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Abstract We work on the reconstruction scenario of pil-
grim dark energy (PDE) in f (T ,TG). In PDE model it
is assumed that a repulsive force that is accelerating the
Universe is phantom type with (wDE < −1) and it is so
strong that prevents formation of the black hole. We con-
struct the f (T ,TG) models and correspondingly evaluate
equation of state parameter for various choices of scale fac-
tor. Also, we assume polynomial form of f (T ,TG) in terms
of cosmic time and reconstruct H and wDE in this manner.
Through discussion, it is concluded that PDE shows aggres-
sive phantom-like behavior for s = −2 in f (T ,TG) grav-
ity.
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1 Introduction

Accelerated expansion of the current universe is well estab-
lished through observational studies (Perlmutter et al. 1999;
Bennett et al. 2003; Spergel et al. 2003; Tegmark et al. 2004;
Abazajian et al. 2004, 2005; Allen et al. 2004). It is believed
that this expansion is due to missing energy component, also
dubbed as Dark Energy (DE) characterized by negative pres-
sure. Reviews on DE include Padmanabhan (2005), Li et al.
(2011) and Bamba et al. (2012), Nojiri and Odintsov (2007a,
2007b). The ΛCDM model, the simplest DE candidate, is
consistent very well with all observational data. However,
it has the following two weak points: The Λ has fine tun-
ing amount and good marginal adoption with cosmological
observations in large scales. This motivates the researchers
in proposing the wide range of more complex generalized
cosmological models of DE which have been discussed in
Bamba et al. (2012), Bamba (2012).

In recent years, the holographic dark energy (HDE) (Li
2004; Li et al. 2011), is based on holographic Universe idea
and it is one of the interesting and powerful candidates for
the DE. and its density is given by (Li 2004)

ρΛ = 3c2m2
pL−2 (1)

where L is the IR cutoff, mp = (8πG)−1/2 is the reduced
Planck mass. IR cut-offs L parameter is considered in var-
ious ways in numerous articles: the Hubble horizon H−1,
particle horizon, the future event horizon, the Ricci scalar
curvature radius. Also it was proposed a generalization of
holographic models in which the cut-off parameter has a
more general form (Nojiri and Odintsov 2006). The last gen-
eralized holographic dark energy scenario has been inves-
tigated from different point of the views,specially the sta-
bility under small perturbations. In all of these models, the
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cut-off length scale is proportional to the causal length that
considered to the perturbations of the flat spacetime. Fur-
ther more, it is suggested that phenomenon of matter col-
lapse can be avoided through the existence of appropriate
repulsive force. In the present set up of cosmological sce-
nario, this can be only prevented through phantom-like DE
which contains enough repulsive force. Different attempts
have been made in this way, e.g., reduction of BH mass
though phantom accretion phenomenon (Babichev et al.
2004, 2008; Martin-Moruno 2008; Jamil et al. 2008, 2011;
Jamil 2009; Jamil and Qadir 2011; Sharif and Abbas 2011;
Bhadra and Debnath 2012; Sharif and Jawad 2013c) and the
avoidance of event horizon in the presence of phantom-like
DE (Sharif and Jawad 2014).

Moreover, it is predicted that phantom DE with strong
negative pressure can push the universe towards the big rip
singularity where all the physical objects lose the gravita-
tional bounds and finally dispersed. This prediction sup-
ports the phenomenon of the avoidance of BH formation
and motivated Wei (2012) in constructing PDE model. He
pointed out different possible theoretical and observational
ways to make the BH free phantom universe with Hub-
ble horizon through PDE parameter. Further, Sharif and
Jawad (2013a, 2013b, 2014) have analyzed this proposal
in detail by choosing different IR cutoffs through well-
known cosmological parameters in flat and non-flat uni-
verses. This model has also been in different modified
gravities (Sharif and Zubair 2014). Another direction that
one can follow to explain the acceleration is to modify
the gravitational sector itself, acquiring a modified cosmo-
logical dynamics. However, note that apart from the in-
terpretation, one can transform from one approach to the
other, since the crucial issue is just the number of de-
grees of freedom beyond General Relativity and standard
model particles (Kofinas et al. 2014; Sahni and Starobin-
sky 2006). Detailed review in this modified gravity ap-
proach is available in references like Nojiri and Odintsov
(2007a, 2007b), Tsujikawa (2010), Cai et al. (2010) and
Clifton et al. (2012). In the majority of modified gravi-
tational theories, one suitably extends the curvature based
Einstein-Hilbert action of General Relativity. However, an
interesting class of gravitational modification arises when
one modifies the action of the equivalent formulation of
General Relativity based on torsion (Kofinas and Saridakis
2014). Inspired by the f (R) modifications of the Einstein-
Hilbert Lagrangian, f (T ) modified gravity has been pro-
posed by extending T to an arbitrary function (Ferraro and
Fiorini 2007). Different aspects of the f (T ) has been inves-
tigated in the literature (Aslam et al. 2013; Bamba 2012;
Bamba and Odintsov 2014; Bamba et al. 2012, 2013a,
2013b, 2013c, 2014a, 2014b, 2014c; Farooq et al. 2013;
Houndjo et al. 2012, 2013; Jamil et al. 2012a, 2012b, 2012c,
2012d, 2012e, 2012f, 2012g, 2012h, 2012i, 2013a, 2013b;

