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Abstract The motion of a rigid body in a uniformly rotating
second degree and order gravity field is a good model for the
gravitationally coupled orbit-attitude motion of a spacecraft
in the close proximity of an asteroid. The relative equilib-
ria of this full dynamics model are investigated using geo-
metric mechanics from a global point of view. Two types of
relative equilibria are found based on the equilibrium con-
ditions: one is the Lagrangian relative equilibria, at which
the circular orbit of the rigid body is in the equatorial plane
of the central body; the other is the non-Lagrangian relative
equilibria, at which the circular orbit is parallel to but not
in the equatorial plane of central body. The existences of
the Lagrangian and non-Lagrangian relative equilibria are
discussed numerically with respect to the parameters of the
gravity field and the rigid body. The effect of the gravita-
tional orbit-attitude coupling is especially assessed. The ex-
istence region of the Lagrangian relative equilibria is given
on the plane of the system parameters. Numerical results
suggest that the negative C20 with a small absolute value
and a negative C22 with a large absolute value favor the ex-
istence of the non-Lagrangian relative equilibria. The effect
of the gravitational orbit-attitude coupling of the rigid body
on the existence of the non-Lagrangian relative equilibria
can be positive or negative, which depends on the harmon-
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ics C20 and C22, and the angular velocity of the rotation of
the gravity field.
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1 Introduction

Space missions to the asteroids have long been of great in-
terest to the space community, since the knowledge of these
primitive bodies can provide answers to the fundamental
questions concerning the solar system origin and early evo-
lution, possibly including the development of life on Earth
(Barucci et al. 2011). Several missions have been developed
with big successes, such as NASA’s NEAR and Dawn, and
JAXA’s Hayabusa. Moreover, near-Earth objects (NEOs)
pose potential impact risk to our fragile ecosystem, which
has made the space community turn its attention to NEO is-
sue. All the major space agencies are involved on missions
to asteroids for scientific exploration or NEO hazard mitiga-
tion.

The close-proximity operations are generally necessary
during the asteroid scientific exploration mission and the
asteroid deflection mission. The dynamical behavior of the
spacecraft near asteroids is the basis of the design and im-
plementation of the guidance and control during the close-
proximity operations. Since an asteroid is always much
smaller than the planets, the orbital radius will be very small
for a spacecraft in the close proximity of a small asteroid.
Therefore, the gravitational coupling between the orbital and
attitude motions of the spacecraft can be significant due to
the large ratio of its dimension to the orbit radius, as shown
by Koon et al. (2004), Scheeres (2006b), Wang and Xu
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(2014a). The magnitude of the gravitational orbit-attitude
coupling can be described by the parameter ε = ρ/r0, where
ρ is the characteristic dimension of the spacecraft and r0 is
the orbital radius. Due to the large dimension of Earth, the
parameter ε is order of 10−6 for a spacecraft (ρ ∼ 10 m)
around Earth. However, the parameter ε can be order of
10−2 for a spacecraft on a 1 km orbit around a small as-
teroid.

In the traditional spacecraft dynamics around Earth and
in general deep space missions, the spacecraft is treated as
a point mass in the orbital dynamics and the attitude mo-
tion, treated separately, is studied on a predetermined orbit
(Maciejewski 1997). The traditional spacecraft dynamics is
precise enough for these missions, because the spacecraft
dimension is very small in comparison with the orbital ra-
dius and the gravitational orbit-attitude coupling is insignif-
icant. However, it will no longer have a high precision in
the close proximity of small asteroids due to the significant
orbit-attitude coupling.

To take into account the gravitational orbit-attitude cou-
pling, the spacecraft in the proximity of an asteroid can be
modeled as a rigid body instead of a point mass. This full dy-
namics model with gravitational orbit-attitude coupling will
be more precise than the previous orbital dynamics around
asteroids with the point mass model. The full spacecraft dy-
namics will be also more faithful to the real motion than
the attitude dynamics of spacecraft near an asteroid, such
as Riverin and Misra (2002), Misra and Panchenko (2006),
Kumar (2008), Wang and Xu (2013a, 2013b, 2013c, 2013d,
2014c). The studies on the full dynamics are very useful for
the future asteroid mission design.

This full dynamics model in a non-central gravity field
can be considered as a restricted model of the Full Two
Body Problem (F2BP), i.e., the dynamics of two rigid bod-
ies orbiting each other interacting through the mutual grav-
itational potential. That is to say, in our problem we only
study the motion of the spacecraft, and assume that the mo-
tion of the central body is not affected by the spacecraft.
The sphere-restricted model of F2BP, in which one body
is assumed to be a homogeneous sphere, has been studied
broadly, such as Kinoshita (1970, 1972a, 1972b), Aboel-
naga and Barkin (1979), Barkin (1979, 1980, 1985), Koon
et al. (2004), Scheeres (2004, 2006a), Breiter et al. (2005),
Bellerose and Scheeres (2008a, 2008b), Balsas et al. (2008,
2009) and Vereshchagin et al. (2010). There are also several
works on more general models of F2BP, in which both bod-
ies are non-spherical, such as Maciejewski (1995), Mondé-
jar and Vigueras (1999), Scheeres (2002, 2009), Koon et al.
(2004), Boué and Laskar (2009), McMahon and Scheeres
(2013), and Woo et al. (2013).

The full dynamics of a rigid body with gravitational orbit-
attitude coupling in a central gravity field has been inves-
tigated in several works (Wang et al. 1991, 1992; Teix-

Fig. 1 The rigid body moving in a uniformly rotating second degree
and order-gravity field

idó Román 2010). The relative equilibria and their stabil-
ity of the full dynamics of a rigid body with gravitational
orbit-attitude coupling in a J2 gravity field have been stud-
ied in Wang and Xu (2013e, 2013f) and Wang et al. (2014a).
However, these results are only applicable to a spherical or
spheroid central body, but not applicable to an irregular-
shaped asteroid, the oblateness and ellipticity of which are
both significant. Also notice that most of the asteroids are
nearly in a uniform rotation about their maximum-moment
principal axis. Therefore, studies of the full dynamics of a
rigid body with gravitational orbit-attitude coupling in a uni-
formly rotating second degree and order-gravity field with
harmonics C20 and C22 are necessary.

The relative equilibria act as “organizing centers” of the
dynamics of the system. It is helpful to understand dynam-
ical properties of the system by studying the existence of
relative equilibria. Moreover, the relative equilibria provide
some natural hovering positions for the spacecraft in the
close-proximity operations, at which the hovering can be
achieved at the cost of a low control effort.

