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Abstract The dynamics of a charged relativistic particle in
electromagnetic field of a rotating magnetized celestial body
with the magnetic axis inclined to the axis of rotation is stud-
ied. The covariant Lagrangian function in the rotating refer-
ence frame is found. Effective potential energy is defined
on the base of the first integral of motion. The structure of
the equipotential surfaces for a relativistic charged particle
is studied and depicted for different values of the dipole mo-
ment. It is shown that there are trapping regions for the par-
ticles of definite energies.
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1 Introduction

Motion of the charged particles in the field of a magne-
tized rotating celestial body is of large practical signifi-
cance for astrophysics. For example, a charged particle in
the Earth magnetic field is moving within the closed regions
which are named radiation belts (Alfven 1950; Holmes-
Siedle and Adams 2002). The trajectories of a charged par-
ticle in the dipolar magnetic field where studied by Størmer
(1907, 1955), DeVogelaere (1958) and Dragt (1965).

More complicated case is the case when direction of the
magnetic moment differs from direction of axis of rotation.
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In this case an electric field is induced inside and outside
of the body. The neutron stars and pulsars are examples of
such objects. The first model of electric field which is gen-
erated in the neighbourhood of a neutron star was devel-
oped by Deutsch (1955). Some other models were suggested
and studied by several authors (Michel 1991). Most of these
models are based on assumption that the neutron star is a
conducting sphere. Electromagnetic field in this case differs
essentially from the pure dipole field. Magnetic field of such
objects in good approximation can be described as the field
of an inclined rotating magnetized sphere or “oblique rota-
tor” (Babcock and Cowling 1953). Theoretical study of the
field of an oblique rotator has a long history. We discuss it
in more details in Sect. 2.

Allowed and forbidden regions of the motion of charged
particles in such field was studied by Katsiaris and Psil-
lakis (1986). Dynamics of a charged particle near the force-
free surface of a rotating magnetized sphere was explored
by Thielheim and Wolfsteller (1989), Istomin and Sobyanin
(2009). Some issues of charged particle dynamics within
the electromagnetic vacuum fields of an inclined rotator
have already been discussed by Ferrari and Trussoni (1975),
Finkbeiner et al. (1987).

Effective potential energy for a non-relativistic particle in
the field of inclined rotating dipole was investigated in de-
tails in our recent paper Epp and Masterova (2013), further
referred to as Paper I. The calculations were made for the
near region, i.e. for distances much less then the radius of the
light cylinder. In the present paper we study the structure of
the effective potential energy for a relativistic particle in the
field of inclined rotating magnetized sphere at the distances
up to the light cylinder.

In Sect. 2 we show that the field of such sphere calcu-
lated by different authors under different assumption coin-
cides with the field of rotating magnetic dipole if the sphere
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is uniformly magnetized and rotates with a non-relativistic
speed. In Sect. 3 we present the relativistic Lagrange func-
tion for a charged particle in the arbitrary, uniformly rotat-
ing electromagnetic field. The integral of motion of such
Lagrange system is calculated. Existence of the integral of
motion gives the possibility to introduce an effective poten-
tial energy which allows studying some general features of
the particle motion without solving the equations of motion.
Section 4 represents analysis of the main properties of the
effective potential energy. The equipotential surfaces are ob-
tained by numerical calculations and demonstrated in pic-
tures of Sect. 5. The potential energy features near the star
surface are analyzed in Sect. 6. Section 7 contains discussion
of the results and our conclusions.

2 The electromagnetic field of a rotating magnetized
sphere

In this section we analyse the field of rotating magnetized
sphere. There are different ways of modelling the field of an
oblique rotator.

Deutsch (1955) describes a non-relativistic rotating mag-
netized star as a perfectly conducting sphere in rigid rota-
tion in vacuo. In order to introduce a relativistic model of
the field source Belinsky and Ruffini (1992), Belinsky et al.
(1994) considered an infinitely thin permanent magnet of fi-
nite length. This model is acceptable for calculation of the
field at large distances from the source, but it can not be used
for the near field calculations.

Georgiou (2008) has found an exact special relativistic
solution for the electromagnetic field in the interior and ex-
terior of rapidly rotating perfectly conducting magnetized
sphere. The calculation of the field is made as generaliza-
tion of the field of slowly rotating magnetized neutron star,
which was studied by Rezzolla et al. (2001, 2009) under
consideration of general relativistic effects. The field of a
rotating magnetized sphere which is neither a conductor nor
a dielectric was calculated by Kaburaki (1980). There is a
great variety of other papers which present calculations of
the electromagnetic field of rotating magnetized sphere—
see references in the articles cited above. The results differs
essentially dependent on the used model of the magnetized
sphere and its speed of rotation.