Cai et al. 2011; Momeni and Setare 2011; Momeni et al.
2012; Rodrigues et al. 2013a, 2013b; Setare and Momeni
2011). The simplest modified gravity is obtained by replac-
ing R → f (R), is so called f (R) gravity. This kind of the
modified gravities have several interesting extensions (for
a recent review see Nojiri and Odintsov 2014). The next
modification is inspired from the string theory. It comes
from the Gauss- Bonnet term G and widely investigated
in the literature (Capozziello et al. 2009, 2013; Nojiri and
Odintsov 2003, 2005a, 2005b, 2006, 2007a, 2007c, 2008,
2011; Nojiri et al. 2002, 2005, 2006a, 2006b, 2007, 2009,
2010; Bamba et al. 2008, 2010a, 2010b; Cognola et al.
2006, 2007, 2008, 2009; Lidsey 2002a, 2002b; Cvetic et al.
2002).

The main motivation to consider GB models is they are
motivated from the string theory. In low limit of string the-
ory these higher order curvature corrections appeared. Mo-
tivated by f (R) gravity, we can introduce the f (G) gravity,
proposed by Nojiri and Odintsov (2005a). This modification
of the Einstein gravity unified dark matter and dark energy
(Cognola et al. 2006) in a same scenario and in a consis-
tent way and also in relation to the gauge/gravity proposal
(Lidsey 2002a, 2002b). To include the higher GB terms in
f (T ) gravity and motivated from the f (R,G) model, re-
cently f (T ,TG) has been constructed on the basis of T (old
quadratic torsion scalar) and TG (new quartic torsion scalar
TG that is the teleparallel equivalent of the Gauss-Bonnet
term) (Kofinas and Saridakis 2014). This theory also belongs
to a novel class of gravitational modification. Cosmological
applications for this gravity have also been presented in de-
tailed. To realize the role of DE in modified gravity, a very
useful technique proposed by Nojiri and Odintsov (2005a,
2006) and it extended for several cosmological scenarios.
Consider the first Friedmann equation of a type of modified
gravity in the following form:

κ2ρDE =
∑

∑
ni=n

A(R,G, . . .)
∂nf (R,G, . . .)

∂Rn1∂Gn2 · · · (2)

In the above equation, f (R,G, . . .) stands for the modified
gravity action. For a model of DE, for example the holo-
graphic DE, in general ρDE = ρDE(H, Ḣ , . . .). Also, im-
plicitly we able to write it as ρDE = ρDE(R,G, . . .). So, if
we can solve the following partial differential equations for
f (R,G, . . .), indeed we reconstructed the modified gravity
for this type of DE. Also, the reconstruction scheme works
if we assume that in any cosmological epoch, a(t) is given.
Our aim in this work is to reconstruct f (T ,TG) for PDE in
flat FRW Universe.

Here, we also check cosmological aspects of this theory
in flat FRW universe. It is interesting to mention that we pro-
vide the correspondence scenario of newly proposed gravity
theory as well as dynamical DE model (PDE).
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The plan of the paper is given as follows: Next section
contains the reconstruction scheme. We provide the con-
struction of reconstructed f (T ,TG) = f̃ models and cor-
responding EoS parameter with respect to PDE parame-
ter (s). In Sect. 2, we have reported a reconstruction ap-
proach through power-law form of scale factor. In Sect. 3,
we present reconstruction scheme with a choice of Hub-
ble rate H leading to unification of matter and dark energy
dominated universe. In Sect. 4, we choose the scale factor
in the “intermediate” form and reconstruct f and subse-
quently wDE . A bouncing scale factor in power law form
is considered in Sect. 5 and a reconstruction scheme is re-
ported. An analytic form of f is assumed in Sect. 6 and Hub-
ble parameter is reconstructed without any choice of scale
factor. The paper is concluded in Sect. 7.

2 Reconstruction scheme for f (T,TG) through
power-law scale factor

A new and valid generalization of f (T ) in the modified
gravity models as f (T ,TG) based on T and equivalent to
Gauss-Bonnet term TG in the teleparallel, is quite different
from their counterparts f (T ) and f (R,G) in Einstein grav-
ity (Kofinas et al. 2014). In f (T ,TG) gravity

S = 1

2

∫
d4x eF (T ,TG) +

∫
d4x eLm, (3)

where in “God-given natural units” c = 1, κ2 ≡ 8πG = 1
and Lm is Lagrangian of the matter fields. For a spatially
flat cosmological FRW metric

ds2 = −dt2 + a2(t)(d �x · d �x), (4)

we obtain:

T = 6H 2 (5)

TG = 24H 2(Ḣ + H 2) (6)

where H = ȧ/a is the Hubble parameter and dots denote
differentiation with respect to t . Friedmann equations in the
usual form are

H 2 = 1

3
(ρm + ρDE) (7)

Ḣ = −1

2
(ρm + ρDE + pm + pDE) (8)

Kofinas et al. (2014) modified Eqs. (7) and (8) by defining
the energy density and pressure of the effective dark energy
sector as

ρDE = 1

2

(
6H 2 − f + 12H 2fT + TG fTG

− 24H 3ḟTG

)
(9)

pDE = 1

2

[
−2

(
2Ḣ + 3H 2) + f − 4

(
Ḣ + 3H 2)fT

− 4HḟT − TfTG
+ 2

3H
TGḟTG

+ 8H 2f̈TG

]
(10)

Standard matter and dark energy are conserved separately,
i.e. the evolution equations are