In the present paper, the relative equilibria of the rigid
body, especially their types and existence, are investigated
using geometric mechanics from a global point of view. To
our best knowledge, this problem has not been studied be-
fore either in the dynamics near asteroids or in F2BP. In our
study, the effect of the gravitational orbit-attitude coupling
will be especially assessed.

2 Statement of the problem

As described by Fig. 1, we consider a rigid body B mov-
ing around a uniformly rotating celestial body P , the grav-
ity field of which is approximated by a second degree and
order-gravity field with harmonics C20 and C22. The body-
fixed reference frames of the central body and the rigid body
are given by SP = {u,v,w} and SB = {i,j ,k} with O and
C as their origins respectively. The origins of the frame SP

and SB are fixed at the mass centers of the bodies, and the
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coordinate axes are chosen to be aligned along the principal
moments of inertia. The principal moments of inertia of the
central body are assumed to satisfy

IP,ww > IP,vv, IP,ww > IP,uu. (1)

The mass center of the central body is assumed to be sta-
tionary in the inertial space, and the central body is rotating
uniformly around its maximum-moment principal axis, i.e.,
the w-axis.

The harmonic coefficients C20 and C22 of the 2nd degree
and order-gravity field of the central body can be defined by

C20 = − 1

2Ma2
e

(2IP,ww − IP,uu − IP,vv) < 0,

C22 = 1

4Ma2
e

(IP,vv − IP,uu),

(2)

where M and ae are the mass and the mean equatorial radius
of the central body respectively.

3 Equilibrium conditions

The relative equilibria of the rigid body are the stationary so-
lutions of the equations of motion. Equilibrium conditions
determining the relative equilibria can be obtained by set-
ting the time change rates of the phase space variables all
equal to zero. Equations of motion can be derived with the
method of the geometric mechanics. Here we only give the
equations of motion briefly, see Wang and Xu (2012, 2014b)
and Wang et al. (2014b) for the details of the non-canonical
Hamiltonian structure and the derivation of the equations of
motion.

The attitude of the rigid body is described with respect to
the body-fixed frame of the central body SP by the attitude
matrix A,

A = [α,β,γ ]T ∈ SO(3), (3)

where α, β and γ are coordinates of the unit vectors u, v

and w expressed in the body-fixed frame of the rigid body
SB respectively; SO(3) is the 3-dimensional special orthog-
onal group. The position vector of mass center C of the rigid
body with respect to the mass center O of the central body
expressed in the body-fixed frame SP is denoted by r .

Therefore the configuration space of the problem is the
Lie group

Q = SE(3), (4)

known as the special Euclidean group of three space with
elements (A, r), which is the semidirect product of SO(3)

and R
3. We can choose the body-fixed coordinates for the

phase space, i.e., the cotangent bundle T ∗Q, as follows

(Wang and Xu 2012, 2014b; Wang et al. 2014b):

z = [
ΠT ,αT ,βT ,γ T ,RT ,P T

]T ∈R
18, (5)

where Π, R = AT r and P are the angular momentum, po-
sition vector and linear momentum of the rigid body respec-
tively expressed in the body-fixed frame SB . The body-fixed
coordinates z provide a global point of view to determine
the relative equilibria.

This system has a non-canonical Hamiltonian structure
with the Poisson bracket {·, ·}R18(z), which can be written
in terms of the Poisson tensor as follows:

{f,g}R18(z) = (∇zf )T B(z)(∇zg). (6)

The Poisson tensor B(z) is given by (Wang and Xu
2012):

B(z) =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Π̂ α̂ β̂ γ̂ R̂ P̂

α̂ 0 0 0 0 0
β̂ 0 0 0 0 0
γ̂ 0 0 0 0 0
R̂ 0 0 0 0 I3×3

P̂ 0 0 0 −I3×3 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, (7)

where I3×3 is the 3 × 3 identity matrix, and the hat map
ˆ: R3 → so(3) is the usual Lie algebra isomorphism. For a
vector w = [wx,wy,wz], we have

ŵ =
⎡

⎣
0 −wz wy

wz 0 −wx

−wy wx 0

⎤

⎦ . (8)

The Hamiltonian of the system is given by (Wang et al.
2014b; Wang and Xu 2014b):

H(z) = 1

2
ΠT I−1Π + |P |2

2m
− ωT ΠT γ

− ωT P T (γ̂ R) + V (z), (9)

where the diagonal matrix I = diag{Ixx, Iyy, Izz} and m are
the inertia tensor and mass of the rigid body respectively, ωT

is the angular velocity of the uniform rotation of the gravity
field, and V (z) is the gravitational potential.

The second-order gravitational potential V (z) is given
by:

V (R,α,β,γ )

= −μm

R
− μ

2R3

[
tr(I ) − 3R̄

T
IR̄ − mτ0 + 3mτ0(γ · R̄)2

+ 6mτ2
(
(α · R̄)2 − (β · R̄)2)], (10)

where μ = GM , G is the Gravitational Constant, τ0 =
a2
eC20, τ2 = a2

eC22 and R̄ is the unit vector along the vec-
tor R (Wang and Xu 2013a).
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The equations of motion can be written in the Hamilto-
nian form

ż = B(z)∇zH(z). (11)

The explicit equations of motion can be obtained from
Eqs. (9) and (11) as follows:

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Π̇

α̇

β̇

γ̇

Ṙ

Ṗ

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

= B(z)

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

I−1Π − ωT γ

∂V/∂α

∂V/∂β

−ωT Π − ωT R̂P + ∂V/∂γ

−ωT P̂ γ + ∂V/∂R

−ωT γ̂ R + P /m

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π̂I−1Π + ∑
b=α,β,γ ,R b̂(∂V/∂b)

α̂(I−1Π − ωT γ )

β̂(I−1Π − ωT γ )

γ̂ (I−1Π)

R̂(I−1Π) + P /m

P̂ (I−1Π) − ∂V/∂R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (12)

Then equilibrium conditions that determine the relative
equilibria are given by

IΩe × Ωe + Re × ∂V (R,α,β,γ )

∂R

∣∣∣∣
e

+ αe × ∂V (R,α,β,γ )

∂α

∣∣∣∣
e

+ βe × ∂V (R,α,β,γ )

∂β

∣∣∣∣
e

+ γ e × ∂V (R,α,β,γ )

∂γ

∣∣∣
∣
e

= 0, (13)

αe × (Ωe − ωT γ e) = 0, (14)

βe × (Ωe − ωT γ e) = 0, (15)

γ e × Ωe = 0, (16)

Re × Ωe + P e

m
= 0, (17)

P e × Ωe − ∂V (R,α,β,γ )

∂R

∣∣∣∣
e

= 0, (18)

where the subscript e is used to denote the value at the equi-
librium. Here the angular momentum Π and the angular
velocity I−1Π in Eq. (12) are denoted by IΩ and Ω re-
spectively. Actually, Eqs. (13) and (18) are the torque and
force balance equations respectively. Using the formulation
of the second-order potential equation (10), we can write the
torque and force balance equations (13) and (18) as follows

IΩe × Ωe + T e = 0, (19)

P e × Ωe + F e = 0, (20)

where T e and F e are the gravity gradient torque and gravi-
tational force expressed in the body-fixed frame SB respec-
tively.

