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Abstract In the present article we have obtained a class
of analytical solutions for an anisotropic charged fluid dis-
tribution. The neutral anisotropic fluid sphere has already
been obtained by Maurya and Gupta (Phys. Scr. 86:025009,
2012). The solutions depend upon both the anisotropic and
the charge parameter. The anisotropy parameter and the
electric intensity is zero at the centre and monotonically in-
creasing towards the pressure free interface. All the physical
entities such as energy density, radial pressure, tangential
pressure, and velocity of sound are monotonically decreas-
ing towards the surface.

Keywords Einstein’s field equations - Exact solutions -
Anisotropic stars

1 Introduction

The assumption of local isotropy is a common one in astro-
physical studies of massive celestial objects. However, the
theoretical investigation of Ruderman (1972) and Canuto
(1973) of more realistic stellar models indicates that stel-
lar matter may be anisotropic at least in certain density
ranges (p < 10" gem™3). According to them the radial
pressure may not be equal to the tangential pressure in such
anisotropic massive bodies.
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Certainly no astronomical object has a perfect fluid dis-
tribution. Therefore it seems worthwhile to study the be-
haviour of the anisotropic fluid sphere in general relativity.
Anisotropy in the pressure could be introduced by the exis-
tence of a solid core, by the presence of type-3A superfluid
(Kippenhahn and Weigert 1990), different kinds of phase
transitions (Sokolov 1980) or by other physical phenomena.
On the scale of galaxies, Binney and Tremaine (1987) have
considered anisotropies in spherical galaxies, from a purely
Newtonian point of view. The mixture of two gases (e.g.
monatomic hydrogen or ionised hydrogen and electrons) can
also formally be described as an anisotropic fluid (Letelier
1980 and Bayin 1982). Bowers and Liang (1974) have inves-
tigated the possible importance of locally anisotropic equa-
tions of state for relativistic fluid spheres by generalising the
equations of hydrostatic equilibrium to include the effects of
local anisotropy.

Relativistic stellar models have been studied ever since
the first solution of Einstein’s field equation for the inte-
rior of a compact object in hydrostatic equilibrium was ob-
tained by Schwarzschild in 1916. The search for the exact
solutions describing a static isotropic and anisotropic stel-
lar type configuration has continuously attracted the interest
of physicists. The study of general relativistic compact ob-
jects is of fundamental importance for astrophysics. After
the discovery of pulsars and the explanation of their proper-
ties by assuming them to be rotating neutron stars, the theo-
retical investigation of super-dense stars has been done using
both numerical and analytical methods, and the parameters
of neutron stars have been worked out by a general relativis-
tic treatment.

In the present paper we consider a class of exact solu-
tions of the gravitational field equations for an anisotropic
charged fluid sphere, corresponding to a specific choice of
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the anisotropy parameter and electric intensity. The impor-
tance of charge is due to the following reasons:

(i) The presence of some charge may avert the gravitational
collapse by counter-balancing the gravitational attrac-
tion by the electric repulsion in addition to the pressure
gradient.

(i1) The charge dust models and electromagnetic mass mod-
els provide information as regards the structure of the
electron (Bijalwan 2011) and the lepton model (Kiess
2012).

It is desirable to study the Einstein—-Maxwell field equa-
tions with reference to the general relativistic prediction of
gravitational collapse with anisotropic matter.

All the physical parameters like the energy density, pres-
sure and metric tensor components are regular inside the
charged anisotropic star, with the speed of sound less than
the speed of light. Therefore this solution can give a sat-
isfactory description of realistic astrophysical compact ob-
jects like neutron stars. Some explicit numerical models of
relativistic anisotropic stars, with possible astrophysical rel-
evance, are also presented.

2 Field equations
Let us consider the static, spherically symmetric line ele-
ment in curvature coordinates
ds? = —e* dr? — r2d6? — r?sin’ 0 dp? + e’ dr?, 1)
where A = A(r) and v = v(r). We have
1

Tij = Rij — 5 Rsij

= =87 [(p + pvivj — pigij + (pr — pOxix;], (@)

where v’ is the fluid four-velocity vector for both the energy-
momentum tensor, and x’ is the unit space-like vector or-
thogonal to v'.