ρ̇m + 3H(ρm + pm) = 0 (11)

ρ̇DE + 3H(ρDE + pDE) = 0 (12)

The first property of PDE is

ρΛ � m2
pL−2 (13)

To implement Eq. (13), Wei (2012) set PDE in the simplest
way as

ρΛ = 3n2m4−s
p L−s (14)

where n and s are both dimensionless constants. From
Eqs. (13) and (14) we have L2−s � ms−2

p = l2−s
p , where lp

is the reduced Planck length. Since L > lp , one requires

s ≤ 2 (15)

Another requirement for PDE is that it is to be phantom-like
(Wei 2012) i.e.

wΛ < −1 (16)

It was stated in Wei (2012) that to obtain the EoS for PDE,
we should choose a particular cut-off L and the simplest cut-
off is the Hubble horizon L = H−1.

The PDE mentioned above would now be studied in
f (T ,TG) gravity proposed recently by Kofinas et al. (2014).
As we are going to consider PDE in f (T ,TG) gravity in
Eq. (9) we use (L = 1/H )

ρDE = ρΛ = 3n2m4−s
p

(
t

m

)−s

(17)

Reconstruction scheme is a way to solve the following sec-
ond order partial differential equation for f (T ,TG):

ρDE(T ,TG) = T

2
− 1

2
f (T ,TG) + T

∂

∂T
f (T ,TG)

+ 1

2
G

∂

∂G
f (T ,TG)

− 1

2
A(T ,TG)

∂2

∂G2
f (T ,TG)

− 1

2
B(T ,TG)

∂2

∂T ∂TG

f (T ,TG) (18)
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There is no simple solution for this partial differential equa-
tion for a given set of functions {A,B}. But sometimes for a
choice of scale factor a(t) we can solve it.

We consider the scale factor in the form

a(t) = a0t
m (19)

where m > 0. Subsequently Hubble parameter H and its
time derivative Ḣ are

H = m

t
, Ḣ = −m

t2
(20)

T = 6m2

t2
, TG = 24(−1 + m)m3

t4

Ṫ = −12m2

t3
; ṪG = −96(−1 + m)m3

t5

(21)

Considering Eqs. (9), (17) and (21) we get the following
differential equation

(
t2+s

4 − 4m

)
d2f

dt2
+ t1+s 5

4

(
m − 2

m − 1

)
df

dt
+ t sf

− 6m2t−2+s + 6msn2 = 0 (22)

This differential equation has an exact solution given by the
following expression:

f (t) = C2t
5
2 m− 9

2 + 1
2

√
65−74m+25m2

+ C1t
5
2 m− 9

2 − 1
2

√
65−74m+25m2

+ 120(− 8
5m1+s + 3

5m2+s + ms)n2t2−s

15t2((s − 4
5 )m + 1

5 s2 + 4
5 − 9

5 s)(− 5
3 + m)

− 60((s − 4
5 )m + 1

5 s2 + 4
5 − 9

5 s)(m − 1)m2

15t2((s − 4
5 )m + 1

5 s2 + 4
5 − 9

5 s)(− 5
3 + m)

(23)

It is possible to write f (T ,TG) in the following form:

f (T ,TG)

= C2

(
2T 3/2

√
6

3G − 2T 2

) −5T 2

3TG−2T 2 −9/2+1/2
√

65+ 148T 2

3TG−2T 2 + 100T 4

(3TG−2T 2)2

+C1

(
2T 3/2

√
6

3TG−2T 2

) −5T 2

3TG−2T 2 −9/2−1/2
√

65+ 148T 2

3TG−2T 2 + 100T 4

(3TG−2T 2)2

−32805
(
TG − 2/3T 2)4(

TG − 2/3T 2)4

×
[

3/5

( −2T 2

3TG − 2T 2

)2+s

− 8/5

( −2T 2

3TG − 2T 2

)1+s

+
( −2T 2

3TG − 2T 2

)s]
n2

(
2

T 3/2
√

6

3TG − 2T 2

)2−s

+ 2

45

((−2/3s2 + 8/3s
)
T 2 + TG

(−9s + 4 + s2)T 4TG

)

× (
3TG − 2T 2)−4(8T 2s + 3s2TG − 2s2T 2

+12TG − 27sTG

)−1(−4T 2 + 15TG

)−1
T −3 (24)

Based on the choice of the scale factor we have Ḣ < 0 is
valid in the whole cosmic history. Hence, considering wΛ =
−1 − sḢ

3H 2 < −1 as required by PDE, we need s < 0. It was
clearly established in Wei (2012) that for PDE

• EoS wΛ goes asymptotically to −1 in the late;
• wΛ < −1;
• wΛ never crosses the phantom divide w = −1 in the

whole cosmic history.