T e = Re × ∂V (R,α,β,γ )

∂R

∣∣∣∣
e

+ αe × ∂V (R,α,β,γ )

∂α

∣∣∣∣
e

+ βe × ∂V (R,α,β,γ )

∂β

∣∣∣∣
e

+ γ e × ∂V (R,α,β,γ )

∂γ

∣∣∣∣
e

= 3μ

R5
e

Re × IRe, (21)

F e = −∂V (R,α,β,γ )

∂R

∣∣∣∣
e

= −μm

R2
e

R̄e

+ 3μ

2R4
e

{[
5R̄

T

e IR̄e − tr(I ) + τ0m
(
1 − 5(γ e · R̄e)

2)

− 10τ2m
(
(αe · R̄e)

2 − (βe · R̄e)
2)]R̄e

− 2IR̄e + 2τ0m(γ e · R̄e)γ e + 4τ2m
(
(αe · R̄e)αe

− (βe · R̄e)βe

)}
. (22)

It is worth our attention that the attitude parameters of
the rigid body α, β and γ are included in Eq. (22) due to the
gravitational orbit-attitude coupling.

Equations (14)–(17) describe the basic geometrical prop-
erties of the configuration of the relative equilibria. Accord-
ing to Eqs. (14)–(16), we can conclude that

Ωe = ωT γ e. (23)

That is to say, the rigid body has the same angular velocity
as the central body and then the relative attitude is kept to be
stationary.

From Eq. (17), we can know that

P e = mωT γ e × Re. (24)

The mass center of the rigid body is on a stationary orbit,
moving synchronously with the rotation of the central body.
The position vector re(t) of the mass center C of the rigid
body will generate a cone in the inertial space with the unit
vector w as its axis. When Re is perpendicular to γ e, this
cone will degenerate into a plane. Therefore, the orbit of the
mass center of the rigid body is a circle that is the base of
the cone, and the angular velocity of the orbit is ωT , same
as the angular velocity of the rotation of the central body
and the rigid body. Notice that there is no priori reason that
the center of the circular orbit coincides with the origin O .
The orbital plane is perpendicular to w, i.e., parallel to the
equatorial plane of the central body P .

Insertion of Eq. (21) into the torque balance equation (19)
yields:

ω2
T Iγ e × γ e = 3μ

R5
e

IRe × Re. (25)
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By taking the inner product of both sides of Eq. (25) with
γ e , we have

(IRe × Re) · γ e = IRe · (Re × γ e) = 0. (26)

Therefore, IRe lies in the plane spanned by Re and γ e . In
the same way we get

(Iγ e × γ e) · Re = Iγ e · (γ e × Re) = 0. (27)

Iγ e also lies in the plane spanned by Re and γ e . Then the
plane spanned by Re and γ e is parallel to a principal plane
of the tensor of inertia I . According to Eq. (24), the linear
momentum P e is parallel to the principal axis, which is per-
pendicular to the principal plane spanned by Re and γ e.

According to Eqs. (22)–(24), the force balance equa-
tion (20) can be written as:

mω2
T (γ e × Re) × γ e

= μm

R2
e

R̄e

− 3μ

2R4
e

{[
5R̄

T

e IR̄e − tr(I ) + τ0m
(
1 − 5(γ e · R̄e)

2)

− 10τ2m
(
(αe · R̄e)

2 − (βe · R̄e)
2)]R̄e

− 2IR̄e + 2τ0m(γ e · R̄e)γ e

+ 4τ2m
(
(αe · R̄e)αe − (βe · R̄e)βe

)}
. (28)

4 Lagrangian relative equilibria

First we consider a particular case when Re is parallel to a
principal axis of the tensor of inertia I . From Eq. (25), we
can know that

ω2
T Iγ e × γ e = 0, (29)

which means that γ e is also parallel to a principal axis of
the tensor of inertia I . For a general rigid body B without
symmetry, this can mean either Re · γ e = 0 or Re × γ e = 0.
From the physical intuition, the case of Re × γ e = 0 means
that the mass center of the rigid body is always located
above the pole of the central body P , which is impossible in
the real situation of an asteroid orbiter. Therefore we have
Re · γ e = 0. Thus, the orbit plane of the mass center of the
rigid body is in the equatorial plane of body P , and the cen-
ter of the circular orbit coincides with origin O . From the
fact that Re and γ e are parallel to two different principal
axes of the tensor of inertia I and Eq. (24), we can conclude
that P e is parallel to the third principal axis of the tensor of
inertia.

Since the circular orbit of the mass center of the rigid
body is within the equatorial plane of the central body P ,

and Re, Ωe and P e are parallel to the three principal axis of
the tensor of inertia I , this type of the relative equilibria is
called the classical relative equilibria, or Lagrangian relative
equilibria.

