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Abstract We work on reconstruction scenario of recently
proposed dark energy model call QCD ghost with modi-
fied Horava-Lifshitz F(R) gravity. We construct the F(R̃)

model by taking well-known power law form of scale fac-
tor. It is found that this model satisfies the realistic condi-
tion. Also, the effective equation of state parameter shows
quintom-like behavior from quintessence to phantom era by
crossing the vacuum era of the universe. The squared speed
of sound represents the instability of the model. In this con-
text, the cosmological planes such as ωϑ–ω′

ϑ and statefinder
show consistency with the accelerated expansion of the uni-
verse. We also investigate the generalized second law of
thermodynamics on the Hubble horizon which remains valid
for all cases of scale factor parameter n.

Keywords Modified f (R) Horava-Lifshitz gravity · Dark
energy · Cosmological parameters

1 Introduction

Recent developments in the subject of cosmology have led
many interesting discoveries about the evolution of the uni-
verse. Accelerating expansion of the universe is one of the
distinguished events which has brought many challenges in
this subject. There are two different teams of astronomers
who have evidenced about the accelerated phenomenon of
the universe through different observational schemes (Riess
et al. 1998; Perlmutter et al. 1999; Caldwell and Doran 2004;
Koivisto and Mota 2006; Fedeli et al. 2009). The collected
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data through these observations suggest that a mysterious
form of force named as dark energy (DE) takes part in this
phenomenon which dominates overall energy density of the
universe. Although current observations favor the presence
of DE but its unknown nature is the biggest puzzle in astron-
omy.

The question about the ambiguous nature of DE is cu-
rious as well as interesting for researchers. The most ap-
pealing candidate of DE is the cosmological constant which
has remained under consideration in the relativistic cosmol-
ogy throughout its history. However, it faces two main prob-
lems, i.e., the fine tuning and cosmic coincidence problems.
In order avoid these problems, two alternatives approaches
have been used extensively to illustrate the present status
of the universe, i.e., dynamical DE models and modified
(or extra dimensional) theories of gravity. In the first ap-
proach, the modification of matter part of the Einstein field
equations takes place by specifying different forms of the
energy-momentum tensor including quintessence, k-essence
and perfect fluid models (Amendola and Tsujikawa 2010).
The perfect fluid models with specific form of EoS in-
clude family of Chaplygin gas (Kamenshchik et al. 2001;
Bento et al. 2002), holographic (Li 2004), agegraphic (Cai
2007), new agegraphic (Wei and Cai 2008), PDE (Wei
2012; Sharif and Jawad 2013a, 2013b, 2014), QCD ghost
DE (in different versions) (Urban and Zhitnitsky 2009a,
2009b; Urban and Zhitnitsky 2010a, 2010b, 2011; Cai et al.
2012; Garcia-Salcedo et al. 2013) etc. A detail discussion
on dynamical DE models have been given in the reviews
(Copeland et al. 2006; Bamba et al. 2012).

It is well-known that dynamical DE models play an
important role in describing the accelerated expansion of
the universe. The Veneziano ghost DE is one of the dy-
namical DE model which is proposed on the basis of
Veneziano ghost of choromodynamics (QCD) which helps
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in solving the U(1) problem in QCD. The Veneziano
ghost (being unphysical in quantum field theory formu-
lation in the Minkowski spacetime) provides non-trivial
physical effects in FRW universe (Rosenzweig et al. 1980;
Nath and Arnowitt 1981). Although, QCD ghost possesses
small contribution in describing vacuum energy density
which is proportional to Λ3

QCDH (here ΛQCD ∼ 100 MeV
is the smallest QCD scale), but this contribution plays
important role in the discussion of evolutionary universe.
It is also investigated that this model also helps in al-
leviating two major problems of DE called fine tuning
and cosmic coincidence problem (Urban and Zhitnitsky
2009a, 2009b, 2010a, 2010b, 2011; Forbes and Zhitnitsky
2008). Many authors have investigated/tested this model
through different cosmological parameters theoretically
(Ebrahimi and Sheykhi 2011; Sheykhi and Sadegh 2012;
Sheykhi and Bagheri 2011; Rozas-Fernandez 2012; Karami
and Fahimi 2013) and different observational schemes (Cai
et al. 2011).