In order to verify whether consideration of PDE in the
f (T ,TG) gravity, which is a class of modified gravity, leads
to results consistent with that of Wei (2012) we consider
both 0 < s ≤ 2 as well as s < 0. In particular we consider
s = 2 and s = −2. Solving Eq. (22) for the said two cases
we have two solutions for f (t) as:

f̃ (s = 2) = 12(−1 + m)m2(−1 + n2)

(−5 + 3m)t2

+ t
1
2 (−9+5m−√

65+m(−74+25m))

× [
C2 + C1t

√
65+m(−74+25m)

]
(25)

and

f̃ (s = −2) = 12(−1 + m)( m4

5−3m
+ n2t4

13−7m
)

m2t2

+ t
1
2 (−9+5m+√

65+m(−74+25m))

× [
C3 + C4t

−√
65+m(−74+25m)

]
(26)

It may be noted that from now onwards f̃ would denote the
reconstructed f . Using solution (25) in Eq. (10) we get the
modified pDE for s = 2 as function of t

pDE(s = 2)

= 1

192(−1 + m)m(−5 + 3m)
t

1
2 (−11−ξ)

× [
m5(−1728n2t

7+ξ
2 − 750C1t

5m
2 +ξ

)

+ 384m4t
5+ξ

2
(−2 + 4t + n2(2 + 11t)

)

− 192m3t
5+ξ

2
(−8 + 16t + n2(8 + 15t)

)

+ 25C1m
4t

5m
2 +ξ (158 + 45t − 18ξ)

+ 5C1t
5m
2 +ξ (−9 + ξ)

(−6 − 53t + 4(2 + t)ξ

+ (−2 + t)ξ2) + 3C1m
3t

5m
2 +ξ

(
t (−1884 + 65ξ)

− 10
(
254 + 3(−22 + ξ)ξ

))

− C1mt
5m
2 +ξ

(
2382 − 2ξ

(
962 + ξ(−179 + 8ξ)

)
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+ t
(
8396 + ξ

(−957 + ξ(−50 + 3ξ)
)))

− C2(−5 + 3m)t5m/2(250m4 − 75m3(5t + 2(6 + ξ)
)

− (9 + ξ)
(−2(1 + ξ)(3 + ξ) + t

(−53 + (−4 + ξ)ξ
))

+ m2(t (1259 + 65ξ) + 10
(
104 + ξ(41 + 3ξ)

))

+ m
(−2(6 + ξ)

(
37 + ξ(22 + ξ)

)

+ t
(−1393 + ξ(−138 + 7ξ)

)))

+ m2(384t
5+ξ

2
(−2 + 4t + n2(2 + t)

)

− C1t
5m
2 +ξ

(−6532 + 2ξ
(
1532 + 3(−53 + ξ)ξ

)

+ t
(−10474ξ(739 + 21ξ)

)))]
(27)

Using solution (26) in Eq. (10) we get the modified pDE

for s = −2 as function of t

pDE(s = −2)

= t
1
2 (−11−ξ)

192(−1 + m)m3(−5 + 3m)(−13 + 7m)

× [−5250C3m
8t

5m
2 +ξ + 25344m5t

5+ξ
2 (−1 + 2t)

− 20736m6t
5+ξ

2 (−1 + 2t) + 5376m7t
5+ξ

2 (−1 + 2t)

+ 5760n2t
13+ξ

2 (−10 + 7t) − 576mn2t
13+ξ

2

× (−260 + 97t) − 192m4t
5+ξ

2
(−52 + 104t + 63n2t5)

+ 25C3m
7t

5m
2 +ξ (1496 + 315t − 126ξ)

+ m2(−576n2t
13+ξ

2 (220 + 17t) − 65C3t
5m
2 +ξ

× (−9 + ξ)
(−6 − 53t + 4(2 + t)ξ + (−2 + t)ξ2))

+ C3m
6t

5m
2 +ξ

(
3t (−18063 + 455ξ)

− 10
(
10469 + 9ξ(−219 + 7ξ)

)) − C3m
5t

5m
2 +ξ

× (−144784 + 2ξ
(
23594 + 3ξ(−566 + 7ξ)

)

+ t
(−146794 + ξ(7708 + 147ξ)

)) − C3m
4t

5m
2 +ξ

× (
10

(
10159 + ξ

(−5330 + (664 − 19ξ)ξ
))

+ t
(
194934 + ξ

(−16306 + 7ξ(−89 + 3ξ)
)))

− C4m
2(65 + m(−74 + 21m)

)
t5m/2(250m4

− 75m3(5t + 2(6 + ξ)
) − (9 + ξ)

(−2(1 + ξ)(3 + ξ)

+ t
(−53 + (−4 + ξ)ξ

)) + m2(t (1259 + 65ξ)

+ 10
(
104 + ξ(41 + 3ξ)

)) + m
(−2(6 + ξ)

× (
37 + ξ(22 + ξ)

) + t
(−1393 + ξ(−138 + 7ξ)

)))

+ m3(2880n2t
13+ξ

2 (12 + 13t) + C3t
5m
2 +ξ

(
32856

− 2ξ
(
13871 + ξ(−2782 + 139ξ)

)

+ t
(
125843 + ξ

(−15556 + ξ(−825 + 74ξ)
))))]

(28)

where ξ = √
65 + m(−74 + 25m). Using Eqs. (27) and

(28) the EoS for PDE i.e. wDE = pDE

3n2m4−s
p ( t

m
)−s

is obtained

through reconstructed f̃ for s = 2 and s = −2 respectively
as

wDE(s = 2)

= 1

72m3(−5 + 3m)n2
t−

1
2 (7+ξ)

[
130C1ξ t

5m
2 +ξ

− 333C1mξt
5m
2 +ξ + 278C1m

2ξ t
5m
2 +ξ

− 75C1m
3ξ t

5m
2 +ξ + 15C1ξ t1+ 5m

2 +ξ

− 34C1mξt1+ 5m
2 +ξ + 15C1m

2ξ

= t1+ 5m
2 +ξ + C2(−5 + 3m)t5m/2(218 − 125m3 + 26ξ

+ (19 + 3ξ)t + 5m2 − (88 + 5ξ + 5t) − m
(
533 + 51ξ

+ (52 + 5ξ)t
)) + C1(−5 + 3m)t

5m
2 +ξ

(
218 + 19t

+ m
(−13(41 + 4t) + 5m(88 − 25m + 5t)