Without loss of generality, we assign Re = [Re 0 0]T ,
γ e = [0 0 1]T , Ωe = [0 0 ωT ]T and P e = m[0 ReωT 0]T .
Then the force balance equation (28) can be written as fol-
lows:

mω2
T ReR̄e = μm

R2
e

R̄e − 3μ

2R4
e

{[
5R̄

T

e IR̄e − tr(I ) + τ0m

− 10τ2m
(
(αe · R̄e)

2 − (βe · R̄e)
2)]R̄e

− 2IxxR̄e + 4τ2m
(
(αe · R̄e)αe

− (βe · R̄e)βe

)}
. (30)

By checking the left and right sides of Eq. (30), it is easy
to find that Eq. (30) requires the vector (αe · R̄e)αe − (βe ·
R̄e)βe on the right side to be parallel to the unit vector R̄e .
Notice that R̄e, which is perpendicular to γ e , is within the
plane spanned by αe and βe. Then, the vector (αe · R̄e)αe −
(βe · R̄e)βe is actually the reflection of the unit vector R̄e

with respect to the vector αe .
According to the fact that (αe · R̄e)αe − (βe · R̄e)βe is

parallel to the unit vector R̄e , we can conclude that R̄e is
parallel or perpendicular to the vector αe. That is to say,

αe =
⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
−1
0
0

⎤

⎦ or

⎡

⎣
0

−1
0

⎤

⎦ . (31)

Accordingly,

βe =
⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
−1
0
0

⎤

⎦ ,

⎡

⎣
0

−1
0

⎤

⎦ or

⎡

⎣
1
0
0

⎤

⎦ . (32)

Therefore, at the Lagrangian relative equilibria, the mass
center of the rigid body is located at the principal axes of the
asteroid in the equatorial plane, i.e., u and v, and the axes
of the body-fixed frame of the rigid body SB are parallel to
those of the body-fixed frame SP . The Lagrangian relative
equilibria given here are the same with those in Wang and
Xu (2014b) and Wang et al. (2014b) obtained by using the
symmetry of the gravity field and the inertia tensor of the
rigid body.

Without loss of generality, we assign and αe = [1 0 0]T
βe = [0 1 0]T , as shown by Fig. 2. At this relative equilib-
rium, the mass center of the rigid body is located on the pos-
itive side of the principal axis u. Other Lagrangian relative
equilibria can be converted into this equilibrium by chang-
ing the arrangement of the axes of the body-fixed reference
frames SB and SP .
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Fig. 2 A Lagrangian relative equilibrium of the rigid body

Then the force balance equation (30) can be written as

mω2
T ReR̄e

= μm

R2
e

R̄e − 3μ

2R4
e

{[
5Ixx − tr(I ) + τ0m − 10τ2m

]
R̄e

− 2IxxR̄e + 4τ2mR̄e

}
, (33)

which can be rearranged further as

ω2
T = μ

R3
e

− 3μ

2R5
e

{
2
Ixx

m
− Iyy

m
− Izz

m
+ τ0 − 6τ2

}
. (34)

Here we have solved out the Lagrangian relative equilib-
ria based on the equilibrium conditions. The existence of the
Lagrangian relative equilibria can be investigated based on
Eq. (34).

To make studies in general cases instead of in specific
cases, we first nondimensionalize the system by the char-
acteristic time

√
a3
e /μ and the characteristic length ae. Af-

ter nondimensionalization, the equatorial radius ae and the
gravitational constant μ of the central body are both equal
to 1, and the unit of the angular velocity is

√
μ/a3

e . Then
Eq. (34) can be written as:

ω2
T = 1

R3
e

− 3

2R5
e

(
2
Ixx

m
− Iyy

m
− Izz

m
+ C20 − 6C22

)

= 1

R3
e

[
1 + 3

2R2
e

(
−2

Ixx

m
+ Iyy

m
+ Izz

m
− C20 + 6C22

)]

= 1

R3
e

[
1 + 3

2R2
e

(�I − C20 + 6C22)

]
, (35)

where �I = −2Ixx/m+Iyy/m+Izz/m. The parameter �I

is a comprehensive scale of the effect of the orbit-attitude
coupling of the rigid body, since it describes both the non-
spherical mass distribution and the characteristic dimension
of the rigid body, which are two basic elements of the gravi-
tational orbit-attitude coupling (Wang et al. 2014a). The ef-
fect of �I can be considered equivalently as a change of the
oblateness and ellipticity of the central body in the sense of
the point mass model.

As in Wang et al. (2014a), the characteristic dimension of
the rigid body dC can be defined by the following equation:

Ixx = 1

2
md2

C, or
1

2
d2
C = Ixx

m
. (36)

Notice that the characteristic dimension dC is only an esti-
mation of the dimension of the rigid body, but not the real
dimension of the rigid body. Since the characteristic dimen-
sion dC has a very simple relation with Ixx/m, we will also
refer Ixx/m as the characteristic dimension in the following.

The mass distribution parameters of the rigid body can be
defined as follows:

σx =
(

Izz − Iyy

Ixx

)
, σy =

(
Izz − Ixx

Iyy

)
. (37)

The parameters σy and σx have the following range:

−1 ≤ σy ≤ 1, −1 ≤ σx ≤ 1. (38)

As shown above, the ratio Ixx/m describes the charac-
teristic dimension of the rigid body; the ratios σx and σy

describe the shape of the rigid body. The parameter �I can
be written in terms of the three ratios Ixx/m, σx , and σy as
follows (Wang et al. 2014a):

�I = Ixx

m

(
−2 + Iyy

Ixx

+ Izz

Ixx

)
= Ixx

m
fσ , (39)

where fσ is defined as:

fσ = 2σy − σx − σxσy

1 − σy

. (40)

We can estimate the range of the parameter �I through
the upper limit of Ixx/m and the calculation of fσ on the
σy–σx plane. We assume that the upper limit of Ixx/m is
equal to 0.5, which means that the characteristic dimension
of the rigid body dC is ae, which is the upper limit in our
study.

According to Wang et al. (2014a), the lower limit of fσ

is −1, which can be reached in the case of σy = −1. Theo-
retically, the upper limit of fσ is the positive infinity, which
can be reached when σy approaches 1 and it means that
the mass distribution of the rigid body is a rod along the
i-axis. In our study we will not consider this extreme case
that would not exist in the real physical system. We choose
the upper limit of fσ as 16 as in Wang et al. (2014a).

Noticing that the upper limit of Ixx/m is equal to 0.5, we
can obtain the range of the parameter �I as follows:

−0.5 < �I < 8. (41)

The practical range of the harmonic coefficients C20 and
C22 of the 2nd degree and order-gravity field in our study
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Fig. 3 The (�I − C20
+ 6C22)–ωT plane divided
according to the root Re

are chosen as follows:
{

−0.5 < C20 < 0,

−0.25 < C22 < 0.25,
(42)

which should cover most asteroids in our solar system.
Therefore, the range of �I − C20 + 6C22 is given by:

−2 < �I − C20 + 6C22 < 10. (43)

According to the results by Howard (1990) and Elipe
and López-Moratalla (2006), through some calculation it is
found that Eq. (35) has one positive root for Re under the
following condition:

�I − C20 + 6C22 > 0, (44)

and the positive root Re satisfies

Re ≥
(

1

ω2
T

)1/3

. (45)

Equation (35) has two positive roots for Re under the fol-
lowing condition:

0 > �I − C20 + 6C22 > −2

5

(
2

5

)2/3( 1

ω2
T

)2/3

, (46)

and the two positive roots Re1 and Re2 satisfy

0 < Re2 ≤
(

2

5

)1/3( 1

ω2
T

)1/3

≤ Re1 <

(
1

ω2
T

)1/3

. (47)

In the case of

�I − C20 + 6C22 < −2

5

(
2

5

)2/3( 1

ω2
T

)2/3

, (48)

Equation (35) has no positive root for Re.

