
Astrophys Space Sci (2014) 353:515–523
DOI 10.1007/s10509-014-2079-4

O R I G I NA L A RT I C L E

Dust-acoustic solitary and rogue waves in a Thomas-Fermi
degenerate dusty plasma

M. Irfan · S. Ali · Arshad M. Mirza

Received: 26 March 2014 / Accepted: 25 July 2014 / Published online: 9 August 2014
© Springer Science+Business Media Dordrecht 2014

Abstract The formation and propagation of dust-acoustic
(DA) solitary and rogue waves are studied in a non-
relativistic degenerate Thomas-Fermi thermal dusty plasma
incorporating transverse velocity perturbation effects. The
electrons and ions are described by the Thomas-Fermi
density distributions, whereas the dust grains are taken
as dynamic and classical. By using the reductive pertur-
bation technique, the cylindrical Kadomtsev-Petviashvili
(CKP) equation is derived, which is then transformed into
a Korteweg-deVries (KdV) equation by using appropriate
variable transformations. The latter admits a solitary wave
solution. However, when the carrier waves frequency is
much smaller than the dust plasma frequency, the DA waves
evolve into the nonlinear modulation instability, generating
modulated wave packets in the form of Rogue waves. For
the study of DA-rogue waves, the KdV equation is trans-
formed into a self-focusing nonlinear Schrödinger equa-
tion. The variation of dust temperature and the electron
density affects the nonlinearity and dispersion coefficients
which suppress the amplitudes of the DA solitary and rogue
waves. The present results aim to describe the nonlinear
electrostatic excitations in astrophysical degenerate dense
plasma.
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1 Introduction

Multicomponent dusty plasma has been appeared as a poten-
tial subfield of “plasma physics” since the last three decades.
It has myriad existence in space and astrophysical bodies,
such as cometary tails, asteroid zone, planetary rings, inter-
stellar medium, in lower part of the earth’s ionosphere and
in magnetosphere (Horanyi and Mendis 1985; Goertz 1989;
Bouchule 1999; Verheest 1996, 2000; Mendis and Rosen-
berg 1994). In addition, dusty plasma has numerous appli-
cations in laboratory, e.g., processing plasmas, Tokamaks,
etc.

The study of dusty plasma begins when Rao, Shukla and
Yu (Rao et al. 1990) theoretically predicted the existence
of dust-acoustic (DA) waves and was experimentally con-
firmed later (Barkan et al. 1995; Pieper and Goree 1996;
Prabhuram and Goree 1996). Since then numerous inves-
tigations have been appeared in dusty plasma for different
type of waves, for instance, the formation of coherent non-
linear structures, the wave instabilities, etc. (Shukla and Ma-
mun 2002; Fortov and Morfill 2009; Shukla and Eliasson
2009). The experimental investigations have confirmed that
the linear and nonlinear properties of plasma depend on the
velocity distribution functions of the plasma particles. More-
over, the contamination due to highly charged submicron
or micron sized dust-grains alters the properties of normal
electron-ion plasma and new eigen modes of oscillations can
be studied in plasmas, e.g., dust acoustic mode (Rao et al.
1990), dust ion-acoustic mode (Shukla and Silin 1992), dust
lower-hybrid mode (Shukla and Rahman 1998), dust drift-
mode (Shukla et al. 1991), Shukla-Varma mode (Shukla and
Varma 1993), etc.

In astronomical environments matter exists in extremely
dense conditions and the objects, such as, white dwarf, neu-
tron stars, and magnetars, are the few cases of high density
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degenerate matter. As the thermonuclear burning in these
objects are ceased, there must be an opposing pressure to
prevent these stars from collapse, therefore this pressure has
an origin other than temperature. The only possibility for
this pressure which counter-balance the gravitational pull
in these objects, is the fermionic degeneracy pressure, aris-
ing due to degenerate fermionic kinetic energy and parti-
cles interactions (Goldberg and Scadron 1985). The elec-
tron number density in these objects could be of the order
1030–1035 cm−3 or even more and therefore the de-Broglie
wavelength becomes equal to (or greater than) the inter-
particle spacing d0 = n

−1/3
e0 (Abdelsalam et al. 2012). Keep-

ing in view the above-mentioned argument, the electron and
ion fluids can be assumed as Thomas-Fermi fluids in astro-
physical plasmas.