The model of relativistically rotating sphere is rather
complicate. First of all, a solid sphere is incompatible with
the theory of relativity. Hence, we have to consider a liquid
model or gaseous. Therefore it is not a sphere. Secondly, the
inner field of fast rotating body depends on the form of the
body and on the nature of magnetization. In this paper we
accept as a model of the exterior electromagnetic field the
field of slowly rotating uniformly magnetized sphere. We
show that in the non-relativistic limit the results of many au-
thors cited above give the same field.

Let us start with the expression for the exterior elec-
tromagnetic field obtained by Deutsch (1955). We expand
these equations in powers of a = ωr0

c
, where ω is the angu-

lar speed of rotation, r0 is the radius of the sphere, and c is
the speed of light. But we keep terms like r0/r which are
sufficient near the surface of the sphere. Up to the first order
of a we receive the next equations for the electric (E) and
magnetic (H ) field vectors in a spherical coordinate system
r, θ,ϕ (axis Z is directed along the vector of angular veloc-
ity ω):

Er = −μk3a2

2ρ4

[
cosα(3 cos 2θ + 1)

+ sinα sin 2θ
(
3C − ρ2 cosλ

)]
,

Eθ = −μk3

ρ2

[
C sinα

(
1 − a2

ρ2
cos 2θ

)

+ a2

ρ2
cosα sin 2θ

]
,

Eϕ = μk3

ρ2
S sinα cos θ

(
1 − a2

ρ2

)
,

(1)

Hr = 2μk3

ρ3
(cosα cos θ + C sinα sin θ),

Hθ = μk3

ρ3

[
cosα sin θ − sinα cos θ

(
C − ρ2 cosλ

)]
,

Hϕ = μk3

ρ3
sinα

(
S − ρ2 sinλ

)
,

(2)

where

S = sinλ − ρ cosλ, C = cosλ + ρ sinλ,

μ is the dipole moment vector, μ = |μ|, λ = ρ + ϕ −
ωt, ρ = rω/c, k = ω/c, and α is the angle between the vec-
tors μ and ω. We have also expanded:

sin(λ − a) ≈ sinλ − a cosλ,

cos(λ − a) ≈ cosλ + a sinλ.

The magnetic field (2) is the field of rotating point-like mag-
netic dipole, while the electric field (1) is a superposition of
dipole and quadrupole fields. The quadrupole part is pre-
sented by terms proportional to a2/ρ2 and decreases with
distance as ρ−4. At great distances ρ � a this part vanishes
and the electromagnetic field becomes that of rotating mag-
netic dipole.

The field near the surface of the magnetized body highly
depends on the used model. The field (1) is calculated for a
perfectly conducting sphere. The field of an inclined rotator
calculated by authors cited above differs substantially from
that given by Deutsch (1955). But if we expand the field



Astrophys Space Sci (2014) 353:473–483 475

obtained for different models in powers of a, far from the
surface it takes the form of the field of a rotating point like
dipole. For example, that is the case for the fields of Fer-
rari and Trussoni (1973) and Kaburaki (1980). Hence, we
consider the dipole field as a general case at great distance.
Then, the magnetic field is given by Eqs. (2), and the electric
field is

Er = 0,

Eθ = −μk3

ρ2
C sinα, (3)

Eϕ = μk3

ρ2
S sinα cos θ.

The fields (2) and (3) can be represented by 4-dimensional
vector potential Aν . In the spherical coordinate system xν =
(ct, r, θ, ϕ) it is

A0 = A1 = 0,

A2 = − μ

r3
S sinα, (4)

A3 = μ

r3
(cosα − C sinα cot θ).

In the next three sections we study dynamics and the po-
tential energy for the charged particles in the field of rotating
dipole given by Eqs. (2) and (3), and in Sect. 6 we describe
the potential energy near the sphere surface, according to
Eqs. (1) and (2).

3 Integral of motion for the particles in arbitrary
rotating electromagnetic field

Let us consider an arbitrary electromagnetic field rotating
with angular velocity ω. The four-dimensional potential of
such field in the inertial spherical coordinate system xν =
(ct, r, θ, ϕ), ν = 0,1,2,3 is defined as

Aν = Aν(r, θ,ϕ − ωt + ρ).