Since the unit of the angular velocity is
√

μ/a3
e , ωT = 1

means that the gravity of the particle on the surface of the
asteroid is balanced by the centrifugal force. Therefore, it
is reasonable to assume that ωT < 1. The existence of the
Lagrangian relative equilibria can be investigated in the
(�I − C20 + 6C22)–ωT plane according to the value of the
root Re of Eq. (35). For simplification, if Eq. (35) has no
positive root or its positive root Re < 1, which means that
the mass center of the rigid body moves under the surface of
the central body P , the Lagrangian relative equilibria will
be regarded not to exist.

According to Eq. (45) and the range ωT < 1, Eq. (35)
always has a positive root Re > 1 in the case of �I − C20 +
6C22 > 0, therefore the Lagrangian relative equilibria can
always exist in the range 0 < �I − C20 + 6C22 < 10.

According to Eqs. (46) and (48), the remaining part of
the (�I − C20 + 6C22)–ω7 plane can be divided into two
regions by

�I − C20 + 6C22 = −2

5

(
2

5

)2/3( 1

ω2
T

)2/3

. (49)

As shown by Fig. 3, the (�I − C20 + 6C22)–ωT plane is
divided into the region 1 and the region 2 by the blue curve,
which is given by Eq. (49).

In the region 1, Eq. (48) is satisfied, therefore Eq. (35)
has no positive root and then the Lagrangian relative equi-
libria cannot exist. Whereas the region 2, in which Eq. (46)
is satisfied, can be divided into three subregions 2a, 2b and
2c corresponding to the three cases Re1 < 1, Re1 > 1 > Re2

and Re2 > 1 respectively, as shown by Fig. 3.
In the subregion 2a, the two positive roots are both

smaller than 1, therefore the Lagrangian relative equilibria
cannot exist in this subregion. In the subregion 2b, only one
of the two positive roots is larger than 1, therefore only one
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Fig. 4 The curves of the orbital
radius Re versus the angular
velocity ωT

Lagrangian relative equilibrium can exist for each point of
this subregion. In the subregion 2c, both the two positive
roots are larger than 1, therefore two Lagrangian relative
equilibria can exist for each point of this subregion.

To investigate the existence of the Lagrangian relative
equilibria from another point of view, the curves of the or-
bital radius Re versus the angular velocity ωT in the cases of
different values of �I −C20 + 6C22 are given in Fig. 4. The
nine curves, from up to bottom, are corresponding to nine
values of �I − C20 + 6C22: 10, 8, 6, 4, 2, 0, −0.5, −1, −2
respectively.

According to Fig. 4, we can see that the upper six curves,
which are corresponding to the six nonnegative values of
�I − C20 + 6C22: 10, 8, 6, 4, 2, 0 respectively, are al-
ways above the critical strange line Re = 1. This means
that the Lagrangian relative equilibria can always exist in
the range ωT < 1 that is consistent with the conclusion ob-
tained above. The lower three curves, which are correspond-
ing to the three negative values of �I − C20 + 6C22: −0.5,
−1, −2 respectively, are more complex. As the angular ve-
locity ωT decreases from 1 to 0, there exists a bifurcation,
before which Eq. (35) has no positive root and after which
two positive roots of Eq. (35) appear.

In the cases of �I − C20 + 6C22 = −1,−2, both the
curves of the two positive roots of Eq. (35) are above the
critical strange line Re = 1. That is to say, after the bifur-
cation two Lagrangian relative equilibria can always exist.
However, in the case of �I − C20 + 6C22 = −0.5, after
the bifurcation, as the angular velocity ωT decreases to 0,
the smaller positive root will decrease below the critical line
Re = 1. Therefore, as the angular velocity ωT decreases to
0 after the bifurcation, the number of the Lagrangian rela-
tive equilibria that can exist will decrease from two to one.
These conclusions are consistent with the results in Fig. 3.

5 Non-Lagrangian relative equilibria

5.1 Existence condition of non-Lagrangian relative
equilibria

Here we consider a general case when Re is not parallel
to any principal axis of the tensor of inertia I . Notice that
the plane spanned by Re and γ e is parallel to a principal
plane of the tensor of inertia I . Without loss of generality,
we assume that the principal plane spanned by Re and γ e

is the i–k plane, and P e is parallel to the principal axis j .
Then, we can have

Re = [
Rx

e 0 Rz
e

]T
, γ e = [

γ x
e 0 γ z

e

]T
,

Ωe = ωT

[
γ x
e 0 γ z

e

]T
,

(50)

P e = mωT

[
0 Rx

e γ z
e − Rz

eγ
x
e 0

]T
. (51)

Then Eq. (25) can be written as follows

ω2
T γ x

e γ z
e (Izz − Ixx) = 3μ

R5
e

Rx
e Rz

e(Izz − Ixx). (52)

Here a general rigid body with (Izz −Ixx) 	= 0 is considered,
therefore we have

ω2
T γ x

e γ z
e = 3μ

R5
e

Rx
e Rz

e. (53)

Since Re is not parallel to any principal axis of the rigid
body, we have Rx

e Rz
e 	= 0. From Eq. (53) and Rx

e Rz
e 	= 0, we

know that γ e is not parallel to any principal axis either, and

Re · γ e = γ x
e Rx

e + γ z
e Rz

e = γ x
e Rx

e + 3μ

R5
eω

2
T γ x

e

Rx
e

(
Rz

e

)2 	= 0.

(54)
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Therefore, the orbit of the mass center of the rigid body is
a circle with its center located on w but not coinciding with
origin O . The orbital plane is displaced, that is to say, par-
allel to but not in the equatorial plane of the central body P .
Since the circular orbit of the mass center of the rigid body
is not within the equatorial plane of the central body P , and
neither of Re and γ e is parallel to the principal axis of the
tensor of inertia I , this type of relative equilibria is called the
non-classical relative equilibria, or non-Lagrangian relative
equilibria.