The most puzzling phenomena occurring at the sea in
deep waters is the generation of freak waves or rogue waves,
arising usually from a relatively calm sea (Müller et al. 2005;
Kharif and Pelinovsky 2003; Kharif et al. 2009; Garrett and
Gemmrich 2009). Modulational instability can be assumed
to be an efficient mechanism for the energy localization as-
sociating with the rogue waves in the open sea (Shukla et al.
2006; Grönlund et al. 2009). These waves unexpectedly
propagate for short times and then disappear without any
trace (Lawton 2001; Kharif et al. 2003). Numerous models
have been proposed for investigating their unexpected emer-
gence. Recently, many authors (Akhmediev et al. 2009a,
2009b; Ankiewicz et al. 2009; Eliasson and Shukla 2010;
Benchriet et al. 2013) have investigated the properties of
rogue waves in different physical environments. The re-
search interests have been shifted from oceanic dynami-
cal problems, towards nonlinear optics (Solli et al. 2007;
Kibler et al. 2010, 2012), superfluidity (Ganshin et al. 2008),
hydrodynamics (Chabchoub et al. 2011), atmospheric dy-
namics (Stenflo and Marklund 2010) and even econophysics
(Yan 2010; Ivancevic 2010).

The manuscript is organized in the following fashion:
Section 2 describes the basic governing equations for non-
planar dusty plasma. By using the reductive perturbation
method, a CKP equation is obtained and transformed into
a KdV equation admitting a soliton wave solution. Sec-
tion 3 presents the properties of the DA rogue waves,
while expressing the KdV equation in terms of nonlin-
ear Schrodinger equation with a rational solution for rogue
waves. In Sect. 4, the numerical results are discussed and
summarized in Sect. 5.

2 Governing equations

We study the formation and propagation characteristics of
solitary and rogue waves in an unmagnetized collisionless
degenerate dusty plasma. Such plasma can be comprised of

electrons, ions, and negatively charged dust grains. The elec-
trons and ions are described by the Thomas-Fermi density
distributions, whereas the dust grains are taken as classical
and dynamic. The charge neutrality condition at equilibrium
demands ne0 = ni0 − Zd0nd0, where Zd0 is dust charging
state, ns0 is the equilibrium number density of sth species
(s equals e for electrons, i for ions and d for negatively
charged dust grains).

For nonlinear analysis of DA solitary/rogue waves, we
consider the following set of equations in a two dimensional
geometry:
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where the electron and ion densities are assumed to fol-
low the Thomas-Fermi distributions (Dubinov and Dubi-
nova 2007) and their corresponding expressions (5) and (6)
can be derived from the electron and ion momentum equa-
tions under the assumption that they are inertialess. In the
above expressions, ns represents the number density, ud and
vd are the radial and angular velocity components of the dust
fluid, φ is the electrostatic potential, md is the dust mass,
e is the electronic charge, and εFj (= 2kBTFj) is the Fermi
energy, kB is the Boltzmann constant and TFj is the Fermi
temperature of the species (j equals e for electrons and i for
ions).

Normalizing Eqs. (1)–(6), we obtain
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The bars over the dependent and independent variables in
the above equations imply that they are in a dimension-
less form. The variables are normalized as nd = nd/nd0,
ud = ud/cd , φ = eφ/2kBTFi, t = tωpd and r = r/λ0, where
Cd = (2Zd0kBTFi/md)1/2, ωpd = (4πe2Z2

d0nd0/md)1/2

and λ0 = (2kBTFi/4πZd0e
2nd0)

1/2, are the characteristic
dust acoustic speed, the dust plasma frequency and the
characteristic length, respectively. We have also defined
the density and temperature ratios as μe = ne0/nd0Zd0,
μi = ni0/nd0Zd0 and σi = TFi/TFe, σd = Td/Zd0TFi, re-
spectively, and Td is the dust temperature.

One can relate the density ratios through the quasi-
neutrality condition of dusty plasma at equilibrium as

μi = μe + 1,

where μe describes the electron concentration in a dusty
plasma so that μe > 0, when μi > 1. The inverse of μe is
called the Havness Parameter (h = nd0Zd0

ne0
) which character-

izes the dust concentration. To study small amplitude DA
waves in Thomas-Fermi dusty plasma, we use the reduc-
tive perturbation method to obtain a CKP equation. For this
purpose, the independent variables are stretched (Xue 2003;
Mushtaq 2007) in the following manner:

R = ε1/2(r − λt), Θ = ε−1/2θ and T = ε3/2t,

where λ is the phase speed of the DA waves and will be
determined later. The dependent variables can be expended
as

ne = 1 + εne1 + ε2ne2 + · · · ,
ni = 1 + εni1 + ε2ni2 + · · · ,
nd = 1 + εnd1 + ε2nd2 + · · · ,
ud = 0 + εud1 + ε2ud2 + · · · , (13)

vd = 0 + ε3/2vd1 + ε5/2vd2 + · · · ,
φ = 0 + εφ1 + ε2φ2 + · · · ,
where ε is a small parameter (ε � 1) involving the ampli-
tude of the wave, and the bar on the variables is dropped
for simplicity. Substituting the stretched co-ordinates and
Eqs. (13) into Eqs. (7)–(12) and collecting the lowest orders
of ε, we obtain:
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where d = 3
2 (μe(σi + 1) + 1), and in terms of Havness pa-

rameter h it can be expressed as d = 3
2 (
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h

+1). Physically
d = 3
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0 is the quantum analogue of the

Debye charge screening radius (square). Equation (14) rep-
resents the phase speed of DA solitary waves in a Thomas-
Fermi dusty plasma.

In the limiting case, when Td = 0 which implies that
σd = 0 and the phase speed becomes as λ = (d)−1/2 =
( 3

2 (μe(σi + 1) + 1))−1/2, which is in agreement with Ab-
delsalam et al. (2012). The next order equations in ε can be
expressed as
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Simplifying Eqs. (15)–(17) and using Eq. (14) the CKP
equation turns out to be
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are the nonlinearity and dispersion coefficients, respectively.
For assuming the limit Td = 0, which implies that σd = 0.
As a consequence, the nonlinearity and dispersion coeffi-
cients reduce to A = − 1

λ
( 3

2 + 3
8λ4(μe(σ

2
i − 1) − 1)) and

B = λ3

2 . It is important to note that if the temporal stretch-
ing coordinate of the form T = ε3/2vst is used, instead of
T = ε3/2t , then our Eq. (19) exactly coincides with the re-
sult of Abdelsalam et al. (2012). Thus, the difference of
1/λ can be removed by taking into account the dimensional
temporal coordinate as given in Abdelsalam et al. (2012).
See that for neglecting the angular dependence, the cylin-
drical KP equation (18) also reduces to a usual cylindrical
KdV equation. The latter is usually solved numerically as
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it is difficult to solve analytically. However, the exact solu-
tion of the cylindrical KP equation can be obtained by us-
ing a suitable variables transformation (Xue 2003; Mush-
taq 2007; Ali et al. 2008). In Eq. (18), the terms (1/2T )φ1

and (1/2λT 2)∂2φ1/∂Θ2 can be canceled out by assum-
ing the potential perturbations (Xue 2003; Mushtaq 2007;
Ali et al. 2008) as:

φ1 = φ1(χ,T ), with χ = R − λ

2
Θ2T , and T = T . (20)

The above transformations implies that
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Substituting Eqs. (19) and (20) into Eq. (18), we obtain a
standard KdV equation,
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Here the bar has been dropped out for simplicity. Introduc-
ing a single moving variable η = χ − u0T , where u0 is the
soliton speed. A steady state soliton solution of the above
KdV equation (21) is obtained under the boundary condi-
tions, φ1 → 0 and ∂φ1

∂χ
→ 0, at χ = ±∞.

The soliton solution of KdV equation is as:
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are the maximum amplitude and width of the DA soliton.
The moving co-ordinate can be expressed as:
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3 Generation of lowest order rogue wave

When the frequency of the carrier waves is much smaller
than the dust plasma frequency, a modulation instability
gives rise to rogue waves. To investigate modulated pack-
ets of rogue waves by self-focusing NLS equation, we
use the following expansions (Shimizu and Ichikawa 1972;
El-Labany 1995; El-Labany et al. 2012) for dependent vari-
able into Eq. (21)
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where k is the carrier wave number and ω is the angular
frequency. We also employ the following variables transfor-
mations:
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where Λ is the group velocity, which will be determined
later. ϕ(n)

l signifies the lth harmonic of nth order approxima-
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Using Eqs. (26)–(28) into Eq. (22), we obtain
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For taking l = 1 in the first-order approximation (n = 1), the
dispersion relation gives

ω = Bk3. (30)

For second-order approximation (n = 2) and taking the first
harmonic l = 1, we obtain

Λ = −3Bk2, (31)

which is the group velocity. For second harmonic l = 2, in
the second order approximation, Eq. (24) implies that
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whereas for the zeroth harmonic (l = 0), we get
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Proceeding to the third-order approximation (n = 3) and
solving for the first harmonic equations (l = 1), an explicit
compatibility condition will be found, from which one can
easily obtain the NLS equation

i
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where we have replaced ϕ
(1)
1 by Ψ . The dispersion and non-

linearity coefficients P and Q can be defined as

P = 6Bk (35)

and

Q = A2/6Bk (36)

respectively. The lowest order rational solution of NLS
equation for DA rogue waves can be obtained (Akhmediev
et al. 2009c; El-Labany et al. 2011), as

