the above mass
permitted here are tabulated in Table 3. It is also observed
that as the compactness factor increases size of the star de-
creases. It is evident from the second column of Table 4 that
increase in λ value which is related to geometry lead to a
decrease in the density profile of the compact object.
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Table 5 Variation of size of a star with m
b

for k = 0.63, n = 0.60,
λ = 1.1 and A = 2

m
b

R in km Radius (ro in km)

0.3 8.169 4.071

0.28 8.574 4.324

0.26 9.048 4.616

0.24 9.317 4.956

0.22 11.096 5.358

Table 6 Variation of size of a star with m
b

for k = 0.63, n = 0.60,
λ = 1.1 and A = 2

m
b

R in km Radius (ro in km)

0.3 8.169 9.047

0.28 8.574 9.609

0.26 9.048 9.818

0.24 9.317 11.013

0.22 11.096 11.907

Model 2 For X-ray pulsar J1518+4904 (Lattimer 2010;
Dey et al. 1999; Sharma and Maharaj 2007) characterized
by mass m = 0.72 M�, where M� = the solar mass it is
noted that it permits a star with radius ro = 4.071 km, for
R = 8.169 km. The compactness of the star in this case is
u = m

ro
= 0.30. The ratio of its density at the boundary to

that at the centre is 0.142 which is obtained for values of the
parameters λ = 1.1, k = 0.641, A = 2 and n = 0.60. It is
noted that a star of radius ro = 12.332 km. results with same
mass having lower compactness factor u = 0.09. It is evi-
dent from Table 5 that in this case also as the compactness
increases radius of the star decreases. The variation of den-
sity profile with λ is tabulated in the 3rd column of Table 4.
It is found that the density profile decreases as λ increases.

Model 3 In this case we consider a compact object B1855+
09(g) (Lattimer 2010; Dey et al. 1999; Sharma and Maharaj
2007) characterized by mass m = 1.6M�, where M� = the
solar mass, it is noted that its radius is ro = 9.047 km, for
R = 8.169 km with compactness factor u = m

ro
= 0.30. The

ratio of density at the boundary to that at the centre for the
star is 0.187 which is found for the values of the parameters
λ = 1, k = 0.52, A = 2 and n = 0.50. It is noted that a star
of compactness factor u = 0.22 accommodates a star with
radius ro = 11.907 km. For the same mass considered here
it is possible to obtain a class of stellar models with differ-
ent size and compactness which are tabulated in Table 6. We
note that size of the star decreases with the increase in com-
pactness. The variation of density profile with λ is displayed
in 4th column of Table 4. It is evident the density profile
decreases as λ increases.

Table 7 Variation of radial pressure with density for different stellar
models

Star with mass Radial pressure

HER X-1

1.47M� (i) pr = 1.207ρ − 8.477

(ii) pr = 0.130ρ2 − 1.032ρ + 0.980

J1518+4904

0.72M� (i) pr = 1.041ρ − 7.607

(ii) pr = 0.104ρ2 − 0.794ρ + 0.350

B1855+09(g)

1.6M� (i) pr = 0.602ρ − 5.316

(ii) pr = 0.043ρ2 − 0.252ρ − 1.151

Fig. 14 Plot of 	 with positive n and radial distance with λ = 2 and
k = 0.4

5 Discussion

In this paper, we present a class of new general relativistic
solutions for a class of compact stars which are in hydro-
static equilibrium considering an anisotropic interior fluid
distribution. The radial pressure and the tangential pressure
are different, variations of the pressures are determined. As
the EOS of the fluid inside a neutron star is not known so
we adopt here numerical technique to determine a suitable
EOS of the matter content inside the star for a given space-
time geometry. The interior space-time geometry considered
here is characterized by five geometrical parameters namely,
λ, R, k, A and n which are used to obtain different stellar
models. For n = 0, the relativistic solution reduces to that
considered in by Pant and Sah (1985) and Deb et al. (2012).
The permitted values of the unknown parameters are deter-
mined from the following conditions: (a) metric matching
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at the boundary, (b) dp
dρ

< 1, (c) pressure at the boundary is
zero i.e., p = 0 and (d) the positivity of density.