In the corotating reference frame xν′ = (ct, r, θ,ψ), with
ψ = ϕ − ωt , the field does not depend on time. Hence,
the corresponding generalized momentum is conserved. The
Lagrangian for a charged particle with mass m and charge e

in rotating reference frame is

L = m

2
uν′

uν′ + e

c
uν′Aν′

, uν′ = (cṫ, ṙ, θ̇ , ψ̇), (5)

where uν is the four-dimensional velocity, prime shows that
the quantity relates to the rotating reference frame, and the
dot denotes derivative with respect to the proper time τ . As

stated above, the time component p0′ of the generalized 4-
momentum is an integral of motion:

p0′ = ∂L

∂u0′ = mu0′ + e

c
A0′ . (6)

This means that the energy of the particle in the corotating
frame defined as E ′ = cp0′ is conserved.

Let us express the integral of motion P = p0′ in terms
of quantities in the inertial reference frame. The matrix of
transformation from the inertial reference frame to the rotat-
ing one reads

J
ν

μ′ = ∂xν

∂xμ′ =

⎛

⎜⎜
⎝

1 0 0 ω/c

0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ . (7)

As a result of transformations Aμ′ = J
ν

μ′ Aν we obtain

P = p0 + ω

c
p3, (8)

where pν = muν + e
c
Aν are the generalized momenta in the

inertial frame. The quantity p3 is the generalized angular
momentum relative to the axis of rotation. If we multiply
Eq. (8) by c, we can read it as: the sum of energy and angular
momentum, multiplied by ω, is conserved.

Let us calculate the integral of motion for the field of
precessing dipole. The generalized momenta calculated by
use of Eqs. (4) are:

p0 = mcṫ, (9)

p3 = mϕ̇ + eμ

cr3
(cosα − C sinα cot θ). (10)

Using the metric tensor for the spherical coordinates in the
inertial frame of reference

gμν = diag
(
1,−1,−r2,−r2 sin2 θ

)

we find the integral of motion

P = m

(
cṫ − ω

c
r2ϕ̇ sin2 θ

)

− eμω

c2r
sin θ(cosα sin θ − C sinα cos θ). (11)

Substituting ϕ = ψ + ωt we obtain the expression for P in
the corotating reference system:

P = m

[
cṫ

(
1 − ρ2 sin2 θ

) − ωr2

c
ψ̇ sin2 θ

]

− eμω

c2r
sin θ

{
cosα sin θ − [

cos(ρ + ψ)

+ ρ sin(ρ + ψ)
]

sinα cos θ
}
. (12)
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If we consider r, θ,ψ as the particle coordinates, then the ex-
pression (12) is valid only inside the light cylinder of radius
c/ω, while Eq. (11) is correct throughout the entire space.

4 Potential energy

We study the particle dynamics with respect to the rotating
reference frame with coordinates ct, r, θ,ψ and the metric
defined by tensor

gμ′ν′ =

⎛

⎜
⎜
⎝

1 − ρ2 sin2 θ 0 0 −rρ sin2 θ

0 −1 0 0
0 0 −r2 0

−rρ sin2 θ 0 0 −r2 sin2 θ

⎞

⎟
⎟
⎠ . (13)

The total energy E ′ of a particle in curved space can be
expressed as follows (Landau and Lifshitz 1975), §88

E ′ = cp0′ = mc2√g0′0′
√

1 − β2
+ eA0′ , (14)

where β = v/c, and v is the particle velocity. As mc2√g0′0′
is the energy of the particle at rest, we can define the kinetic
energy as

T = mc2√g0′0′
(

1
√

1 − β2
− 1

)
. (15)

Then, the potential energy U can be introduced as U =
cp0′ − T , which gives

U = mc2√g0′0′ + eA0′ . (16)

The potential energy defined by Eq. (16) possesses a stan-
dard property: the space part of its four dimensional gradi-
ent ∂νU is proportional to acceleration of the particle being
at rest. In order to prove this we consider equation of motion

mu̇ν + e

c
uσ Fσν − m

2
uσ uρ∂νgσρ = 0, (17)

where Fσν = ∂σ Aν − ∂νAσ . Substituting the four-velocity
uσ ′ = (u0′

,0,0,0) for the particle at rest we obtain

mu̇ν′ = u0′
(

e

c
∂ν′A0′ + m

2
u0′

∂ν′g0′0′
)

.