))

− 24m2t
1
2 (5+ξ)

(−4 + 8t + 9m2n2t + 2n2(2 + t)

− m
(−4 + 8t + n2(4 + 13t)

))]
(29)

and

wDE(s = −2)

= 1

72mξ2n2
t

1
2 (−15−ξ)

[−1690C3m
2ξ t

5m
2 +ξ

+ 5239C3m
3ξ t

5m
2 +ξ − 5945C3m

4ξ t
5m
2 +ξ

+ 2921C3m
5ξ t

5m
2 +ξ − 525C3m

6ξ t
5m
2 +ξ

− 195C3m
2ξ t1+ 5m

2 +ξ + 547C3m
3ξ t1+ 5m

2 +ξ

− 433C3m
4ξ t1+ 5m

2 +ξ + 105C3m
5ξ t1+ 5m

2 +ξ

− 24t
1
2 (5+ξ)

(
4(−1 + m)m4(−13 + 7m) − 8(−1 + m)

× m4(−13 + 7m)t − 60
(
5 + m(−8 + 3m)

)
n2t4

+ 3(−5 + 3m)
(−14 + m(−3 + 7m)

)
n2t5)

− C3m
2(65 + m(−74 + 21m)

)
t

5m
2 +ξ

(−218 − 19t

+ m
(
533 + 5m(−88 + 25m − 5t) + 52t

))

− C4m
2(65 + m(−74 + 21m)

)
t5m/2(−218 + 125m3

− 26ξ − (19 + 3ξ)t − 5m2(88 + 5ξ + 5t)

+ m
(
533 + 51ξ + (52 + 5ξ)t

))]
(30)

Firstly we include the discussion of reconstructed f mod-
els corresponding to PDE parameter s = 2,−2, respectively.
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Fig. 1 Plot of reconstructed f (Eq. (25)) from PDE taking s = 2 and
m > 1. Also, n = 3, C1 = 0.5, C2 = 0.2

Fig. 2 Plot of reconstructed f (Eq. (26)) from PDE taking s = −2 and
m > 1. Also, n = 3, C3 = 0.2, C4 = 0.5

We plot f (s = 2,−2) versus cosmic time as well as cosmic
scale factor m > 1 as shown in Figs. 1 and 2. In Fig. 1, it
is observed that f̃ (s = 2) shows decreasing behavior from
very high value and approaches to zero versus cosmic time
in the range 2 ≤ m ≤ 2.3. However, for m > 2.3, it shows
decreasing behavior initially, becomes flat for a short inter-
val of time, and then exhibits increasing behavior. Figure 2
indicates that f̃ (s = −2) increases with cosmic time from
very low value, becomes flat for a glimpse of time interval
and then decreases for 2 ≤ m ≤ 2.2. For 2.2 < m ≤ 2.5, it
increases but approaches to zero after short interval of time.
For 2.5 < m, f (s = −2) increases with cosmic time from
very low value, becomes flat for a glimpse of time interval
and then increases.

Fig. 3 Plot of the reconstructed EoS parameter (Eq. (29)) for s = 2

Fig. 4 Plot of the reconstructed EoS parameter (Eq. (30)) for s = −2

We also plot EoS parameter versus cosmic time corre-
sponding to the same values of PDE parameter for three
different values of m as shown in Figs. 3 and 4. It can be
observed from Fig. 3 that EoS parameter starts from dust-
like matter, passes the quintessence-like and vacuum DE era
and then goes towards phantom DE era. The wDE crosses
phantom boundary at t ≈ 0.5 and transits from quintessence
to phantom i.e. behaves like quintom. This plot also repre-
sents that EoS parameter attains more reliable phantom era
which possesses the ability for prevention of BH formation.
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Figure 4 represents that EoS parameter remains in the phan-
tom DE era forever. The trajectories of EoS parameter cor-
responding to different values of m starts from higher phan-
tom values and goes towards less phantom values. Also, it
is observed that it never meets or crosses the −1 bound-
ary and hence the EoS behaves like phantom. It is worth-
while to mention here that EoS parameter corresponding to
both cases of PDE parameter correspond to phantom era of
the universe which is a favorable sign to PDE conjecture.
However, the reconstructed model corresponding to s = 2
is more attractive as compare to s = −2 because of more
aggressive phantom era. However, taking into account the
fact as stated in Wei (2012) that for PDE wDE < −1 al-
ways and it never crosses the phantom divide wDE = −1 in
the whole cosmic history, it is interpreted that EoS result-
ing from s = −2 is in complete agreement with it as in this
case wDE < −1, → −1 and never crosses −1. Moreover,
s = −2 is a choice that is in agreement with the prescription
of Wei (2012), which states that if Ḣ < 0 (a requirement for
cosmic acceleration and holds for our choice of scale factor)
s < 0. Hence, it is observed that the results stated for PDE
in Einstein gravity are in close agreement with those in the
framework of modified gravity under consideration.