We note the following: (i) In Figs. 1 and 2, the radial vari-
ation of pressure and density are plotted for different k for
a given set of values of λ, A, n and k. The radial pressure
increase with an increase in k but the density is found to de-
crease. The central density of the compact object increases
if k decreases. (ii) In Fig. 3, variation of radial pressure in-
side the star is plotted for different n. We note that pressure
decreases as n increases, however, density does not change.
(iii) In Figs. 4 and 5, radial variation of density and pressure
are plotted for different λ. We note that both the pressure
and the density increases with an increase in λ. The central
density is found to increase with an increase in λ in this case.
The radial variation of pressure for different λ is shown in
Fig. 5. It is noted that the radial pressure near the boundary
decreases sharply for higher values of λ.

(iv) It is evident from Figs. 8 and 9 that SEC is obeyed
inside the stars for the configurations considered in the two
cases. In Figs. 10–12 we obtain an interesting result where
SEC is violated. The size of the region near the centre is fur-
ther increases with an increase in the value of one of the
parameters, n, k and λ keeping the other parameters un-
changed. Thus the solution obtained here may be useful to
construct a core-envelope model of a compact star which
will be discussed elsewhere. (v) In Fig. 13, the radial vari-
ation of anisotropy inside the star for different n values are
plotted. The increase in value of n is related to increase in
anisotropy of the fluid pressure. (vi) For a given λ as we
increase n the reduced size of star increases. However for
n = 0 the size of a star increases with an increase in λ which
is tabulated in Table 1. It is noted that for non-zero values of
n the size of the star however found to decrease.

(vii) For a given λ the size of the star increases as k in-
creases, but for a given k the size of the star decreases as
λ increases which is shown in Table 2. (viii) Considering
observed masses of the compact objects namely, HER X-1,
J1518+4904 and B1855+09(g) we explore the interior of
the star. A class of compact stellar models with anisotropic
pressure distribution are permitted with the new solution dis-
cussed here. In the models stars of different compactness
factor which are shown in Tables 3, 5 and 6 for different
geometric parameters. The density profile of the models are
also tabulated in Tables 4. The density profile inside the star
is found to decrease as λ increases. (ix) We obtain functional
relation of the radial pressure with the density for the mod-
els considered here which is presented in Table 7. It is noted
that a viable stellar model may be obtained here with a poly-
nomial EOS. In the table we have displayed linear and a
quadratic EOS only, it may be mentioned here that similar
EOS are considered recently in Maharaj and Takisa (2012)
and Chattopadhyay et al. (2012) to obtain relativistic stellar
models. We note that though a stellar configuration in our

case permits a linear EOS, it does not accommodate a star
satisfying MIT bag model (Chattopadhyay et al. 2012). It is
also noted that the stellar models obtained here allows neu-
tron stars with mass less than 2M� for an anisotropic fluid
distribution. The observed maximum mass of a neutron star
is 2M�, therefore the stellar models obtained here may be
relevant for compact objects with nuclear density. A physi-
cally realistic stellar model up to radius ∼(11–14) km may
be permitted here with the relativistic solutions accommo-
dating less compactness (Steiner et al. 2010). (x) We plot
radial variation of the anisotropy measurement in pressure
i.e., 	 in Fig. 14 with n. It is evident from the 3D plot that
	 → 0 when n → 0 which leads to isotropic pressure case.
For n > 0, the difference in tangential pressure to radial
pressure initially increases which however attains a constant
value for large n. It is also noted from Eq. (12) that 	 = 0
when r = 0 i.e., in the stellar model both the tangential and
radial pressure are equal at the center.
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