Then the left side of the force balance equation (28) can
be written as follows:

mω2
T

⎡

⎣
0

Rx
e γ z

e − Rz
eγ

x
e

0

⎤

⎦ ×
⎡

⎢
⎣

γ x
e

0
γ z
e

⎤

⎥
⎦

= mω2
T

⎡

⎣
Rx

e (γ z
e )2 − Rz

eγ
x
e γ z

e

0
Rz

e(γ
x
e )2 − Rx

e γ x
e γ z

e

⎤

⎦ , (55)

which is within the plane spanned by Re and γ e, i.e., i–k

plane. Therefore, the right side of Eq. (28) is required also
to be within the plane spanned by Re and γ e , which means
that the vector (αe · R̄e)αe − (βe · R̄e)βe is within the plane
spanned by Re and γ e, since the remaining terms on the
right side are within the plane naturally.

Notice that (αe · R̄e)αe − (βe · R̄e)βe is the reflection
of the component of the unit vector R̄e in the αe–βe plane
with respect to the vector αe. According to the fact that (αe ·
R̄e)αe − (βe · R̄e)βe is within the plane spanned by Re and
γ e , we can conclude that αe is within or perpendicular to
the plane spanned by Re and γ . That means that the mass
center of the rigid body is located within the principal plane
of the central body P . Without loss of generality, we assume
that αe is within the plane spanned by Re and γ e, and

αe = [
γ z
e 0 − γ x

e

]
, βe = [

0 1 0
]T

. (56)

Figure 5 illustrates the geometry of this non-Lagrangian
relative equilibrium. In Fig. 5, γ z

e and γ x
e are coordinates of

the vector w (or γ e) on the axes k and i respectively; Rz
e and

Rx
e are coordinates of the position vector r on the axes k and

i respectively. θ is the angle between Re and the equatorial
plane of the central body P , θ1 is the angle between Re and
i, and θ2 is the angle between w (or γ e) and k. The angles
θ , θ1 and θ2 are given by:

tan θ1 = Rz
e

Rx
e

, tan θ2 = γ x
e

γ z
e

, θ = θ1 + θ2. (57)

According to Fig. 5, we can find that the principal plane
of the rigid body i–k plane coincides with the principal
plane of the central body u–w plane at the non-Lagrangian
relative equilibria. Through the comparison between Figs. 2

Fig. 5 The geometry of the non-Lagrangian relative equilibrium

and 5, it is easy to find that the locations of the Lagrangian
and non-Lagrangian relative equilibria are close. That is to
say, for a Lagrangian relative equilibrium, if we rotate the
rigid body around its negative j axis for θ2, and then lift up
the orbit of the mass center of the rigid body to an equilib-
rium position, we can reach a non-Lagrangian relative equi-
librium if it can exist.

After the nondimensionalization, the force balance equa-
tion (28) can be written as follows:

ω2
T

⎡

⎣
Rx

e (γ z
e )2 − Rz

eγ
x
e γ z

e

0
Rz

e(γ
x
e )2 − Rx

e γ x
e γ z

e

⎤

⎦

= 1

R3
e

⎡

⎣
Rx

e

0
Rz

e

⎤

⎦ + 3

R5
e

⎡

⎣
Rx

e
Ixx

m

0
Rz

e
Izz

m

⎤

⎦

− 3

2R7
e

{(
5
(
Rx

e

)2 − R2
e

)Ixx

m
− R2

e

Iyy

m

+ (
5
(
Rz

e

)2 − R2
e

)Izz

m
+ C20

(
R2

e − 5
(
γ x
e Rx

e + γ z
e Rz

e

)2)

− 10C22
(
γ z
e Rx

e − γ x
e Rz

e

)2
}⎡

⎣
Rx

e

0
Rz

e

⎤

⎦

− 3

R5
e

C20
(
γ x
e Rx

e + γ z
e Rz

e

)
⎡

⎣
γ x
e

0
γ z
e

⎤

⎦

− 6

R5
e

C22
(
γ z
e Rx

e − γ x
e Rz

e

)
⎡

⎣
γ z
e

0
−γ x

e

⎤

⎦ . (58)

According to (γ x
e )2 + (γ z

e )2 = 1 and Eq. (53), γ x
e and γ z

e

can be solved out as:

γ x
e =

(
1

2
∓

√
1

4
−

(
3

ω2
T R5

e

Rx
e Rz

e

)2) 1
2

,

γ z
e =

(
1

2
±

√
1

4
−

(
3

ω2
T R5

e

Rx
e Rz

e

)2) 1
2

.

(59)
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Equation (59) contains two cases

γ z
e > γ x

e and γ x
e > γ z

e . (60)

The non-Lagrangian relative equilibrium, i.e., Rx
e , Rz

e , γ x
e

and γ z
e , can be solved out by Eqs. (58) and (59). The exis-

tence condition of the non-Lagrangian relative equilibria is
equivalent to the solvable condition of the algebraic equa-
tions (58) and (59).

5.2 Existence regions of non-Lagrangian relative equilibria

However, it is difficult to analyze the existence of the non-
Lagrangian relative equilibria through theoretical studies of
nonlinear algebraic equations (58) and (59). Therefore, we
will try to solve Eqs. (58) and (59) using numerical method
with different values of the parameters of the system.

Notice that all the six parameters of the system, i.e., C20,
C22, ωT , Ixx/m, σx and σy , need to be discussed. To inves-
tigate the existence of the non-Lagrangian relative equilibria
and the effects of the system parameters on the existence, we
only need to carry out the numerical studies for some cho-
sen values of the system parameters. We will choose some
different values for the harmonic coefficients C20 and C22,
the angular velocity of the gravity field ωT , and the charac-
teristic dimension of the rigid body Ixx/m. Then for each
combination of the values of C20, C22, ωT and Ixx/m, we
try to solve the algebraic equations (58) and (59) for a grid
of points on the σy–σx plane with a certain step size. If
the point (σy,σx ) can guarantee the solvable condition of
Eqs. (58) and (59), that is to say, guarantee the existence
of the non-Lagrangian relative equilibria, we plot the point
(σy,σx ) on the σy–σx plane.

With this method, we can obtain the existence regions of
the non-Lagrangian relative equilibria on the σy–σx plane
with different values of the harmonic coefficients C20 and
C22, the angular velocity ωT , and the characteristic dimen-
sion Ixx/m. Through comparisons between existence re-
gions with different values of C20, C22, ωT and Ixx/m, we
can find out the individual effect of the system parameters
on the existence of the non-Lagrangian relative equilibria.