Ψ = 1√
Q

(
4(1 + 2iτ )

1 + 4τ 2 + 4
P

ξ2
− 1

)
exp[iτ ] (37)

The above solution for rogue waves is derived under the as-
sumption that frequency of carrier waves is much smaller
than the dust plasma frequency. The solution lies on a
nonzero background of plasma and is localized in τ and
ξ coordinates. The solution for rogue waves concentrates a
substantial amount of energy into a small region of space.
It represent a modulated envelop of DA waves, which has a
wavelength smaller than the central region of envelope.

4 Results & discussions

In this section, we numerically study the DA solitary and
rogue waves in a 2D cylindrical, degenerate dense dusty
plasma. Such plasma may have its relevance in white

dwarfs, magnetars, neutron stars, etc. For numerical il-
lustration, we have chosen some typical numerical val-
ues (Abdelsalam et al. 2012; Ren et al. 2009, and Hip-
pel et al. 2012) for the degenerate dense plasma, as ne0 ∼
2 × 1027 cm−3, nd0 ∼ 1.9 × 1021 cm−3, Zd0 ∼ 103,
TFe ∼ 6.71 × 107 K, TFi ∼ 2946 K and Td = 900 K. To
determine the electron-ion Fermi Temperatures, we use
the formulas, TFe = (�2/2mekB)(3π2ne0)

2/3, and TFi =
(�2/2mikB)(3π2ni0)

2/3, respectively. For a degenerate
dense plasma, one can express the ion-to-electron Fermi
temperature ratio in terms of Havness parameter, as: σi =
(me/mi)(ni0/ne0)

2/3 ≡ (me/mi)(1 + h)2/3. This expres-
sion reduces to σi

∼= (me/mi)(1 + 2h/3), when h is small.
However, for large value of h, it approaches to σ ∼=
(me/mi)h

2/3. The charge-neutrality condition at equilib-
rium can be expressed in terms of Havness parameter h,
as μi = 1 + 1/h. We are interested to examine the ef-
fects of the equilibrium number density (ne0) and dust grain
temperature (Td) on the profiles of DA solitary and rogue
waves.

The variation of electron density affects the Debye ra-
dius and as a result the strength of the space charge electric
field is also affected. Therefore, the phase speed of the DA
waves decreases with increasing the electron number den-
sity as depicted in Fig. 1 by the dashed curve at Td = 0 K.
However, the change in dust grain temperature (Td = 900 K)

leads to enhance the magnitude of the phase speed for the
given range of electron density [see solid curve in Fig. 1].

Fig. 1 The phase speed of DA waves λ is plotted against the equilibrium number density ne0 at Td = 0 K (dashed curve) and Td = 900 K (solid
curve)
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Fig. 2 The nonlinearity and dispersion coefficients A and B are plotted against the equilibrium number density ne0 for Td = 0 K (dashed curve)
and Td = 900 K (solid curve)

Fig. 3 The amplitude φ0 and width w of DA solitary waves are depicted versus the equilibrium number density ne0 at u0 = 0.01 and Td = 900 K

Since the nonlinearity and dispersion coefficients A and B

involve the dependence of phase speed (λ) via Eq. (19),
therefore, the DA wave propagation is strongly influenced
by the electron density and the phase speed, resulting in
the modification of DA wave profiles. The enhancement
of ne0 and Td leads to increase (decrease) the coefficient

A (B), showing the existence of negative soliton pulses
for A < 0 and B > 0 [see Fig. 2]. We have also noticed
from Fig. 3 that the soliton amplitude (φ0) and width (w)

decreases as the number density increases. Figure 4 rep-
resents the effects of the dust temperature on the excita-
tions of DA wave. It is examined that a reduction in am-
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Fig. 4 The electrostatic potential φ1 is plotted versus η at
ne0 = 2 × 1027 cm−3, Td = 900 K (solid curve) and Td = 0 K (dashed
curve). The effect of dust temperature is to reduce both the amplitude
and width of DA solitary wave

Fig. 5 The profiles of DA solitary waves φ1 are plotted versus η for
different values of h at Td = 900 K

plitude and width occurs for varying the dust temperature
Td (= 0,900) K.