3 Reconstruction scheme for unification of matter
dominated and accelerated phases

We consider that the Hubble rate H is given by (Nojiri and
Odintsov 2006)

H(t) = H0 + H1

t
, (31)

that leads to a(t) = C1e
H0t tH1 and due to this choice of

Hubble parameter, the PDE takes the form

ρΛ = 3n2t−s(H0t + H1)
s (32)

When t � t0, in the early Universe and H(t) ∼ H1
t

, the Uni-
verse was filled with perfect fluid with EOS parameter as
w = −1 + 2

3H1
. On the other hand, when t 
 t0 the Hub-

ble parameter H(t) is constant H → H0 and the Universe
seems to be de-Sitter. So, this form of H(t) provides tran-
sition from a matter dominated to the accelerating phase. In
Eq. (9) we use (31) and we get the following

ρDE = 1

2

[−f [t] + (
(H1 + H0t)

× (−t3(10H 2
1

(
2 + (−3 + H1)H1

)

+H0H1
(
21 + H1(−73 + 40H1)

)
t

+H 2
0

(
5 − 56H1 + 60H 2

1

)
t2 + H 3

0 (−13 + 40H1)t
3

+10H 4
0 t4)f ′[t]+ (H1 +H0t)

(
2H 2

1 H0t (−1+2H0t)

Fig. 5 Plot of reconstructed f̃ taking s = 2 for H(t) = H0 + H1
t

+H1(−2 + 4H0t)
)(

12H1
(
2H 2

1 + H0t (−1 + 2H0t)

+H1(−2 + 4H0t)
))) + t4f ′′[t])

×{
2H1t

2(2H 2
1 + H0t (−1 + 2H0t)

+H1(−2 + 4H0t)
)2}−1]

. (33)

In the above as well as in the subsequent differential equa-
tions f ′[t] and f ′′[t] denote the first and second order
derivatives of f respectively with respect to t . If we consider
ρΛ = ρDE as available in Eqs. (32) and (33), we get a dif-
ferential equation that can not be solved analytically for f .
Hence, we solve it numerically to have f graphically. Us-
ing the same approach as in the previous section, we have
reconstructed EoS parameter and showed it graphically. In
Figs. 5 and 6, we have plotted f̃ for s = 2 and −2, respec-
tively. In case of s = 2, we have taken n = 0.91, H1 = 2
(red), 2.2 (green), 2.3 (blue) and H0 = 0.5. For s = −2, we
have taken n = 4, H1 = 3 (red), 3.1 (green), 3.2 (blue) and
H0 = 0.89.

For s = 2, we have observed increasing pattern of f̃ and
in case of s = −2, it is exhibiting decreasing pattern. We
have plotted the EoS parameters corresponding to s = −2
and 2 in Figs. 7 and 8, respectively. In case of s = 2,
the EoS parameter is ≥ −1 and hence it is behaving like
quintessence. However, for s = −2, the EoS parameter is
crossing −1 boundary for H1 = 3.2 and hence it is behav-
ing like quintom. Hence, it is understood that reconstructed
f (T ,TG) through consideration of PDE can attain phantom
era when s = −2. This is consistent with the behavior of
PDE that leads to purely phantom era when considered in
Einstein gravity with s = −2. However, in f (T ,TG) gravity,
it can go beyond phantom for our choice H(t) = H0 + H1

t
.
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Fig. 6 Plot of reconstructed f̃ taking s = −2 for H(t) = H0 + H1
t

Fig. 7 Plot of the reconstructed EoS parameter for s = 2

3.1 On unification of inflation with DE in f (T ,TG)

In this short subsection our aim is to realize f (T ,TG) to
unify the early inflationary epoch with the late time de-
Sitter era. We mention here that the unification of inflation
with DE in modified gravities firstly examined for f (R)

gravity. It was proposed in Nojiri-Odintsov model (Nojiri
and Odintsov 2003), which was subsequently generalized to
more realistic versions (Nojiri and Odintsov 2007c; Cognola
et al. 2008). One important problem in early Universe is sin-
gularity and it investigated later (Nojiri and Odintsov 2008).
Indeed it has been shown that there is a class of non-singular

Fig. 8 Plot of the reconstructed EoS parameter for s = −2

exponential gravity to unify the early- and late-time acceler-
ated expansion of the Universe (Elizalde et al. 2011).

For our f (T ,TG) case, if we consider the inflationary so-
lution for H = H1

t
then we have an exact solution of f as

f̃ = 1

t7

[
48n2(−t)7−s

8 + (−14 + s)s
− 3t5 + C1t

−√
41 + C2t

√
41

]
(34)

This is an inflationary solution. We denote by j = 7− s > 5,

� = 48n2

8+(−14+s)s
, so we obtain:

f̃ = 1

t7

[
�tj − 3t5 + C1t

−√
41 + C2t

√
41] (35)

At inflationary (early) Universe, when t � t0, the dominant
part of the f̃ is written as follows:

f̃ ∼ C1t
−(7+√

41). (36)

Since in this limit,

T ∼ 6H 2
1

t2
, TG ∼ 24H 3

1 (H1 − 1)

t4
(37)

So, the reconstructed f (T ,TG) for inflationary era is written
as the following:

f (T ,TG) = C1

[
−TG

24

√
6

T

]7+√
41

. (38)

So, f (T ,TG) produces also the inflationary (phantom) solu-
tions as well.
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At late time, i.e. in the de-Sitter epoch when H(t) ∼ H0,
we use of this fact that:

T ∼ 6H 2
0 , TG ∼ 24H 4

0 ,

ḟTG
= ṪGfTG,TG

+ Ṫ fTG,T |H=H0 = 0
(39)

so the reconstruction scheme gives us:

f (T ,TG) = √
T F

(
TG√
T

)
− T + 61−s/2n2m4−s

p

s − 1
T s/2 (40)

where F denotes an arbitrary function. The above f (T ,TG)

reproduces de-Sitter (late time) epoch.