It is observed that the Veneziano ghost field in QCD of
the form H + O(H 2) has ability in producing enough vac-
uum energy to explain the accelerated expansion of the uni-
verse (Zhitnitsky 2012), but only leading term (i.e., H ) in-
volved in ordinary ghost DE model. It is suggested (Cai et al.
2012) that the contribution of the term H 2 in the ordinary
ghost DE may be useful in describing the early evolution
of the universe which is known as generalized ghost DE.
Recently, its new version has been proposed in which it is
shown that QCD GDE energy density can be related with the
radius of the trapping horizon (Garcia-Salcedo et al. 2013)
which defined as follows

ρϑ = α(1 − ε)

r̃T
= α(1 − ε)

√
H 2 + k

H 2
, ε ≡

˙̃rT
2Hr̃T

. (1)

Nowadays, the reconstruction scenario between dynamical
DE models and modified theories of gravity has been in-
vestigated in detail. A number of works has been carried
on reconstruction scheme adopting different scenarios in
modified gravity theories (Nojiri and Odintsov 2006, 2007;
Nojiri et al. 2006, 2009). We have also explored differ-
ent cosmological parameters through reconstruction sce-
nario via different modified theories of gravity as well as
dynamical DE models (Jawad et al. 2013a, 2013b, 2013c,
2013d, 2014). Recently, Chattopadhyay has explored this
phenomenon by using F(T ) and F(G) gravities and QCD
ghost DE and found interesting results (Chattopadhyay
2014a, 2014b).

In this paper, we reconsider the reconstruction sce-
nario by choosing modified Horava-Lifshitz F(R) grav-
ity (MFRHL) gravity (Chaichian 2010) and QCD ghost
DE (Garcia-Salcedo et al. 2013). We find the F(R̃) model
through correspondence of MFRHL gravity and DE model
and then discuss the behavior of EoS and squared speed of

sound parameters as well as ωϑ–ω′
ϑ and r–s planes. We

also discuss the generalized second law of thermodynamics
(GSLT). Rest of the paper has been arranged as follows. In
the next section, we provide basic scenario of MFRHL and
QCD ghost DE in the flat universe. In Sect. 3, we discuss the
behavior of cosmological parameters as well as cosmologi-
cal planes. Also, it contains the discussion of GSLT in this
gravity on Hubble horizon. We summarize these outcomes
in the last section.

2 Modified F(R) Horava-Lifshitz gravity

The action of MFRHL gravity (F(R̃) gravity) is given by
(Nojiri and Odintsov 2007, 2011; Nojiri et al. 2009; Elizalde
et al. 2011; Carloni et al. 2010; Chaichian 2010)

S
F(R̃)

=
∫

d4
√

g(3)NF(R̃)

with

R̃ = KijKij − λK2 + 2μ∇μ

(
nμ∇νn

ν − nν∇νn
μ
)

− EijGijklE
kl,

is known as modified Ricci scalar. It takes the following
form in the context of flat FRW universe

R̃ = (3 − 9λ)H 2

N2
+ 6μ

a3N

d

dt

(
Ha3

N

)

= (3 − 9λ + 18μ)H 2

N2
+ 6μ

N

d

dt

(
H

N

)
.