The electrostatic potential (φ1) [as given in Eq. (23)] is
plotted against η for different values of Havness parame-
ter [viz., h = 0.00047 (Top curve), h = 0.00063 (Middle
curve), and h = 0.00095 (Bottom curve)] with fixed soliton
speed u0 = 0.01 and dust temperature Td = 900 K, as shown
in Fig. 5. It is observed that for large dust concentration
(h), we have taller and wider solitons corresponding to low
electron concentration. Thus, in such plasmas the balance
between the dispersion and nonlinearity gives rise to solitary
waves with enhanced amplitude and width. Figure 6 displays
the potential excitation associated with DA solitary waves
as a function of radial distance (r) and azimuthal angle (θ)

for t = 1, u0 = 0.01, ε = 0.06 and Td = 900 K. It is found
that the transverse perturbation θ makes the solitary pulse to
deviate in the radial direction. The radial deviation of soli-
tary pulse increases as the value of transverse perturbation
increases [see Fig. 7]. This behavior of the solitary wave
arises due to cylindrical geometry and cannot be noticed in
the one-dimensional Cartesian geometry. In Fig. 8, the ab-

Fig. 6 The electrostatic potential perturbation φ1 is plotted versus the
co-ordinates r and θ , for ne0 = 2 × 1027 cm−3, t = 1, u0 = 0.01,
ε = 0.06 and Td = 900 K

Fig. 7 The electrostatic potential perturbation φ1 is plotted versus r

for ne0 = 2 × 1027 cm−3, t = 1, u0 = 0.01, ε = 0.06 and Td = 900 K
for different values of θ

Fig. 8 The absolute of rogue wave profile Ψ versus ξ and τ is depicted
for the electron number density ne0 = 2×1027 cm−3, dust temperature
Td = 900 K and wave vector k = 0.9
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Fig. 9 The nonlinearity and dispersion coefficients, Q and P (at Td = 0 K, dashed curve and Td = 900 K, solid curve) of NLSE are plotted
against the number density ne0

Fig. 10 The variation in absolute amplitude of rogue wave Ψ with
respect to σd and ne0

solute rational solution (Ψ ) [as given in Eq. (37)] of NLS
equation for DA rogue waves is plotted against ξ and τ with
fixed electron density ne0 = 2 × 1027 cm−3 and dust tem-
perature Td = 900 K. See that the amplitude of DA rogue
wave reaches to its maximum value at ξ = 0 and then it
decays on both sides for ξ < 0 and ξ > 0. Figure 9 de-
picts the dispersion and nonlinearity co-efficients P and
Q of self-focusing NLS equation against the number den-

Fig. 11 The absolute of rogue wave are plotted versus ξ(−0.01,0.01)

at ne0 = 2 × 1027 cm−3, Td = 900 K and k = 0.9 for different times

sity ne0. Since these co-efficients contain A and B [as given
in Eqs. (35)–(36)], therefore, the variation of ne0 affects sig-
nificantly P and Q. The increase in ne0 leads to decrease P

and increase Q. As a consequence, the amplitude of DA
rogue wave drops for increasing the electron density as can
be seen from Fig. 10. Furthermore, for finite value of dust
temperature Td = 900 K, the coefficients P decreases and
Q increases for the given range of number densities (as is
described by solid curve in Fig. 9). So, the temperature ra-
tio (σd) modifies the amplitude of the DA rogue waves as in
Fig. 10. Physically, the coefficients P and Q result in piling
up the wave energy locally in plasmas and therefore the am-
plitude of rogue wave grows (Chen 1983). The absolute of
rogue wave solution is plotted against ξ in Fig. 11 for differ-
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ent times (τ > 0). We have shown that as the time goes on,
the amplitudes decay, and the width increases.

5 Summary

To summarize, we have considered dense degenerate dusty
plasma, whose constituents are the electrons, ions and neg-
atively charged dust grains. By using the fluid model anal-
ysis, the nonlinear wave evolutions and propagation char-
acteristics of DA solitary and rogue waves are studied. The
electrons and ions are assumed to follow the Thomas-Fermi
density distributions, whereas dust-grains are taken as clas-
sical and dynamic. With the aid of reductive perturbation
technique, a CKP equation is derived, which is then reduced
to a KdV equation by using suitable variable transforma-
tions. For DA rogue waves, a self-focused NLS equation is
deduced admitting a rational solution. Various effects are ex-
amined on the wave characteristics by variation of different
plasma parameters. It is shown that the higher values of elec-
tron number density lead to reduce the amplitude of the DA
solitary and rogue waves. The inclusion of dust temperature
in the fluid model affects significantly the amplitudes of the
DA solitary and rogue waves. The present results might be
helpful to understand the DA solitary and rogue waves in
astrophysical environments, where dust grains are present.
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