In the co-moving system we choose

v =(01,0,0,0),  x'=(0,x%0,0). (2a)
From viv; = x'x; = 1, we obtain
vl=eT? xl=e M (2b)

The non-vanishing components of T; are

7! =p, T3 = —pr, T3 =T} =—P. (2¢)

The field equation (2) gives the following set of equations
under the metric (1):

A l—e* 2
o=t U280 2p 1 47, 3)
r r r
’ 1—e* 2
—"Tllzv_e_k—(iz)='cpr—% , “)
r r r
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2

=Kpt+rq_4 , ®)

where the prime denotes differentiating with respect to r,
while p;(r), pi(r) and p(r) are radial pressure (in the direc-
tion of x;), tangential pressure (orthogonal to x;) and energy
density, respectively, for the anisotropic fluid. On the other
hand E (=:%) denotes the electric intensity of anisotropic
perfect fluid distribution. Also the g is given by

r
g(r) = dn / o2 dr = 2R = 2 A 0
0

representing the total charge contained within the sphere of
radius r. Also Fj4 is the only non-vanishing component of
the skew-symmetric electromagnetic tensor Fj;.

We assume p; # p;. The case in which p, = p; corre-
sponds to the isotropic fluid sphere. A = p; — p; is a measure
of the anisotropy and is called the anisotropy factor (Herrera
and Ponce de Leon 1985). The term 2(p; — p;)/r appears
in the conservation equations T,{i; ; = 0 (where a semicolon
denotes the covariant derivative with respect to the metric),
representing a force that is due to the anisotropic nature of
the fluid. This force is directed outward when p; > p; and
inward when p; > p;. The existence of a repulsive force (in
the case in which p; > p;) allows for the construction of
more compact objects when using an anisotropic fluid rather
than when using an isotropic fluid (Gokhroo and Mehra
1994).

Subtracting Eq. (4) from Eq. (5) we immediately get

q*
=Kk(p.—pr) +2-7. ©)
p

Equation (6) reveals the equivalence of the anisotropy pa-
rameter A =k (py — pr).

Also the solution of Eq. (6) with the given expression of
A may provide the anisotropic fluid distribution.

Using the transformations v = cor? (co is a positive con-
stant),e* =V and e’ = Y2, Egs. (3)—(6) assume the forms

_ 2 2
(1 V)_zd_V:KC,O c0q” 7
v dy <o ¥
dy\1 (1—-V) «pr  coq?
&) -5 o
2
g L&Y ydrdv  vay dv
Ydy? TYdydy  Ydy  dy
2
_ P coq
‘co+w2 ©
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and kpe | [14+@n+ Dy] A
4¢2Vd2_Y Loy drdv co | A+t [0+ @+ Dy)¥e+D

2 -

dl/’dv d*”Ad‘ﬂ - @+ DY) @} Bo())
+[w——V——w— cog +1]Y=o. (10) (n+1) 2] A+y)!

dy co 4 n(Aog+ K)(1+v¥)[1+ 2n+ D)y]
Now let us consider the anisotropic model obtained by Mau- [14 (n+ D)y ]2/ ¢+
rya and Gupta (2012), which has 20 12
e’ =Y?>=B(1+y)" and Ky ln} (14b)

) 21+ (n + Dy
n-coAoyr
A= and
[1+ (n+ Dy ]d-—m/0+m)° (11) )
coq’ n2Ky? kPt _ n” Aoy EPr, (14c)
¥ 20+ (n+ Dy ]/ co [+ Dy =/ = e °
here

On inserting ¥ and A and 23/’32 from (11) into Eq. (10) we
get

AV [142¢ + (14 2n —n?)y?]

dy YA+l + @+ Dyl

n2(Ag+K)y?
{[l+(n+l)(1)p](l—n)/(l+n) -1 +v)