4 Reconstruction scheme for intermediate scale factor

Next, we consider the following scale factor (Barrow et al.
2006)

a(t) = exp
(
Atm

)
, 0 < m < 1. (41)

The scale factor and Hubble parameter is suitably chosen so
that it is consistent with the intermediate expansion:

H(t) = Amtm−1. (42)

The scale factor is necessary to perform the analysis and
therefore working with a hypothetical scale factor may
not be consistent with the inflationary scenario. Hence we
picked the intermediate scale factor which is also consis-
tent with astrophysical observations (Barrow et al. 2006).
Subsequently we have the following differential equa-
tion

3n2
(

t1−m

Am

)−s

= 1

2

(
6A2m2t−2+2m − f [t] + tf ′[t]

−1 + m

+ t (−1 + m + Amtm)f ′[t]
(−1 + m)(−4 + m(3 + 4Atm))

+ t (20 + m2(9 + 16Atm) − m(27 + 20Atm))f ′[t]
(−1 + m)(−4 + m(3 + 4Atm))2

− t2(−4 + m(3 + 4Atm))f ′′[t]
(−1 + m)(−4 + m(3 + 4Atm))2

)
(43)

Solving Eq. (43) numerically and plotting reconstructed
f̃ in Figs. 9 and 10 for s = −2 and s = 2. We observe that
for s = 2 as well as s = −2, the reconstructed f (T ,TG)

model is displaying decreasing pattern. It is noted from
Fig. 11 (for s = 2) that the reconstructed wDE crosses
phantom boundary at t ≈ 1.15 and hence behaves like

Fig. 9 Plot of reconstructed f̃ taking s = 2 for intermediate scale fac-
tor

Fig. 10 Plot of reconstructed f̃ taking s = −2 for intermediate scale
factor

quintessence. However, in Fig. 12 (for s = −2), we ob-
serve that the EoS parameter wDE < −1 which indicates an
aggressively phantom-like behavior. Hence, for intermedi-
ate scale factor, the PDE in modified gravity f (T ,TG) per-
tains to phantom era of the universe and hence it is con-
sistent with the behavior of PDE in Einstein gravity for
s = −2. It may be noted (for s = 2 case) that we have
taken n = 0.9, A = 10 and red, green and blue lines cor-
respond to m = 0.33,0.35,0.40 respectively. On the other
hand, for s = −2, we have taken n = 4, A = 0.6 and red,
green and blue lines correspond to m = 0.20,0.25,0.30 re-
spectively.
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Fig. 11 Plot of the reconstructed EoS parameter for s = 2 for interme-
diate scale factor

Fig. 12 Plot of the reconstructed EoS parameter for s = −2 for inter-
mediate scale factor

5 Reconstruction scheme for bouncing scale factor

Inflation is a solution for flatness problem in big-bang cos-
mology. Bouncing scenario predicts a transitionary infla-
tionary Universe, in which the Universe evolves from a con-
tracting epoch (H < 0) to an expanding epoch (H > 0).
It means the scale factor a(t) reaches a local minima. So
the cosmological solution is non-singular. In GB gravity,

bouncing solutions widely studied in literature (Bamba et
al. 2014a, 2014b; Odintsov et al. 2014; Makarenko et al.
2014; Amorós et al. 2013; Nojiri et al. 2003; Lidsey 2002a,
2002b).

This scale factor takes the following form (Myrzakulov
and Sebastiani 2014)

a(t) = a0 + α(t − t0)
2n,

H(t) = 2nα(t − t0)
2n−1

a0 + α(t − t0)2n
, n = 1,2,3 . . .

(44)

where a0, α are positive (dimensional) constants and n is
a positive natural number. The time of the bounce is fixed
at t = t0. When t < t0, the scale factor decreases and we
have a contraction with negative Hubble parameter. At t =
t0, we have the bounce, such that a(t = t0) = a0, and when
t > t0 the scale factor increases and the universe expands
with positive Hubble parameter. It should be mentioned that
for sake of simplicity (without any loss of generality) we
have taken n in the power law form as well as in the PDE
density (Eq. (14)). For this choice of scale factor, we get the
following differential equation

1

4

[
48n2(t − t0)

−2+4nα2

(a0 + (t − t0)2nα)2
+ (t − t0)(a0 + (t − t0)

2nα)f ′[t]
a0(−2 + 3n) − 2(t − t0)2nα

− 2(t − t0)(a0 + (t − t0)
2nα)f ′[t]

a0 − 2a0n + (t − t0)2nα

− 2f [t]((t − t0)
((

a2
0(−2 + 3n)(−5 + 6n)

− a0
(−20 + 3n(9 + 2n)

)
(t − t0)

2nα

+ 10(t − t0)
4nα2)f ′[t] − (t − t0)

(
a0(−2 + 3n)

− 2(t − t0)
2nα

)(
a0 + (t − t0)

2nα
)
f ′′[t]))

× (
(−1 + 2n)

(
a0(2 − 3n) + 2(t − t0)

2nα
)2)−1

]