We choose three different values for the coefficient C20

and five different values for the coefficient C22 as follows:

C20 = −0.5,−0.3,0.1,

C22 = −0.25,−0.15,0,0.15,0.25.
(61)

That is to say, there are fifteen different cases for the pair
(C20,C22). The upper limits of Ixx/m and ωT are chosen
the same as in the studies of the Lagrangian relative equilib-
ria. Then, the different values of Ixx/m and ωT for each case
of (C20,C22) in the numerical studies are chosen as follows:

Ixx

m
= 0.5,0.5e − 2,0.5e − 6; (62)

Fig. 6 The pairs of (C20,C22) on the C20–C22 plane

ωT = 1,0.5,0.2. (63)

Through the numerical studies, we find that only in the
cases of three pairs of (C20,C22), including (−0.3,−0.25),
(−0.1,−0.25) and (−0.1,−0.15), the non-Lagrangian rel-
ative equilibria can exist. The fifteen pairs of (C20,C22) are
plotted on the C20–C22 plane in Fig. 6.

The three pairs of (C20,C22), in the cases of which the
non-Lagrangian relative equilibria can exist, are given by
pentagrams in Fig. 6, and the remaining twelve pairs are
given by dots. The existence regions of the non-Lagrangian
relative equilibria on the σy–σx plane with the three pairs
of (C20,C22), including (−0.3,−0.25), (−0.1,−0.25) and
(−0.1,−0.15), are given in Tables 1, 2 and 3 respectively. In
these figures, the interval −0.02 < σy < 0.02 is not consid-
ered, since σy = 0 is equivalent to Izz = Ixx that is the sin-
gular point of the existence condition of the non-Lagrangian
relative equilibria, as shown by Eqs. (52) and (53).

5.3 Effects of the system parameters

Through comparisons between existence regions on the
σy–σx plane in Tables 1, 2 and 3 with different pairs of
(C20,C22) and different values of Ixx/m and ωT , we can as-
sess the effects of the system parameters on the existence of
the non-Lagrangian relative equilibria. Several conclusions
can be reached as follows:

(a) The effect of the harmonic C20 and C22

According to Fig. 6, the numerical results suggest that
a C20 with a small absolute value and a negative C22

with a large absolute value favor the existence of the non-
Lagrangian relative equilibria. This conclusion can be also
verified through the comparisons between existence regions
on the σy–σx plane with different values of C20 and C22 in
Tables 1, 2 and 3. That is to say, with a smaller absolute
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Table 1 The existence regions of the non-Lagrangian relative equilibria with C20 = −0.3 and C22 = −0.25

Ixx

m
= 0.5 Ixx

m
= 0.5e − 2 Ixx

m
= 0.5e − 6

ωT = 1

ωT = 0.5

ωT = 0.2

value of the negative C20, the existence region of the non-
Lagrangian relative equilibria is larger, as shown by Tables 1
and 2. Generally, with a larger absolute value of the nega-
tive C22, the existence region is larger, as shown by Tables 2
and 3.

(b) The effect of the angular velocity of the gravity field ωT

In Tables 1, 2 and 3, if we change the value of the angular
velocity of the gravity field ωT with other system parameters
fixed, we can find that the effect of the angular velocity ωT

is not monotone. Generally, among the three values of ωT

in Eq. (63) the existence region is the largest in the case of
ωT = 0.5.

(c) The effect of the gravitational orbit-attitude coupling of
the rigid body

Notice that the gravitational orbit-attitude coupling is
more significant when the ratio of the characteristic dimen-
sion of the rigid body to the orbit radius is larger. The effect
of the gravitational orbit-attitude coupling of the rigid body
can be discussed through comparisons between existence re-
gions with different values of Ixx/m.

As shown by Tables 1, 2 and 3, the effect of the orbit-
attitude coupling of the rigid body on the existence of the
non-Lagrangian relative equilibria is complex, since the ef-
fect can be positive or negative, depending on the values of
C20, C22 and ωT .
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Table 2 The existence regions of the non-Lagrangian relative equilibria with C20 = −0.1 and C22 = −0.25

Ixx

m
= 0.5 Ixx

m
= 0.5e − 2 Ixx

m
= 0.5e − 6

ωT = 1

ωT = 0.5

ωT = 0.2

In the cases of

C20 = −0.1, C22 = −0.25, ωT = 0.5, (64)

C20 = −0.1, C22 = −0.15, ωT = 0.5, (65)

as the characteristic dimension of the rigid body Ixx/m de-
creases, the existence region of the non- Lagrangian rela-
tive equilibria is getting larger and larger, and is equal to the
whole σy–σx plane eventually. That is to say, the gravita-
tional orbit-attitude coupling of the rigid body B has a neg-
ative effect on the existence of the non-Lagrangian relative
equilibria.

However, in some other cases, including

C20 = −0.3, C22 = −0.25, ωT = 1, (66)

C20 = −0.3, C22 = −0.25, ωT = 0.5, (67)

C20 = −0.1, C22 = −0.25, ωT = 1, (68)

C20 = −0.1, C22 = −0.25, ωT = 0.2, (69)

C20 = −0.1, C22 = −0.15, ωT = 1, (70)

as the characteristic dimension of the rigid body Ixx/m de-
creases, the existence region of the non-Lagrangian relative
equilibria is getting smaller and disappears eventually. That
is to say, the gravitational orbit-attitude coupling of the rigid
body B has a positive effect on the existence of the non-
Lagrangian relative equilibria in these five cases.

When the characteristic dimension of the rigid body
Ixx/m is very small, such as Ixx/m = 0.5e − 6, the effect of
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Table 3 The existence regions of the non-Lagrangian relative equilibria with C20 = −0.1 and C22 = −0.15

Ixx

m
= 0.5 Ixx

m
= 0.5e − 2 Ixx

m
= 0.5e − 6

ωT = 1

ωT = 0.5

ωT = 0.2

the gravitational orbit-attitude coupling is very weak and the
mass distribution parameters σx and σy have no influence on
the existence of the non-Lagrangian relative equilibria. The
existence will be determined by the values of C20, C22 and
ωT . The non-Lagrangian relative equilibria can exist on the
whole σy–σx plane when the values of C20, C22 and ωT fa-
vor their existence, which are given by Eqs. (64) and (65);
whereas the non-Lagrangian relative equilibria cannot ex-
ist on the whole σy–σx plane when the values of C20, C22

and ωT do not favor their existence, which are given by
Eqs. (66)–(70).