For λ = μ = 1, R̃ → R, and hence we recover usual f (R)

gravity. For the action stated earlier, we get by variation over
g

(3)
ij and by setting N = 1:

0 = F(R̃) − 2(1 − 3λ + 3μ)
(
Ḣ + 3H 2)F ′(R̃)

− 2(1 − 3λ)H
dF ′(R̃)

dt
+ 2μ

d2F ′(R̃)

dt2
+ p. (2)

In above equation, prime represents the differentiation with
respect to its argument and also the matter contribution is
involved as pressure p. Taking ρ as the matter density and
the conservation equation is

ρ̇ + 3H(ρ + p) = 0. (3)

Using Eq. (2) and Eq. (3), we get

0 = F(R̃) − 6
[
(1 − 3λ + 3ν)H 2 + μḢ

]
F ′(R̃)

+ 6μH
dF ′(R̃)

dt
− ρ − Ca−3 (4)



Astrophys Space Sci (2014) 353:691–698 693

where C is an integration constant. Thus, the density corre-
sponding to MFRHL gravity with C = 0 turns out to be

ρ
R̃

= F(R̃) − 6
[
(1 − 3λ + 3μ)H 2 + μḢ

]
F ′(R̃)

+ 6μH
dF ′(R̃)

dt
. (5)

To realize the role of DE in modified gravity, a very use-
ful technique is proposed by Nojiri and Odintsov (2006,
2007), Nojiri et al. (2006, 2009) and also extended for sev-
eral cosmological scenarios. There exists several DE EoS
in the literature, however, the authors (Nojiri and Odintsov
2005; Capozziello et al. 2006) have discussed the more gen-
eral forms of DE inhomogeneous EoS. In view of these EoS,
they have usefully remarked that the more general form may
contain the derivative of H , like Ḣ , Ḧ , . . . in principle, it is
given by

F(p,ρ,H, Ḣ , Ḧ ) = 0.

This form contains a family of Chaplygin gas and much
more complicated EoS. The interested feature of this form
as addressed by Nojiri and Odintsov (2005) is that one
can recover Friedmann equations through its trivial condi-
tion. They have also investigated its non-trivial scenario and
sketched a useful picture of cosmological implications. They
pointed out that the inhomogeneous term in EoS helps to
realize the crossing of phantom barrier. They have also dis-
cussed the future behavior of the universe through singular-
ity analysis by taking the several specific examples of above
general form of EoS.

However, the DE EoS as mentioned in the above para-
graph are much complicated, hence we apply reconstruction
scenario on a specific model called QCD ghost DE. Our aim
in this work is to reconstruct f (R̃) for PDE in flat FRW Uni-
verse. In flat universe, the QCD ghost DE model turns out to
be

ρϑ = α

(
1 + Ḣ

2H 2

)
H. (6)

By setting ρ
R̃

= ρϑ , we obtain

6μH
˙̃
RF ′′(R̃) − 6

[
(1 − 3λ + 3μ)H 2 + μḢ

]
F ′(R̃)

+ F(R̃) = α

(
1 − Ḣ

2H 2

)
H. (7)

This equation is much complicated to obtain analytic solu-
tion, but we are interested in finding out analytic solution,
so we choose the well-known scale factor

a(t) = a0(ts − t)−n, ts > t. (8)

Here a0 and n appear as constant parameters while ts repre-
sent the finite future singularity time.

As, we have considered the DE universe model which
contain finite-time, future singularities. It is clear that de-
pending on the content of the model such singularities may
behave in different ways. That is why it is useful to classify
the future singularities in the following way (Nojiri et al.
2005):

• Type I: for t → ts , a → ∞, ρ, |p| → ∞, this singularity
corresponds to Big Rip singularity.

• Type II: for t → ts , a → as , ρ → ρs , |p| → ∞, this sin-
gularity corresponds to sudden future singularity.

• Type III: for t → ts , a → as , ρ, |p| → ∞.
• Type IV: for t → ts , a → as , ρ, |p| → 0.

Our scenario correspond to Type I singularity which de-
scribes the Big Rip singularity. It is strongly believed that
universe undergoes the big rip singularity, where all the
gravitationally bounded objects dispersed due to phantom
DE. With the help of this scale factor and Eq. (7), we get

F(R̃) = c1R̃
β− + c2R̃

β+ + γ

√
R̃, (9)

which is required MFRHL DE model with QCD ghost filled
in the universe. Also, c1 and c2 are integration constants
while β and γ are given as follows

β∓ = 1

2

(
1 − δ ∓

√
1 − 2δ + δ2 − 4ξ

)
,

γ = − 4b

(−δ + √
1 − 2δ + δ2 − 4ξ)(δ + √

1 − 2δ + δ2 − 4ξ)

with

δ = − 1

12μ
(n − 3λn + 9μn − 2μ),

ξ = 3

4μ
(n − 3λn + 6μn + 2μ),

b = −α(1 + 2n)

24μ

√
3n

(
n − 3λn + μ(2 + 6n)

)
.