= 32sn2
(

(t − t0)
1−2n(a0 + (t − t0)

2nα)

nα

)−s

. (45)

Solving Eq. (45) numerically and plotting reconstructed
f̃ in Figs. 13 and 14, we observe that the reconstructed
f (T ,TG) is displaying increasing pattern for s = 2. How-
ever, for s = −2, the reconstructed f (T ,TG) is display-
ing increasing pattern and is tending to 0 at late stage of
the universe. It is also noted from Fig. 15 (for s = 2) that
the reconstructed wDE → −1 from wDE > −1. However,
it never crosses phantom boundary and hence behaves like
quintessence throughout. However, in Fig. 16, it can be
observed that for s = −2 the EoS parameter wDE < −1
and this indicates aggressive phantom-like behavior. Hence,
with s = −2 for bounce with power-law scale factor, PDE
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Fig. 13 Plot of reconstructed f̃ taking s = 2 for bounce with pow-
er-law scale factor

Fig. 14 Plot of reconstructed f̃ taking s = −2 for bounce with pow-
er-law scale factor

in modified gravity f (T ,TG) pertains to phantom era of the
universe and hence it is consistent with the behavior of PDE
in Einstein gravity for s = −2. It may be noted that for both
of the cases, we have taken n = 2, A = 10 and red, green
and blue lines correspond to m = 0.33,0.35,0.40 respec-
tively. On the other hand, for s = −2 we have taken n = 4,
a0 = 10.5, α = 10.1 and red, green and blue lines corre-
spond to n = 6,7,8 respectively.

Fig. 15 Plot of the reconstructed EoS parameter for s = 2 for bounce
with power-law scale factor

Fig. 16 Plot of the reconstructed EoS parameter for s = −2 for
bounce with power-law scale factor

6 Reconstruction through a semi analytic form of f

We assume that f (T ,TG) realizes the form

f (T ,TG) ≡ f = b0 + b1t + b2t
2 + b3t

3 + · · · (46)

For this choice of f , Eq. (9) takes the form

ρDE = 1

2

[
−b0 − b1t − b2t

2 − b3t
3 + 6H 2
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Fig. 17 Plot of reconstructed H̃ for s = 2

+ (b1 + t (2b2 + 3b3t))H

H ′

+ (b1 + t (2b2 + 3b3t))H(H 2 + H ′)
2H ′(2H 2 + H ′) + HH ′′

− 48H(b2 + 3b3t)H(2H ′(2H 2 + H ′) + HH ′′)
24(2H ′(2H 2 + H ′) + HH ′′)2

−24
(
b1 + t (2b2 + 3b3t)

)

× H(2H ′3 +4H 3H ′′ +6HH ′H ′′ +H 2(12H ′2 +H 3))

24(2H ′(2H 2 +H ′)+HH ′′)2

]

(47)

which, on setting equal to ρΛ gives rise to a differential
equation on H that is solve numerically to generate the re-
construction of H and subsequently EoS parameter wDE =
−1− 2Ḣ

3H 2 that are plotted in Figs. 17, 18, 19 and 20. We have
set the coefficients of the polynomial as b0 = 0.8, b1 = 0.6,
b2 = 0.5, b3 = 0.2. In this reconstruction through an as-
sumed polynomial form of f , the Hubble parameter H has
been reconstructed and the reconstructed H̃ has been exam-
ined for its first time derivative and it is observed that ˙̃

H < 0
throughout for s = ±2 and wDE < −1 for s = ±2. Nega-
tive time derivative of Hubble parameter is consistent with
the accelerated expansion of the universe and the aggressive
phantom-like behavior of wDE is consistent with the basic
property of pilgrim dark energy.

7 Concluding remarks

Pilgrim dark energy (PDE) model is studied in this paper
and Hubble horizon has been used as an IR cutoff. The basic
assumption of this model is that phantom acceleration pre-
vents the formation of the BH. The said PDE is considered

Fig. 18 Plot of reconstructed H̃ for s = −2

Fig. 19 Plot of the reconstructed EoS parameter for s = 2

in a modified gravity f (T ,TG), which has been constructed
by Kofinas and Saridakis (2014) on the basis of T (old
quadratic torsion scalar) and TG (new quartic torsion scalar
TG that is the teleparallel equivalent of the Gauss-Bonnet
term). We have compiled our work in two phases: Firstly,
we have assumed different scale factors such as a(t) = a0t

m,
H = H0 + H1

t
, a(t) = exp(Atm) and a(t) = a0 +α(t − t0)

2n.
We have reconstructed f and subsequently wDE in this sce-
nario. Secondly, we have assumed analytic function such
f = b0 + b1t + b2t

2 + b3t
3 and reconstructed Hubble pa-

rameter and wDE without any choice of scale factor.
Throughout the study, we have considered s = −2 and

s = 2, separately. We have observed that s = −2, as de-
scribed in PDE (Wei 2012), seems more realistic choice for
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Fig. 20 Plot of the reconstructed EoS parameter for s = −2

s than s = 2 and this outcome of the present reconstruction
work is consistent with Wei (2012). Moreover, it has been
observed that the reconstructed wDE , irrespective of choices
of scale factor or a choice of f , exhibit a more aggressive
phantom-like behavior for s = −2 than s = 2. This result
also matches the study of Wei (2012). Hence, it is finally
concluded that PDE, when considered in f (T ,TG) gravity
is capable of attaining the phantom phase of the universe.
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