When the characteristic dimension of the rigid body is
large, such as Ixx/m = 0.5, the effect of the gravitational
orbit-attitude coupling is dominant. Compared with the case
of a smaller characteristic dimension, the orbit-attitude cou-

pling can destroy the existence of non-Lagrangian relative
equilibria in some regions on the σy–σx plane in the cases
of Eqs. (64) and (65); whereas the orbit-attitude coupling
can lead to the existence of non-Lagrangian relative equi-
libria in some regions on the σy–σx plane in the cases of
Eqs. (66)–(70).

When the characteristic dimension of the rigid body is
very small, the gravitational orbit-attitude coupling is in-
significant and the rigid body can be considered as a point
mass. According to our conclusions stated above, the dis-
placed stationary orbit above the equatorial plane of the
central body can exist even for a point mass in the cases
of Eqs. (64) and (65). This is consistent with the results in
Howard (1990).
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6 Conclusions

Relative equilibria of the full dynamics of a rigid body with
gravitational orbit-attitude coupling in a uniformly rotating
second degree and order gravity field, especially their types
and existences, have been investigated from a global point of
view. Equilibrium conditions of the relative equilibria have
been obtained based on the equation of motion of the sys-
tem. It has been found that at the relative equilibria the at-
titude and position of the rigid body are both kept to be
stationary with respect to the central body. The orbit of the
mass center of the rigid body is a circle parallel to the equa-
torial plane of the central body, and the center of the orbit is
located on the rotational axis of the central body.

Through the equilibrium conditions, we have found two
types of relative equilibria: one is the Lagrangian relative
equilibria, in which the circular orbit of the rigid body is in
the equatorial plane of the central body; the other is the non-
Lagrangian relative equilibria, in which the circular orbit is
parallel to but not in the equatorial plane of central body.
The geometrical properties of both the Lagrangian and non-
Lagrangian relative equilibria have been given in details.

The existences of both the Lagrangian and non-Lagran-
gian relative equilibria have been discussed numerically
with respect to the parameters of the gravity field and the
rigid body. The effect of the gravitational orbit-attitude cou-
pling has been especially assessed. The existence region
of the Lagrangian relative equilibria has been given on the
plane of the system parameters.

As for the non-Lagrangian relative equilibria, our numer-
ical results suggested that a C20 with a small absolute value
and a negative C22 with a large absolute value favor their
existence. The effect of the gravitational orbit-attitude cou-
pling of the rigid body on their existence could be positive
or negative, depending on the values of the harmonics C20

and C22, and the angular velocity of the rotation of the grav-
ity field. Our numerical results also suggested that the dis-
placed stationary orbit above the equatorial plane of the cen-
tral body could exist even for a point mass in a second degree
and order-gravity field.
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libria in the unrestricted problem of a sphere and symmetric rigid
body. Mon. Not. R. Astron. Soc. 403, 848–858 (2010)

Wang, Y., Xu, S.: Hamiltonian structures of dynamics of a gyrostat in
a gravitational field. Nonlinear Dyn. 70(1), 231–247 (2012)

Wang, Y., Xu, S.: Gravity gradient torque of spacecraft orbiting aster-
oids. Aircr. Eng. Aerosp. Technol. 85(1), 72–81 (2013a)

Wang, Y., Xu, S.: Equilibrium attitude and stability of a spacecraft on
a stationary orbit around an asteroid. Acta Astronaut. 84, 99–108
(2013b)

Wang, Y., Xu, S.: Attitude stability of a spacecraft on a stationary orbit
around an asteroid subjected to gravity gradient torque. Celest.
Mech. Dyn. Astron. 115(4), 333–352 (2013c)

Wang, Y., Xu, S.: Equilibrium attitude and nonlinear stability of a
spacecraft on a stationary orbit around an asteroid. Adv. Space
Res. 52(8), 1497–1510 (2013d)

Wang, Y., Xu, S.: Symmetry, reduction and relative equilibria of a
rigid body in the J2 problem. Adv. Space Res. 51(7), 1096–1109
(2013e)

Wang, Y., Xu, S.: Stability of the classical type of relative equilibria
of a rigid body in the J2 problem. Astrophys. Space Sci. 346(2),
443–461 (2013f)

Wang, Y., Xu, S.: Gravitational orbit-rotation coupling of a rigid satel-
lite around a spheroid planet. J. Aerosp. Eng. 27(1), 140–150
(2014a)

Wang, Y., Xu, S.: On the nonlinear stability of relative equilibria of
the full spacecraft dynamics around an asteroid. Nonlinear Dyn.
78(1), 1–13 (2014b)

Wang, Y., Xu, S.: Analysis of the attitude dynamics of a spacecraft on
a stationary orbit around an asteroid via Poincaré section. Aerosp.
Sci. Technol. (2014c, in press). doi:10.1016/j.ast.2014.06.010

Wang, L.-S., Krishnaprasad, P.S., Maddocks, J.H.: Hamiltonian dy-
namics of a rigid body in a central gravitational field. Celest.
Mech. Dyn. Astron. 50, 349–386 (1991)

Wang, L.-S., Maddocks, J.H., Krishnaprasad, P.S.: Steady rigid-body
motions in a central gravitational field. J. Astronaut. Sci. 40, 449–
478 (1992)

Wang, Y., Xu, S., Tang, L.: On the existence of the relative equilibria
of a rigid body in the J2 problem. Astrophys. Space Sci. 353(2),
425–440 (2014a)

Wang, Y., Xu, S., Zhu, M.: Stability of relative equilibria of the full
spacecraft dynamics around an asteroid with orbit-attitude cou-
pling. Adv. Space Res. 53(7), 1092–1107 (2014b)

Woo, P., Misra, A.K., Keshmiri, M.: On the planar motion in the full
two-body problem with inertial symmetry. Celest. Mech. Dyn.
Astron. 117(3), 263–277 (2013)

http://dx.doi.org/10.1016/j.ast.2014.06.010

	Relative equilibria of full dynamics of a rigid body with gravitational orbit-attitude coupling in a uniformly rotating second degree and order gravity ﬁeld
	Abstract
	Introduction
	Statement of the problem
	Equilibrium conditions
	Lagrangian relative equilibria
	Non-Lagrangian relative equilibria
	Existence condition of non-Lagrangian relative equilibria
	Existence regions of non-Lagrangian relative equilibria
	Effects of the system parameters

	Conclusions
	Acknowledgements
	References