It follows from uσ ′
uσ ′ = c2 that u0′ = c/

√
g0′0′ . Hence,

mu̇ν′ = 1√
g0′0′

∂ν′
(
eA0′ + mc2√g0′0′

)
, (18)

which proves the statement.

Let us find the potential energy of a particle in the rotating
dipole field. Transformation of the potential (4) into rotating
reference frame by use of matrix (7) leads to

A0′ = μω

2rc

[
sinα sin 2θ(cos ξ + ρ sin ξ) − 2 cosα sin2 θ

]
,

where ξ = ρ + ψ . Substituting this into Eq. (16) and in-
troducing a dimensionless potential energy V = U/mc2 we
obtain

V =
√

1 − ρ2 sin2 θ

+ N⊥
2ρ

sin 2θ(cos ξ + ρ sin ξ) − N‖
ρ

sin2 θ (19)

with

N⊥ = N sinα, N‖ = N cosα, N = eμω2

mc4
. (20)

Notice, that all physical parameters are gathered in one di-
mensionless parameter N . For example, for electrons the
value of N for pulsar in Crab Nebula is 5 × 1010, Jupiter—
0.03, Earth—3×10−7 and for the magnetized sphere used in
experiment by Timofeev and Timofeeva (2014)—3×10−16.

As shown in Paper I, in case of N � 1 the potential en-
ergy changes sufficiently in the region ρ ∼ N1/3 � 1. Ex-
panding (19) in power series in ρ we receive the effective
potential energy studied in details in Paper I. It was shown
there that the value of N plays the role of a scale factor and
in terms of reduced variable ρ̃ = ρN−1/3 the shape of po-
tential energy does not depend on N . In general case, the do-
main of potential energy is explicitly restricted by the light
cylinder ρ2 sin2 θ < 1, as indicated by Eq. (19).

5 Equipotential surfaces

In this section we present the profiles of potential energy
defined by Eq. (19). Due to the argument ξ = ρ + ψ the
equipotential surfaces take a form of surfaces twisted around
the Z-axis. If we “twist back” the whole picture, introducing
coordinate η = ψ + ρ − σ , with

sinσ = ρ
√

1 + ρ2
, cosσ = 1

√
1 + ρ2

, (21)

we find out that the potential energy becomes symmetric
with respect to the plane η = 0, π which contains vectors
μ and ω:

V =
√

1 − ρ2 sin2 θ

+ N⊥
2ρ

√
1 + ρ2 sin 2θ cosη − N‖

ρ
sin2 θ. (22)
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Fig. 1 Equipotential profiles for N = 0.1, η = 0

Besides, the function V is symmetric with respect to trans-
formations η → η + π; θ → π − θ .

At the plots below we show the sections of the equipoten-
tial energy surfaces by plane η = const. The equipotential
surfaces are marked by numbers equal to the energy level
V = const. It means that the particle having the total energy
E ′ has zero velocity at equipotential surface V = E ′/mc2

and can move according to the equations of motion in the
area where the potential energy is less the its total energy.
For example, a particle with total energy E ′ = 1.04mc2 be-
ing in the field depicted in Fig. 1 can move everywhere ex-
cept the closed region at the centre marked by number 1.04.

We study the structure of potential energy for α ≤ π/2,
for positive and negative charge of the particles. The struc-
ture for α > π/2 is the same but e should be replaced by
−e and θ by π − θ . All profiles are plotted for the inclina-
tion angle α = 60◦, if other angle α is not specified explic-
itly.

5.1 Equipotential surfaces for positively charged particles

We start with equipotential surfaces for small N . Figures 1
and 2 show the profiles for N = 0.1. The sign of N is the
sign of the particle charge according to definition of N (20).
The equipotential surfaces for small N are almost the same
as plotted in Paper I in 3-D form. For example, the equipo-
tential surface for V = 0.74 is shown in Fig. 3. The constant
C used in Paper I and the energy level V of this paper are
bound by relation V = 1 + N2/3C/2. The shape of equipo-
tential surfaces at N � 1 does not depend on N . The value
of N plays a role of scale factor in form V ∼ N2/3.