- . (12)
Y+ 0+ Dyl
This admits the solution
_ [n(Ao+ K)y (1 + )2
L+ @+ Dy /oD
By [1+ @+ Dyl
20+9)2 7 (192
Ay
T A Yy (o YR
Y[l + (n+ 1)W]f(1ﬁ)}
- (13)
(n+ (1 +y)n-!
where
_ (=D =2)  dny
By = 3 (n+1)+2n+2,
n—>5 n—4—i
Ap_g Aix
T =57 +§n2—(i+2)n—(i+1)’
o (n—4—i)A;
i+1 =4i+1 — n2—(i+2)n—(i+1)’
(n—1)! aj
al+l = - . - )
(+Dn—i—-2)! m+1
Ap=ap=1, Ap—j=ay_;j=0
for all n < j. We have
kc’p _ [ fWBIW) F(y)
C m+DA+y)n=t - A+ y)n!
BoB2(y)  AB(¥)
20 +y)=t (14 1@)"‘135(1#)
x n(Ao + K)B4(¥)
+2LW) - ————
? Bs(v)
2 2
_ LS S } (14a)
2[1 + (n + Dyl

F) =[{AW) -+ D} +y)
—2{3+ (3+2n—n?)y}],

Bi) =[3+ Gn+ 120y + (9+7n — 2n%)y?],
By(y) =[3+v +2G -nmy],

By(w) =[3+ (6 +my + (3+5n—2n%)y?].
By(y) = (1 +9)[3+ Gn+6)y + (Tn +3)y7],
Bs(p) =[1+ (n+ Dy ] "0

Bs(¥) =[Gn+2) = () + (2n* +3n + 1)y],

n-2 i—1
. (n—2)\y
fl(lﬂ) = Z m,

i=1

n—

— 4 — i) Ay

[1+ @+ Dyl (
n2—(@{i+2n—(@G+1)’

A= DTy

5
i=0

n—1

: (n =Dy
IOOEDS 1D

i=1
Consequently the expressions for the density and pressure
gradient read

cdp _[dpr dpo zdos | dp
co dy Ly dy T dy o dy

dps 2 dpe
22— — A K)—
+ ay n” (4o + )dlﬁ

2
_n K(l—i—an)2 i| (15)
2[1 4 (n 4 Dyywt
where
dor _ + 9281 + Q- )L+ Y[ fi(y) — (n+ 1]
dy 1+
N —2@4+2n—n)[1+Q2—n)Yl+6(n—1)
(L4 9" ’
do2 B [(2n% — 1ln+ 14y + (10 — 5n)]
dy 2 (1+ )
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do3  n(1—8n)¥ + (9n — 10n? — n’)y?

Ay (Y[ + (0 + Dy Crrd/aD
—5n+4 Qn* =3+ 2%+ 3n)¢3
(L+9)" [+ (1 + Dy @/

dps _ (L+ W) BIW) + F @) B1(¥)]
dy n+ DA +y)"
=D fWBI)
mn+ DA +P)"

3

dps _ [(n =4+ 0> =2n =5y — (n+1)1//2]f(1ﬂ)
dy (n+ 1D +y)n-!
[1+ (n+ D]
CER R =W
dps _ Y[14+ (101 +20)y + (14n + 6)y%]
dy [l @+ Dy]@é/esh

K dpr_[ dpi  dpr dps  dpa

wdy Yl W ay Ty

dps
2n%(Ag + K
+2n°(Ag + )dI/f

n?K (1 +2ny) }
A1+ (n+ Dyt L

(16a)

where

dpi _ nll+Q—n)¥ + (1 4+n—2n")y?
Ay (L)1 + (n+ Dy D/
dpr _ fO)Bs@)
dy  (n+ D1+ y)n
LA+ Cn 4 DY+ 0+ 1)w]f4(1/f>
(n+ DA+ )"

dps  Bl(n+2)+(2+3n—2n)y]

)

dy 2 (14y)"
dps _ (n=Dfs) = A+ fe(¥)
dy (1 +y)n
(3+4n—n2)+(2+5n+n —2n*)w
(I+y)"

%_ [+ ®n+2)¢ + Qn+ Dy?]
dyr T+ (n+ Dy e+3/@a+D

and
wdpe _ n?Ag(1+2ny) ok dp (16b)
cody [+ n+ DY+ = e dy
with

n—>5 . n—5—i
. B (n—4—-0D)Ay
f4(¢)—l§n2_ G(+n—G+1)

n->5 . i

B i(n—4—i)Ayn =57

fs(p) = 2 (, +2n—(G+1)

i=1
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n—3 .
. _ (n—2)liyi!
gl(w)_i; i+ Dn—i—3)0

B (n—1lyi—2
fo) = Z( = Do =T

)

By(¥) = (3n+12) +2(9+ Tn — 2n°)y,

Bs(¥) = 2n+3) + (6 + 10n + n?)yr
+ (3+8n+3n* —2n%)y2.