It is observed that reconstructed model (9) characterizes
as a realistic one because it satisfies the following sufficient
condition

lim
R̃→0

F(R̃) = 0. (10)

To analyze the behavior of constructed model F(R̃), we plot
it against its argument R̃ for three different values of n as
shown in Fig. 1. Also, we choose μ = 1, λ = −4, c1 = 2,
c2 = 1.5, α = 0.91. It can be observed that behavior of F(R̃)

shows consistency with realistic condition. Also, it shows
increasing with respect to its argument and remains positive
throughout.
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Fig. 1 Plot of f (R̃) versus t with n = 2 (red), n = 2.2 (green) and
n = 2.4 (blue)

3 Cosmological analysis

In order to check the viability of this model, we will discuss
the basic cosmological parameters (EoS and squared speed
of sound) as well as cosmological planes (ω

R̃
–ω′

R̃
and r–s).

3.1 Equation of state parameter

We use effective EoS parameter for analyzing the behavior
of F(R̃) in the present day universe. In effective form, EoS
takes form

ωeff = p
R̃

ρ
R̃

+ ρm

.

The plot of EoS parameter with respect to cosmic time for
three different values of n is shown in Fig. 2. It can be ob-
served that EoS parameter shows evolution of the universe
from dust like matter towards phantom DE era by evolving
quintessence and vacuum eras. In this scenario, quintom-
like behavior is also observed from quintessence to phantom
era by crossing the vacuum era of the universe. Also, it is
noted that EoS parameter attains maximum phantom value
and then shifted towards minimum phantom value.

3.2 Squared speed of sound

Now, we use squared speed of sound for the stability anal-
ysis of F(R̃) model. In terms of effective pressure and den-
sity, the squared speed of sound takes the form

υ2
s = p′

eff

ρ′
eff

. (11)

Fig. 2 Plot of ωeff versus t for reconstructed MFRHL QCD model
with n = 2 (red), n = 2.2 (green) and n = 2.4 (blue)

The sign of v2
s is very important to see the stability of back-

ground evolution of the model. A positive value indicates a
stable model whereas instability of a given perturbation cor-
responds to the negative value of v2

s . We can obtained the
squared speed of sound in this scenario, by using values of
pressure and energy density from Eqs. (2) and (5) along with
reconstructed model F(R̃) in Eq. (11). We plot it against t

as shown in Fig. 3 by keeping the same values of constant
cosmological parameters. It can be observed that the squared
speed of sound remains less than zero exhibits the instability
of the model.

3.3 ωϑ–ω′
ϑ plane

The ωϑ–ω′
ϑ plane is used to discuss the dynamical property

of DE models, where ω′
ϑ is the evolutionary form of ωϑ with

prime indicates derivative with respect to lna. Firstly, this
method was proposed by Caldwell and Linder (2005) in or-
der to analyzing the behavior of quintessence scalar field DE
model. It was pointed by them that ωϑ–ω′

ϑ plane can be clas-
sified into two categories of thawing and freezing regions.
In thawing region, EoS parameter begins nearly from −1
and increases with time while its evolution remains positive.
In freezing region, EoS parameter remains negative and de-
creases with time while its evolution also remains negative.
In other words, the thawing region is described as ω′

ϑ > 0
for ωϑ < 0 while freezing region as ω′

ϑ < 0 for ωϑ < 0.
This study was extended in a wide range by several au-

thors for analyzing the dynamical nature of various DE
models such as more general form of quintessence (Scher-
rer 2006), quintom (Guo et al. 2006), phantom (Chiba
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Fig. 3 Plot of v2
s versus t for reconstructed MFRHL QCD model with

n = 2 (red), n = 2.2 (green) and n = 2.4 (blue)