Fig. 2 Equipotential profiles for N = 0.1, η = 900

Fig. 3 Equipotential surface for N = 0.1, V = 0.74

One can see in Figs. 1–3 that the energy levels form a
potential valley in a shape of torus around the centre of the
field. There are two allowed regions for the particles of en-
ergy less than ≈0.74: one is the closed region inside the
torus and another is the region outside the cylinder-like sur-
face. At the critical energy level V ≈ 0.74 the inner and
outer regions touch one another at two symmetric points
which are the saddle points of the potential energy. This
is demonstrated by Fig. 3. It was proved in Paper I that in
approximation of small N all the stationary points defined
by equations ∂V/∂qi = 0 with qi = ρ, θ,ψ are the saddle
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Fig. 4 Equipotential surface for N = 0.1,V = 0,85

Fig. 5 Equipotential profiles for N = 1, η = 0

points. There are also two saddle points in equatorial plane
with coordinates defined by Eq. (A.6). For the particles of
energy greater than the critical energy, the inner and outer
allowed regions are united by two symmetric conjugation
tubes as one can see in Fig. 4. Such particles can escape
from the torus-like trapping region to outer space.

The potential profiles for intermediate values of N have
similar structure. For example, the sections of equipotential
surfaces for N = 1 are depicted in Figs. 5–6. The saddle
points for this N lie at the energy level V ≈ −0.35. As N

increases, the saddle points move to the light cylinder along

Fig. 6 Equipotential profiles for N = 1, η = 900

Fig. 7 Lines along which the saddle points move as N varies. I—for
negatively and II—for positively charged particles. η = 0, α = π/3

the lines given by Eq. (A.9). The line lying in the plane η = 0
is shown in Fig. 7 as line II in the cylindrical coordinates
R = ρ sin θ and Z = ρ cos θ . The corresponding lines in the
plane η = π can be produced by substitution Z → −Z. It
follows from Eqs. (A.1)–(A.2) that the saddle points coordi-
nates ρ sin θ → 1 as N → ∞. I.e. the saddle points approach
the light cylinder asymptotically when N grows. In other
words, the critical potential surface, and hence, the trapping
regions exist at any large N .

Sections of the potential surfaces for N = 100 are plotted
in Figs. 8 and 9. The shape of the profiles in case of large N

does not depend on N . Indeed, if N � 1, we can neglect the
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Fig. 8 Equipotential profiles for N = 100, η = 0

Fig. 9 Equipotential profiles for N = 100, η = 900

first term in Eq. (22) and N becomes just a scale factor. The
sole exception is the vicinity of the light cylinder, because
the first derivatives ∂V/∂ρ and ∂V/∂θ , as one can see in
Eqs. (A.1) and (A.2), tend to infinity as ρ sin θ → 1.

5.2 Equipotential surfaces for negatively charged particles

There is a significant difference between the structure of
equipotential surfaces for positive and negative charges,
though they share a number of traits. As we change the sign

Fig. 10 Equipotential profiles for N = −1, η = 0

Fig. 11 Equipotential profiles for N = −1, η = 900

of the charge in expression for potential energy, the “po-
tential hills” become “potential valley” and vice versa. The
trapping regions in this case have a form of two symmetric
dumb-bell shaped figures. The sections of level surfaces for
N = −1 are shown in Figs. 10 and 11. For the negatively
charged particle there is still a critical energy level at which
the inner trapping region contacts the outer cylinder-like sur-
face at two saddle points. The shape of the critical surface
which is of level V ≈ 0.82 is depicted in Fig. 12.
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Fig. 12 Equipotential surface for N = −0.1, V ≈ 0.82

As N varies, the saddle point in the plane η = 0 moves
along the line I of Fig. 7 and approaches the light cylinder
of radius R = ρ sin θ = 1 as N → ∞. The lines I and II in
Fig. 7 intersect at the coordinate origin at angle γ : cosγ =
1
3 sinα.

5.3 Orthogonal rotator

In this section we describe shortly the structure of poten-
tial energy for the inclination angle α = π/2. In this case
the last term in Eq. (22) vanishes. Hence the equipoten-
tial surfaces for positive and negative charges become sym-
metric because substitution e → −e is equal to substitution
η → η + π .

The energy profiles for negative charge do not change
sufficiently as α tends to π/2. But the profiles for posi-
tive charge change substantially as one can see in Figs. 13
and 14.