In order to be physically meaningful, the interior solution for
static fluid spheres of Einstein’s gravitational-field equations
must satisfy some more general physical requirements. The
following conditions have been generally recognised to be
crucial for anisotropic fluid spheres; see Herrera and Santos
(1997).

(i) The solution should be free from physical and geomet-
ric singularities and non-zero positive values of e* and
e’ ie. (e*),—0=1ande’ > 0.

(i1) The radial pressure p; must be vanishing but the tan-
gential pressure p; may not vanish at the boundary
r = a of the sphere. However, the radial pressure is
equal to the tangential pressure at the centre of the fluid
sphere.

(iii) The density p and pressure p;, p; should be positive
inside the star.

(iv) We should have (dp;/dr),—o = 0 and (d*p;/dr?),—o <
0 so that the pressure gradient dp,/dr is negative for
O<r<a.

(v) We should have (dp/dr),—o =0 and (dp/dr?),—¢ <
0 so that the pressure gradient dp./dr is negative for
O<r<a.

(vi) Furthermore we should have (dp/dr),—o = 0 and
(d*p/dr?),—o < 0 so that the density gradient dp/dr
is negative for 0 < r <a.

The condition (iv), (v) and (vi) imply that the pressure and
density should be maximum at the centre and monotonically
decreasing towards the surface.

(vii) Inside the static configuration the speed of sound
should be less than the speed of light, i.e.

d d
Pr <1 and 0< Pt
cZdp cZdp

In addition to the above the velocity of sound should be de-

creasing towards the surface. i.e. d (dpr) <O0or (d pr) >0

and §- (d”‘) <0or (
of sound is increasing w1th the increase of density.

Pty > 0 for 0 < r < a i.e. the velocity

(viii) A physically reasonable energy-momentum tensor
has to obey the conditions p > p; 4+ 2p; and p + pr +
2p > 0.
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(ix) The central red shift Zy and surface red shift Z, K d? Pt — e n an—4 n Ays
should be positive and finite ie. Zyp = co dr? -0 P nm+4) 2m+Dn+2)(n+3)
[(e™"/? = 1);—0] > 0 and Z, = [¢*@/2 — 1] > 0 and Bas?—en -
both should be bounded. e — + An
n2
+ —(6Ao+5K)], (19b)
3 Properties of new class of solutions 2
2 ¢? 5 243n-2 _
We have [ﬁ_g} :260[_”{_71 4+ 3n n Qa4
_ co dre ], 2 2 (n+3)
Kpri| _ I:Kpt:| _ Ap_y an—3 A
- =\ =- - 5
L co 1,—0 co |- m+1D(n+3) 2 n= }
~ n+1n+2)(n+3
+(n+2)+A+n(Ao+K), (17a) ( )(2 ! )
n
M2 5nA — —K|. 19
Kc p] _ +3zl4n_4+ - 3a;_3 L Gn6) +on 2 i| (19¢)
L0 Jreo (it D For
—3A—-3n(Ag+ K), (17b)
d d (Po)r=0=0, (p)r=0=0,
* Spx — iy — 2 2 2 2
| co dr ]r:O n 2c0r[co dyr ]w=o =0, (18a) — (d*py/dr),_, <0, (d°pu/dr?),_o <0.
K dpy i| = 2¢or |: Kk dpe ] =0, Consequently we have
co dr ], co dy 1y—o Ay a a3
2 + ~—(m+2)—n(Ay+ K)
kcedp K dp mn+1Hn+4 2
— =2cor| —— =0, (18b)
L €0 dr =0 co dx =0 “A<— ap—4 . An_5
- 2m+4) 2m3+6n2+11n+6)
Kk d°p; n dp—4 n Au—s
co dr= |, n+4) 2@+1Dm+2)(n+3) - - (20)
4
n +5n —6bn -
—— +An Hence the velocity of sound at the centre is given by
—(4Ao+5K)] (19a)
_ - ay Ay +5 26 i 2
el [t iae e o A+ 2% (Ao + K)] 1)
2 - 5 2+3 2 n An A 2
Lo dmo [ PS4 O+ anatery) 1A - 1K
and
_ - M n dn Ay 345026 A 2
dp: | ram T ammeem — s HAnt 3 AO] (22)
2 N 243p—2 | an n— A
L¢ d,O 4r=0 _Vl{_n " + (n+§) + (n+1)(n+25)(n+3)} +5nA —
which should be For the central value of the gravitational red shift to be non-