Fig. 4 Plot ω′
ϑ versus ωϑ for reconstructed MFRHL QCD model with

n = 2

2006), holographic (Setare 2007), polytropic DE (Sahni
et al. 2003), modified gravity theories (Sharif and Rani
2014) and PDE (Wei 2012; Sharif and Jawad 2013a, 2013b,
2014) models. In this scenario, we also develop ωϑ–ω′

ϑ

plane for three different values of n as shown in Figs. 4–6.
Figure 4 shows that the ωϑ–ω′

ϑ plane corresponds to freez-
ing as well as thawing regions. In Figs. 5 and 6, it can
be observed that planes correspond to freezing region only.

Fig. 5 Plot ω′
ϑ versus ωϑ for reconstructed MFRHL QCD model with

n = 2.2

Fig. 6 Plot ω′
ϑ versus ωϑ for reconstructed MFRHL QCD model with

n = 2.4

Hence, ωϑ–ω′
ϑ planes corresponding to n = 2.2, 2.4, 2.6

show consistency with the accelerated expansion of the uni-
verse.

3.4 r–s plane

Various models of DE have been proposed for analyzing the
DE phenomenon in the accelerated expansion of the uni-
verse. It is need to differentiate these models so that one can
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Fig. 7 Trajectory of r–s for reconstructed MFRHL QCD model with
n = 2

decide which one provides better explanation for the current
status of the universe. Because many DE models provide the
same present value of the deceleration and Hubble parame-
ter, so these parameters could not be able to discriminate the
DE models. For this purpose, Sahni et al. (2003) introduced
two new dimensionless parameters as follows

r =
...
a

aH 3
, s = r − 1

3(q − 1
2 )

, (12)

where q represents the scale factor. The statefinders are use-
ful in the sense that we can find the distance of a given
DE model from ΛCDM limit. The well-known regions de-
scribed by these cosmological parameters are as follows:
(r, s) = (1,0) indicates ΛCDM limit, (r, s) = (1,1) shows
CDM limit, while s > 0 and r < 1 represent the region of
phantom and quintessence DE eras.

In the present work, we also develop r–s planes for dif-
ferent values of n is shown in Figs. 7, 8 and 9. It can be
observed that all plots correspond to ΛCDM limit. It can be
observed that the r–s planes correspond to all n shows cor-
respondence with DE regions (quintessence and phantom)
and chaplygin gas model.

3.5 Generalized second law of thermodynamics

Here, we discuss GSLT (the entropy of matter inside the
horizon plus the entropy of the horizon must not decrease in
time) in MFRHL gravity on the Hubble horizon (r̃A = 1

H
).

It was pointed out by Bamba and Geng (2009) that an f (R)

gravity model with phantom divide behavior can satisfy the

Fig. 8 Trajectory of r–s for reconstructed MFRHL QCD model with
n = 2.2

Fig. 9 Trajectory of r–s for reconstructed MFRHL QCD model with
n = 2.4

GSLT in the phantom phase as well as non-phantom. The
same authors (Bamba and Geng 2011) investigated ther-
modynamics of the apparent horizon in f (T ) gravity with
both equilibrium and non-equilibrium descriptions. Further,
Karami and Abdolmaleki (2012) investigated the validity
of the GSLT in the framework of f (T ) gravity. Moreover,
Chattopadhyay and Ghosh (2012) explored the validity of
GSLT in the modified f (R) Horava-Lifshitz gravity. We fol-
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Fig. 10 Plot of Ṡtotal versus t with n = 2 (red), n = 2.2 (green) and
n = 2.4 (blue)

low the procedure of Karami and Abdolmaleki (2012) and
draw the graph of Ṡtot against cosmic time t as shown in
Fig. 10. It can be observed that Ṡtot rapidly decreases with
the passage of time and approaches to zero with the passage
of time. This behavior shows the validity of GSLT for all
cases of n.