The specific profiles of Fig. 14 arise as a consequence
that the saddle points in equatorial plane, seen for example
in Fig. 6, move to Z axis according to Eq. (A.6), as the an-
gle α approaches to π/2. And all the central pattern shrinks
to the coordinate origin. The profiles for negative charge are
the same, but rotated around Z-axis through 180◦. The trap-
ping regions both for negative and positive charges form a
dumb-bell shaped figures.

6 Potential energy near the surface of uniformly
magnetized sphere

Up to now we have studied the particles dynamics on a
large scale, up to the light cylinder. The constructed plots

Fig. 13 Equipotential profiles for N = 1, η = 0, α = π/2

Fig. 14 Equipotential profiles for N = 1, η = 90◦, α = π/2

are not valid near the surface of a star or a planet because
the quadrupole electric field is neglected. As discussed in
Sect. 2, the electric field not far from the surface essentially
depends on the used model. In this section we investigate the
potential energy of charged particles in the field of perfectly
conducting sphere found by Deutsch (1955). These fields are
described by Eqs. (1) and (2). The respective 4-dimensional
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Fig. 15 Equipotential profiles for N = 0.1, η = 0

vector potential can be written as follows

A0 = −ωr2
0μ

6cr3

(
3C sin 2θ sinα + cosα(3 cos 2θ + 1)

)
,

A1 = 0,

A2 = − μ

r3
S sinα,

A3 = μ

r3 sin θ
(cosα sin θ − C sinα cos θ).

(23)

Transforming this potential to rotating reference frame and
substituting it into Eq. (16) we obtain the potential energy
with regard to the quadrupole electric field

V =
√

1 − ρ2 sin2 θ +
[
N⊥
2ρ

sin 2θ(cos ξ + ρ sin ξ)

− N‖
ρ

sin2 θ

](
1 − a2

ρ2

)
− 2N‖

3ρ

a2

ρ2
. (24)

It differs from the potential energy (19) by terms propor-
tional to a2/ρ2.

The magnitude of a for real celestial bodies is well be-
low unity. For example, the values of a for Earth, Jupiter
and pulsar in Crab Nebula are 1.5 × 10−6, 4 × 10−5 and
7.6 × 10−3 respectively. We have plotted the equipotential
surfaces for a = 0.01. Built for the interval 0 < ρ sin θ < 1,
the graphs do not differ essentially from those presented in
the previous section, except for details at the coordinate ori-
gin. These details are shown in Figs. 15–18.

The distinctive property of potential energy in this case
is that there is a minimum of the potential energy for nega-
tively charged particles, and the trapping region is separated

Fig. 16 Equipotential profiles for N = 0.1, η = 900

Fig. 17 Equipotential profiles for N = −0.1, η = 0

from the surface of the sphere as shown in Fig. 17. The trap-
ping region for the positively charged particles still forms of
a torus encircling the star and siding the star surface along
the magnetic equator (Figs. 15 and 16). The shape of the
profiles within the area ρ ∼ a does not change sufficiently
as N varies. The reason is that the first term in Eq. (24) is
close to unity in case of small ρ, and it can be neglected as
a constant in the potential energy. Hence, N becomes just a
scale parameter.
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Fig. 18 Equipotential profiles for N = −0.1, η = 900

7 Discussion

The potential energy of Eq. (22) was constructed under sup-
position that the magnetized body is in vacuum and there
are not regions with non zero net charge in the surrounding
plasma. But we see that the trapping regions for particles
of different charge are located in different areas. Hence, this
can cause sufficient charge separation in the magnetosphere.
If say, a pair of particles is born at some point as a result of
pair production, one of the particles find itself in the poten-
tial well while the other one on the potential hill. As a con-
sequence the first one can be trapped in the region while the
particle with opposite charge will leave the region with ac-
celeration. As the trapping regions accumulate sufficiently
great charge, the potential profiles will be distorted. In this
case we have to study the plasma dynamics rather than mo-
tion of a single particle. A great variety of papers on this
subject are cited in Michel (1991) and in recent review by
Beskin et al. (2013).