d d
Pr <1 and P <1
Czd,O r=0 Czd,O r=0

for all values of Ag > 0 and A.

The expression for the gravitational red shift Z is given by

(L+y)™2

VB

Z= —1. (23a)

zero positive finite, we must have
1>B>0.

Differentiating Eq. (23a) w.r.t. x, we get

d’z
B R

TR RPN

The expression of the right hand side of (23b) is negative,
and then the gravitational red shift is maximum at the centre
and monotonically decreasing towards the surface.

(23b)
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4 Boundary conditions

Besides the above, the fluid ball is expected to join smoothly
with the Schwarzschild exterior solution at the pressure free
boundary r =a

oM g?\7!
ds? = _(1 - + z—z) dr? — rz(d92 + sin29d(p2)
2 N\ 2
+<1——+r—2>dl, (24)

which requires the continuity of e* and e” across the bound-
ary

2M g
Vanis(@) =1— —+ 5 (25)
a r
oM g?
Va=1-"+% (26)
a r

and the radial pressure vanishes at the boundary i.e.
pr(a) =0. (27)

The condition (27) can be utilised to compute the value
of the arbitrary constants A as follows.

On setting Y¥,—q = ¥q = coa® (a being the radius of the
fluid balls), we see the following.

The radial pressure at p;(a) = 0 gives
A= [[1 + (4 Dy /0
—GBn+2)—

y [@ | L) (202 +3n + lwfa]]
2 [14+ 2n+ 1Dy,]
(Ao + K)(1+ )" [1+ 2n + D]
[1+@n+ D]
Bs(Ya)f (W) n*K(1+y)"! }
n+1) 2[14+@2n+ Dyl |

(28)

where

E5(¢a) = [1 + @+ 1)1’”a:|(n+3)/(n_~_1)7

Ay
+3) +Zn2—(i+z)n—(i+1)’

f(Wa) =

(n— Dy, '
fS(l//a) = Z m

The expression for the mass can be written as
M _ 1 Ao+ K)ga(+va)?  [1+ 0+ Dyl
[14+ (n+ D,/ @+D (14 )2
_ At
(14 )" 2[1 + (n + Dy 1Y/ D

Boya Vall + (n + Dal f (Ya)
201+ )" 2 (n+ D(1 + )"

n’Ky2
= | 29)
214+ (n+ D] T2

+
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such that

oM g
Vanis(@) =1 — -+ 5
a r

where M = m(a) and

BOWa
2(1 4 )2

T A+ Y L0+ (o Dy /0D
~ Ay,
(I + )" 2[1 + (n + Dy ]2/ +D
[+ 0+ Dyl
(14 a2
%[1 +(+ l)l/fa]f(wa)]
(n+ D1+ )" '
Also, if the surface density p, is prescribed as 2 x
1014 gcm_3 (super-dense star case) then the value of the

constant cq can be calculated for a given ¥, (=coa?), using
the following expression:

1 |:n(Ao + K)o (1 + ¥a)?

(30)

) [ (W) Bi(Ya) F(¥a)

KC™p=co — —
(n+ D1+ y)= 1 (14 P!
BoBa(Ya)  ABy(Ya)
21+ )"~ (L4 ¥)" " Bs(Va)
. n(Ao+K>B4<wa)}

+2H ) — . : 31)

2 2Bs(Va)

with

Fa) =[{i(¥a) — (n+ D} + )
—2{3+ (3+2n —n?)¥a}].

Bi(Ya) = [3+ Gn+12)¥, + (9 + 7n — 2n*)y2],

By(Wa) = [3+ Ya + 23 — n)¥a].