4 On unification of inflation with Dark Energy in f (R̃)

Here, we provide reconstruction scenario for realizing the
unification of f (R̃) to unify the early inflationary epoch
with the late time de-Sitter era. The framework of unification
of inflation with DE in modified gravities was firstly pro-
vided in f (R) gravity. It was examined in Nojiri-Odintsov
model (Nojiri and Odintsov 2003), which was subsequently
generalized to more realistic versions (Nojiri and Odintsov
2007; Cognola et al. 2008). The singularity is an important
problem in describing the early universe which is investi-
gated by Nojiri and Odintsov (2008). Actually, it has been
pointed out that there exists a class of non-singular expo-
nential gravity to unify the early and late-time accelerated
expansion of the Universe (Elizalde et al. 2011). The de-
tailed analysis is given in Nojiri and Odintsov (2011). For
this purpose, we consider the inflationary solution

H = H1

t
(13)

which provides the following solution of

F(t) = 1

t1+ H1
2 (19H1−1)

[
C1t

−
√

4+4H1+H 2
1 (1−19H1)

2

+ C2t

√
4+4H1+H 2

1 (1−19H1)
2

+ α(2 + n(−23 + 38H1))

6H1(H1 + 1)
t1+ H1

2 (19H1−1)

]
.

This is an inflationary solution. At inflationary (early) Uni-
verse, when t 	 t0, the dominant part of the F(t) turns out
to be

F(t) ∼ C1t
−1− H1

2 (19H1−1)−
√

4+4H1+H 2
1 (1−19H1)

2
, (14)

where C1 and C2 are appear as integration constants. In this
limit, the reconstructed f (R̃) for inflationary era takes the
form

f (R̃) = C1√
3H1(19H1 − 2)

×
[
R̃

− 1
2 − H1

4 (19H1−1)− 1
2

√
4+4H1+H 2

1 (1−19H1)
2]

. (15)

Hence, F(R̃) produces also the inflationary (phantom) solu-
tion.

At late time, i.e., in the de-Sitter epoch when H(t) ∼ H0,
we have

Ḟ
R̃

= ˙̃
RF

R̃,R̃
|H=H0 = 0. (16)

In this scenario, the F(R̃) model turns out to be

F(R̃) = C3e

1
96H2

0
R̃ + H0α, (17)

where C3 appears as integration constant. The above F(R̃)

reproduces de-Sitter (late time) epoch.

5 Concluding remarks

In this work, we reconstruct F(R̃) model through correspon-
dence phenomenon of MFRHL gravity and QCD ghost DE
model in the presence of well-known power law form scale
factor. In order to analyze the reliability of this reconstructed
model, we investigate two cosmological parameters such as
the EoS and squared speed of sound. We also develop two
well-known cosmological planes called ωϑ–ω′

ϑ and r–s. We
also develop GSLT in this scenario on the Hubble horizon.
We summarize our results as follows.

• It can be observed that the behavior of F(R̃) shows con-
sistency with realistic condition as shown in Fig. 1. Also,
it shows increasing behavior with respect to its argument
and remains positive throughout.

• The EoS parameter shows evolution of the universe from
dust like matter towards phantom DE era by evolving
quintessence and vacuum eras. In this scenario, quintom-
like behavior is also observed from quintessence to phan-
tom era by crossing the vacuum era of the universe. Also,
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it is noted that EoS parameter attains maximum phantom
value and then shifted towards minimum phantom value.

• The squared speed of sound remains less than zero for all
values of n which exhibits the instability of the model.

• Figure 4 shows that the ωϑ − ω′
ϑ plane corresponds to

freezing as well as thawing regions. In Figs. 5 and 6, it
can be observed that planes correspond to freezing region
only. Hence, ωϑ–ω′

ϑ planes corresponding to n = 2.2,
2.4, 2.6 show consistency with the accelerated expansion
of the universe.

• The Ṡtotal rapidly decreases and approaches to zero with
the passage of time. This behavior shows the validity of
GSLT for all cases of n.
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