In the field with large N such as of neutron star, the rela-
tivistic charged particles undergo intensive radiative friction
force, leading to particle energy losses. Though, the particle
motion with respect to the radiation reaction is not a sub-
ject of this paper, the potential energy study is nevertheless,
a powerful instrument of qualitative analysis of the particle
behaviour in this case. Because the structure of the poten-
tial energy is defined solely by the field and does not de-
pend on the particle motion. It is obvious that if the particle
loses its energy due to radiation, it progressively passes to
lower energy levels continuing its motion along other mag-
netic field lines. Hence, the boundary restricting the allowed
region changes with time, shifting the particle downhill the

potential profile. If the particle in this motion encounters
the force-free surface defined by E · H = 0, it can join the
surface after some oscillations, and then drift along the sur-
face as long as its energy is conserved (Jackson 1976; Is-
tomin and Sobyanin 2009), but still within the area bounded
by appropriate equipotential surface. As may be seen from
the figures above, the trapped positively charged particles
eventually fall on the star surface as they lose their energy,
while the others can move off to infinity. The particle or-
bits with regard to radiation reaction have been numerically
calculated by Laue and Theilheim (1986) in the field of or-
thogonal rotating dipole. It was shown that there is a critical
surface such that the trajectories starting inside the surface
end on polar regions, and the outside trajectories recede to
infinity.

The fact that in case ω ·μ > 0 the negatively charged par-
ticles concentrate in polar regions of inclined rotator and the
particles with positive charge in equatorial zone, coincides
with conclusions made by other authors, who have used dif-
ferent models for the neutron star magnetosphere (Goldre-
ich and Julian 1969; Jackson 1976; Istomin and Sobyanin
2009).
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Appendix: Stationary points of the relativistic potential
energy

The power of potential formulation of the problem is the
possibility to find the “potential valleys” where the charged
particles can be trapped. And the slope of the “valley” shows
the force exerted on the particle. Having this in mind, we
find the stationary points of the potential energy, i.e. the
points satisfying the set of equations:

∂V

∂qi

= 0,

where qi = ρ, θ,ψ . This gives a system of three equations

ρ3 sin θ
√

1 − ρ2 sin2 θ
+ N⊥ cos θ

√
1 + ρ2

(
cosη + ρ3 sinη

)

− N‖ sin θ = 0, (A.1)

ρ3 sin 2θ
√

1 − ρ2 sin2 θ
− 2N⊥ cos 2θ

√
1 + ρ2 cosη

+ 2N‖ sin 2θ = 0, (A.2)

sin 2θ sinη = 0. (A.3)

Equation (A.3) has two solutions:

(i) θ = πn

2
, n ∈ Z (A.4)
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(ii) η = 0,π. (A.5)

Solution (i) The stationary points on the axis θ = 0,π can
exist provided that ∂V/∂ρ = 0 and ∂V/∂θ = 0 for any ψ ,
which is not the case as one can see in Eqs. (A.1)–(A.2).
As to the equatorial plane θ = π

2 , Eqs. (A.1)–(A.2) have the
next solutions:

ρ2 = N
2/3
‖

21/3

[
3

√√√√
1 +

√

1 + 4N2‖
27

+ 3

√√√√
1 −

√

1 + 4N2‖
27

]

;

η = 0, π. (A.6)

Coordinate ρ in Eq. (A.6) increases monotone as N‖ in-
creases, and asymptotically approaches the value of unity
as N‖ → ∞. For small N‖ it takes the value ρ ≈ N

1/3
‖ .

Solution (ii) Substituting η = 0,π into Eqs. (A.1) and
(A.2) we obtain two equations for ρ and θ of the station-
ary points:

ρ3 sin θ
√

1 − ρ2 sin2 θ
+ εN⊥ cos θ

√
1 + ρ2

− N‖ sin θ = 0, (A.7)

ρ3 sin 2θ
√

1 − ρ2 sin2 θ
− 2εN⊥ cos 2θ

√
1 + ρ2 + 2N‖ sin 2θ = 0,

(A.8)

where ε = 1 for η = 0 and ε = −1 for η = π . Solution of
these equations gives the lines at which the stationary points
are lying

tg θ = −ε
3 cotα + q

√
9 cot2 α + 8 + 4ρ2

2
√

1 + ρ2
, (A.9)

and equation for coordinate ρ at these lines:

ρ6Q2[4 + 4ρ2 + Q2]2

− N2 sin2 α
[
4 + 4ρ2 + (

1 − ρ2)Q2][2 + Q cotα]2 = 0,

(A.10)

where Q = 3 cotα + q
√

9 cot2 α + 8 + 4ρ2 and q = ±1 is
the sign of the particle charge. If N � 1 and ρ � 1 these

equations transform to Eqs. (36) and (37) of Paper I. The
lines given by Eq. (A.9) are plotted in Fig. 7 for α = π/3.
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