B3(Ya) = [3+ 6 +m)¥a + (3+5n—2n7)y2],

Ba(Yra) = (1 +¥a)[3+ Bn + 6)ya + (In +3)¥5].

(n+3)/(n+1)

Bs(Ya) =[1+ (n + D] :

—2) i—1
ﬁ(%)—zi(" Ve

in—=2-0)"

[+ 0+ D] <2

(n+ D+ Y2 4

(n—4—i)A;yn—4
0n2—(i+2)n—(i+1)’

f2(1/fa

(n— DIyi~!
f3(1/fa) = Z m



Astrophys Space Sci (2014) 353:657-665

663

5 Physical analysis and conclusion

In the present article we have obtained the charge anisotropic
super-dense star subject to the relevant physical require-
ments. The maximum mass is seen to be increasing with
the increasing values of 1 < n < 4. Thereafter for n > 4,
the maximum mass is monotonically decreasing; however,
the minimum value of the maximum mass does no go
below 2.7298 Mg. Therefore the overall maximum mass,
found to be 3.9823Mg at n = 4 with the correspond-
ing radius 18.2273 km for the whole range of the Chan-
drasekhar limit, regarding the mass-radius ratio holds well.
Moreover, the condition p — p, — 2p¢ > 0 is true for all
the charged anisotropic star models. The radial velocity
of sound (v/dp;/dp) and the tangential velocity of sound
(v/dp¢/dp) are found to be monotonically decreasing to-
wards the pressure free interface for n > 1. The red shift for
the whole family of super-dense stars is computed. For all
the models the anisotropy parameter A = p; — p; is posi-
tive throughout the range and hence helps the outward pres-
sure to avert the gravitational collapse of the super-dense
star models thus obtained. It is worth pointing out here that
the space-time, describing the current models as well as
the seed anisotropic perfect fluid models, gives the relation
nco = constant = «. The above discussion helps us to write
gas = B(1 4+ cor®)" as gas = B(1 + %rZ)”, which tends to
844 = Be‘”2 as n — oo, which resembles the corresponding
metric potential of the Kuchowichz space-time. The maxi-
mum mass of the charged anisotropic fluid models is shown
in Tables 1(a), 1(b). For a better insight, the relevant physi-
cal quantities are presented by means of Tables 2, 4, 5, 6 and
Figs. 1-6.

6 Tables for numerical values of physical quantities

Table 1(a) Maximum mass (M/Mg) and radius (a) for different n,
Ag and coa?

n Anisotropic fluid distribution
Ao coa® M/Me a

4 0.1600 0.23200 5.8051 17.6778
5 0.1375 0.21000 3.9420 18.0144
6 0.1410 0.18890 3.5588 18.1614
10 0.1450 0.09400 3.1197 18.6601
20 0.1800 0.03901 2.9373 18.6826
40 0.2100 0.01960 2.8933 18.5600
50 0.2190 0.1486 2.8864 18.5433
100 0.2209 0.00730 2.8731 18.5103
160 0.2310 0.00485 2.8667 18.4881
200 0.2322 0.00387 2.8643 18.4872
1000 0.2340 0.00076 2.8565 18.4820
3000 0.2348 0.00038 2.8509 18.1986

Table 1(b) Maximum mass (M/Mg) and radius (a) for different n,
K, Ag and cpa?

N Charged anisotropic fluid distribution

coa? Ao K M/Mg a
0.2365 0.124 0.0098 3.9823 18.2273
6 0.16500 0.116 0.0110 3.5206 18.4766
10 0.08100 0.110 0.0136 3.0721 18.8846
20 0.03980 0.149 0.0260 2.9080 18.7831
30 0.02600 0.160 0.0300 2.8669 18.7547
50 0.01500 0.157 0.0410 2.8245 18.7834
100 0.00690 0.148 0.0499 2.7760 18.8110
500 0.00144 0.140 0.0690 2.7610 18.8418
1000 0.00080 0.135 0.0790 2.7563 18.8242
2000 0.00039 0.130 0.0840 27474 18.8488
3000 0.00026 0.119 0.0908 2.7405 18.9007

Table 2 Maximum mass and radius for n = 6, Ag = 0.116, coa2 =
0.165 and K =0.11

n=6 Ag=0.116, cpa> = 0.165, K = 0.11, radius (a) = 18.4766,
mass (M) =3.5206Mg

rla P P D Vdpe/dp  dp/dp  Z

0.0 0.9463 0.9463 3.1012 0.8696 0.8428 1.3894
0.2 0.8734 0.8781 3.0032 0.8539 0.8249 1.3427
0.4 0.6779 0.6985 2.7212 0.8110 0.7746 1.2097
0.6 0.4203 0.4727 22954 0.7454 0.6925 1.0096
0.8 0.1739 0.2820 1.7904 0.6517 0.5615 0.7681
1.0 0.0000 0.1967 1.2740 0.5064 0.2989 0.5112

Table 3 Maximum mass and radius for n = 20, Ag = 0.149, cpa® =
0.0398 and K = 0.0260

n=20 Ag=0.149, coa® = 0.0398, K = 0.0260, radius
(a) = 18.7831, mass (M) = 2.9080M o

rla P P D Vdp/dp  Vdp/dp  Z

0.0 0.7101 0.7101 2.6457 0.9980 0.9585 1.0044
0.2 0.6623 0.6662 2.5960 0.9580 09174 0.9728
0.4 0.5298 0.5467 2.4366 0.8663 0.8208 0.8811
0.6 0.3437 0.3868 2.1550 0.7603 0.7025 0.7386
0.8 0.1505 0.2395 1.7660 0.6456 0.5590 0.5586
1.0 0.0000 0.1636 1.3167 0.4994 0.3258 0.3567

Table 4 Maximum mass and radius for n = 100, Ay = 0.148, cpa® =
0.0069 and K = 0.0499

n=100 Ag=0.148, coa® = 0.0069, K = 0.0499, radius
(a) = 18.8110, mass (M) = 2.7760M¢

e R PR D Jinidp anids Z
0.0 0.5741 0.5741 2.4178 0.9976 0.9589 0.8768
0.2 0.5376 0.5405 2.3800 0.9565 0.9171 0.8511
0.4 0.4353 0.4478 2.2570 0.8618 0.8190 0.7761
0.6 0.2884 0.3200 2.0328 0.7528 0.7010 0.6579
0.8 0.1303 0.1950 1.7102 0.6382 0.5654 0.5057
1.0 0.0000 0.1183 1.3206 0.4989 0.3678 0.3308
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Table 5 Maximum mass and radius for n = 500, Ag = 0.140, cpa® =

0.00144 and K = 0.0690

Table 6 Maximum mass and radius for n = 3000, Ag = 0.119,

coa? =0.00026 and K = 0.0908

n=>500 Ag=0.140, coa® = 0.00144, K = 0.0690, radius n=3000 Ag=0.119, cpa® = 0.00026, K = 0.0908, radius
(a) =18.8418, mass (M) =2.7610Mg (a) = 18.9007, mass (M) =2.7405Mp
r/a P P, D Jdpe/dp  dp/dp  Z r/a P Py D Vdp:/dp  dp/dp Z
0.0 0.5960 0.5960 2.5321 0.9918 0.9551 0.9018 0.0 0.6518 0.6518 2.7247 0.9973 0.9657 0.9523
0.2 0.5566  0.5596 2.4910 0.9476 0.9103 0.8746 0.2 0.6062 0.6091 2.6775 0.9478 0.9156 0.9221
0.4 0.4467 0.4597 2.3559 0.8471 0.8065 0.7954 0.4 0.4796 0.4926 2.5210 0.8377 0.8025 0.8342
0.6 0.2907 0.3236 2.1083 0.7322 0.6825 0.6707 0.6 0.3030 0.3364 2.2325 0.7139 0.6699 0.6966
0.8 0.1269 0.1947 1.7521 0.6094 0.5376 0.5106 0.8 0.1248 0.1942 1.8198 0.5791 0.5126 0.5211
1.0 0.0000 0.1247 1.3249 0.4522 0.3103 0.3272 1.0 0.0000 0.1288 1.3332 0.3920 0.2368 0.3219
Fig. 1 Behaviour of density 34 T T T T T T T L ——
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Fig. 5 Behaviour of tangential 4
velocity versus radius £ 09
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